Loading...
HomeMy WebLinkAbouttrussRe: The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by ProBuild (CarterLee Bldg Components). Liu, Xuegang Pages or sheets covered by this seal: I34638789 thru I34638832 My license renewal date for the state of Indiana is July 31, 2020. B18802802 Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2. IMPORTANT NOTE: CALA 55 CLAY 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE01 Truss Type Roof Special Supported Gable Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638789 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:44 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-6T6DC2TiA_D?jIdE?v7aJbQpk5oNdA58gl47H6yePJL Scale = 1:97.9 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 3x8 3x8 4x6 3x8 3x8 5x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x414-2-158-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 2-8-012-0-02-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [8:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.79 0.35 0.16 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.02 (loc) 15 14-15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 92 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 16-0-0. (lb) - Max Horz28=317(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except 28=-696(LC 4), 16=-307(LC 5), 22=-134(LC 5), 27=-453(LC 5), 17=-430(LC 4) Max Grav All reactions 250 lb or less at joint(s) 16, 23, 24, 25, 26, 21, 20, 19, 18 except 28=620(LC 5), 22=828(LC 7), 27=479(LC 4), 17=457(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-28=-255/333, 2-3=-259/353, 4-5=-38/323, 5-6=-24/394, 6-7=-24/478, 7-8=-28/525, 8-9=-28/525, 9-10=-24/478, 10-11=-24/394, 11-12=-26/323, 13-14=-240/334, 14-16=-236/315 BOT CHORD 27-28=-374/391, 25-26=-241/263, 24-25=-229/253, 23-24=-234/256, 22-23=-232/252, 21-22=-232/252, 20-21=-232/255, 19-20=-235/257, 17-18=-262/285 WEBS 8-22=-743/0 NOTES- (13-14) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Bearing at joint(s) 28, 16, 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except (jt=lb) 28=696, 16=307, 22=134, 27=453, 17=430. 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17. 11) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 13) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 14) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE02 Truss Type GABLE Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638790 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:44 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-6T6DC2TiA_D?jIdE?v7aJbQve5qbd5q8gl47H6yePJL Scale: 1/8"=1' Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 29 31 30 32 33 34 3x4 3x6 4x6 3x6 3x42x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 6-0-02-0-0 2-0-0 14-2-158-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 1-7-310-11-31-7-314.00 12 Plate Offsets (X,Y)-- [8:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.41 0.21 0.50 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.00 (loc) 15 15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 126 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 7-23,9-21: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. JOINTS 1 Brace at Jt(s): 29, 30, 31, 32 REACTIONS. All bearings 16-0-0. (lb) - Max Horz28=-278(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 25, 26, 19, 18 except 28=-240(LC 4), 16=-224(LC 5), 24=-108(LC 6), 27=-262(LC 5), 20=-109(LC 7), 17=-252(LC 4) Max Grav All reactions 250 lb or less at joint(s) 23, 24, 25, 26, 27, 21, 20, 19, 18, 17, 22 except 28=307(LC 5), 16=291(LC 4) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 6-7=-24/344, 7-8=-38/255, 8-9=-38/255, 9-10=-24/344 NOTES- (11-12) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 26, 19, 18 except (jt=lb) 28=240, 16=224, 24=108, 27=262, 20=109, 17=252. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 11) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 12) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE03 Truss Type Common Supported Gable Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638791 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:45 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-aggbQOUKxHLsLRCRZdeprpy65VB7MduIvPqgpZyePJK Scale = 1:84.8 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 4x6 3x4 3x85x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 21-9 -5 6-7-11 25-5-0 25-5-0 19-5-12 19-5-12 25-5-0 5-11-4 0-6-810-3-67-3-126.00 12 Plate Offsets (X,Y)-- [1:0-2-9,Edge], [1:0-0-0,0-0-13], [7:0-3-0,0-3-0], [29:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.30 0.12 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 21 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 182 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 15-25,14-26,13-27,16-24,17-23: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 15-25, 14-26, 13-27, 16-24, 17-23 REACTIONS. All bearings 25-5-0. (lb) - Max Horz1=251(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1 Max Grav All reactions 250 lb or less at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE04 Truss Type GABLE Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638792 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:46 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-2sEzdkVzibTjzbnd7K92O0VEdvMy50ER83ZEM?yePJJ Scale = 1:85.4 Sheet Front Left Option 2-11-0 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 13 12 11 10 9 14 15 16 17 4x6 3x4 5x8 3x83x6 2x4 3x6 3x6 3x6 3x6 2x4 2x4 3x6 2x4 3x8 2x4 5x8 3x82x4 2x4 2x4 2x4 2x4 2x42x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x42x4 2x4 2x4 5-3-122-2- 13 22-9-15 2-11-0 2-11-0 2-11-0 9-9-13 6-10-13 19-5-12 9-7-15 25-5-0 5-11-4 -0-11-4 0-11-4 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 21-5-12 2-0-0 25-5-0 3-11-4 0-6-810-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:0-3-8,Edge], [4:0-3-0,0-3-0], [16:0-2-4,0-2-4] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.51 0.79 0.44 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.51 0.05 (loc) 10-12 10-12 9 l/defl >999 >589 n/a L/d 240 180 n/a PLATES MT20 Weight: 151 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 5-10,6-10,7-9: 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-10, 7-9 JOINTS 1 Brace at Jt(s): 15 REACTIONS. (lb/size)2=1071/0-3-8, 9=1004/0-3-8 Max Horz2=254(LC 5) Max Uplift2=-90(LC 6), 9=-62(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1870/201, 3-4=-1611/153, 4-5=-1453/185, 5-6=-993/160, 6-7=-961/185 BOT CHORD 2-13=-160/1562, 12-13=-214/1270, 11-12=-81/873, 10-11=-81/873, 9-10=-34/395 WEBS 3-14=-289/181, 12-14=-292/180, 12-15=-19/470, 5-15=-16/453, 5-16=-656/208, 10-16=-674/212, 10-17=-58/658, 6-17=-57/651, 7-9=-951/51, 13-14=0/405, 14-15=0/387, 15-16=0/419, 16-17=0/496, 7-17=0/533 NOTES- (9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE05 Truss Type Common Supported Gable Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638793 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:47 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-W2oLq4WbTvbaalMpg2gHwE2SXJsUqYeaMjJnuRyePJI Scale = 1:79.0 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 3x6 4x6 3x4 3x43x62x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 2 0 -7-1 4-4-13 21-5-0 21-5-0 -0-11-4 0-11-4 17-5-12 17-5-12 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:Edge,0-0-13], [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.31 0.13 0.11 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.00 (loc) 1 1 20 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 140 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 16-23,15-24,17-22: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 16-23, 15-24, 17-22 REACTIONS. All bearings 21-5-0. (lb) - Max Horz2=245(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2 Max Grav All reactions 250 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 22, 21, 2 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE06 Truss Type Monopitch Supported Gable Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638794 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:47 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-W2oLq4WbTvbaalMpg2gHwE2SCJscqYEaMjJnuRyePJI Scale = 1:15.1 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 6 5 2x4 2x43x4 2x4 2x4 7-1-5 -0-11-4 0-11-4 5-11-8 5-11-8 0-4-01-9-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.26 0.19 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 0.01 0.00 (loc) 1 1 5 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 17 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)5=-88/5-11-8, 2=212/5-11-8, 6=397/5-11-8 Max Horz2=51(LC 5) Max Uplift5=-88(LC 1), 2=-42(LC 4), 6=-36(LC 6) Max Grav5=9(LC 4), 2=212(LC 1), 6=397(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-293/176 NOTES- (9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE07 Truss Type GABLE Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638795 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:48 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-_EMj2QXDECjRCvw?ElBWTRaWLi3IZyWkbN2LQtyePJH Scale = 1:120.5 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 23 4 5 6 7 89 10 11 12 13 14 15 16 3231 30 29 28 27 26 25 24 23 22 21 20 19 18 33 17 3x6 6x8 3x6 3x6 3x6 4x8 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 20-9-5 18-7-0 18-7-0 18-7-0 18-7-0 5-2-214-5-106.00 12 Plate Offsets (X,Y)-- [16:0-4-8,Edge], [23:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.75 0.73 0.26 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 17 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 218 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 *Except* 1-9: 2x4 SPF 2100F 1.8E BOT CHORD2x4 SPF No.2 *Except* 23-32: 2x4 SP 2400F 2.0E WEBS 2x4 SPF No.2 *Except* 1-32: 2x6 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 6-27,5-28,4-29,3-30,2-31: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 16-18, 15-19, 14-20, 13-21, 12-22, 11-23, 10-24, 8-25, 7-26, 6-27 REACTIONS. All bearings 18-7-0. (lb) - Max Horz32=428(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 21, 23, 25, 26, 27, 28, 29, 30 except 32=-369(LC 4), 17=-174(LC 5), 31=-1790(LC 5), 18=-161(LC 6) Max Grav All reactions 250 lb or less at joint(s) 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 18 except 32=1745(LC 5), 31=413(LC 4) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-574/103, 2-3=-268/49, 1-32=-783/154 WEBS 2-31=-137/672 NOTES- (10-11) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21, 23, 25, 26, 27, 28, 29, 30 except (jt=lb) 32=369, 17=174, 31=1790, 18=161. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE08 Truss Type GABLE Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638796 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:49 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-SRw6FmXr?WrIq3VCoSjl0f7kV6VuINRtq1ouzKyePJG Scale = 1:120.5 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 39 20 6x8 3x6 3x6 3x6 6x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x6 25 -1 1 -15 23-3-0 23-3-0 23-3-0 23-3-0 2-10-214-5-106.00 12 Plate Offsets (X,Y)-- [11:0-3-0,0-3-0], [19:0-4-8,Edge], [30:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.53 0.33 0.41 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 20 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 238 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 *Except* 1-11: 2x4 SP 2400F 2.0E BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 10-30,9-31,8-32,7-33,6-34,5-35,4-36,3-37,2-38: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 20-21. WEBS 1 Row at midpt 19-21, 18-22, 17-23, 16-24, 15-25, 14-26, 13-27, 12-28, 11-29, 10-30 REACTIONS. All bearings 23-3-0. (lb) - Max Horz38=435(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 38, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 except 20=-119(LC 5), 37=-835(LC 5), 21=-155(LC 6) Max Grav All reactions 250 lb or less at joint(s) 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 21 except 38=839(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-42/277, 2-3=-568/44, 3-4=-273/26, 4-5=-302/36, 5-6=-289/44, 6-7=-275/51, 7-8=-261/58, 1-38=-97/980 WEBS 3-37=-94/643, 2-38=-1641/148 NOTES- (10-11) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 38, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 except (jt=lb) 20=119, 37=835, 21=155. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE09 Truss Type Monopitch Supported Gable Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638797 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:49 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-SRw6FmXr?WrIq3VCoSjl0f7oe6Z0ISjtq1ouzKyePJG Scale = 1:51.6 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 3x4 3x4 3x4 3x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 15-10 -1 -0-11-4 0-11-4 13-2-12 13-2-12 0-6-87-1-146.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-1], [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.27 0.13 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 0.00 0.00 (loc) 1 1 12 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 68 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 13-2-12. (lb) - Max Horz2=217(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20 Max Grav All reactions 250 lb or less at joint(s) 12, 2, 13, 14, 15, 16, 17, 18, 19, 20 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE10 Truss Type Common Supported Gable Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638798 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:50 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-xdUUT6YTmqz8RD4OMAE_Ysg1bWww1wC13hXRVmyePJF Scale = 1:52.2 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 4x6 3x4 3x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 13-4-3 22-0-0 22-0-0 -0-11-4 0-11-4 11-0-0 11-0-0 22-0-0 11-0-0 22-11-4 0-11-4 0-6-86-0-80-6-86.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-13], [2:0-2-9,Edge], [18:0-0-0,0-0-13], [18:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.06 0.02 0.06 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.00 (loc) 19 19 18 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 101 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 22-0-0. (lb) - Max Horz2=60(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18 Max Grav All reactions 250 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE11 Truss Type Monopitch Supported Gable Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638799 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:51 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Pp2sgRZ5X75?3MfavtlD54C8AwDPmNXAHKH?1CyePJE Scale = 1:39.7 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 12 11 10 9 8 7 3x4 3x4 2x4 2x42x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 6 -7-15 5-11-8 5-11-8 1-10-24-9-146.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.27 0.13 0.06 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 30 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 5-11-8. (lb) - Max Horz12=136(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 7, 8, 9, 10 except 11=-308(LC 5) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 9, 10, 11 except 12=344(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (10-11) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 7, 8, 9, 10 except (jt=lb) 11=308. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss GE12 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638800 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:51 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Pp2sgRZ5X75?3MfavtlD54CBywFcmNOAHKH?1CyePJE Scale = 1:10.5 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 2x4 2x4 2x4 2-7 -1 4 2-4-10 2-4-10 0-0-41-2-56.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.09 0.06 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF-S Stud WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-4-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=64/2-4-10, 3=64/2-4-10 Max Horz1=26(LC 5) Max Uplift1=-2(LC 6), 3=-9(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M01 Truss Type Monopitch Qty 7 Ply 1 CALA 55 CLAY Job Reference (optional) I34638801 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:51 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Pp2sgRZ5X75?3MfavtlD54C5CwANmNOAHKH?1CyePJE Scale = 1:15.1 1 2 3 4 2x4 3x4 2x4 -0-11-4 0-11-4 5-11-8 5-11-8 0-4-01-9-141-6-60-3-81-9-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.46 0.33 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.05 -0.14 0.00 (loc) 2-4 2-4 4 l/defl >999 >487 n/a L/d 240 180 n/a PLATES MT20 Weight: 16 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)2=304/0-11-4, 4=210/0-1-8 Max Horz2=51(LC 5) Max Uplift2=-60(LC 4), 4=-17(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M02 Truss Type Monopitch Qty 3 Ply 1 CALA 55 CLAY Job Reference (optional) I34638802 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:52 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-t0bEunajIRDshWEnTbGSdHlA6KSDVqeKW_0YZfyePJD Scale = 1:18.3 1 2 3 4 2x4 3x4 2x4 -0-11-4 0-11-4 7-11-8 7-11-8 0-4-02-3-142-0-60-3-82-3-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.89 0.61 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.19 -0.47 0.00 (loc) 2-4 2-4 4 l/defl >478 >191 n/a L/d 240 180 n/a PLATES MT20 Weight: 21 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)2=382/0-11-4, 4=293/0-1-8 Max Horz2=68(LC 5) Max Uplift2=-65(LC 4), 4=-26(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M03 Truss Type Monopitch Qty 8 Ply 1 CALA 55 CLAY Job Reference (optional) I34638803 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:52 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-t0bEunajIRDshWEnTbGSdHlHqKSDVkTKW_0YZfyePJD Scale = 1:100.8 1 2 3 4 5 10 9 8 76 11 12 3x6 4x8 3x63x4 3x4 3x6 4x8 3x4 3x6 3x6 3x6 3x6 9-3-8 9-3-8 18-7-0 9-3-8 6-3-8 6-3-8 12-3-8 6-0-0 18-7-0 6-3-8 5-2-214-5-102-9-414-5-106.00 12 Plate Offsets (X,Y)-- [5:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.40 0.61 0.40 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.16 -0.41 -0.10 (loc) 9-10 9-10 12 l/defl >999 >532 n/a L/d 240 180 n/a PLATES MT20 Weight: 125 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 1-10: 2x4 SPF-S Stud OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 2-9, 4-7, 2-10, 5-12 REACTIONS. (lb/size)10=735/0-5-8, 12=714/0-1-8 Max Horz10=314(LC 6) Max Uplift12=-206(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-490/9, 3-4=-344/38, 7-11=-183/577, 5-11=-183/577 BOT CHORD 9-10=-192/393, 8-9=-71/289, 7-8=-71/289 WEBS 2-9=-81/258, 4-9=-126/366, 4-7=-555/268, 2-10=-613/0, 5-12=-714/254 NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=206. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M04 Truss Type Monopitch Qty 10 Ply 1 CALA 55 CLAY Job Reference (optional) I34638804 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 14:54:47 2018 Page 1Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-6AvibjJzxE1?dkspzUxYAPKadgyv9hWEJoRxeCyeLBs Scale = 1:81.9 1 2 3 4 5 10 98 76 11 12 3x6 4x10 5x12 3x6 3x6 6x8 3x6 4x8 3x6 3x6 3x6 11-7-8 11-7-8 23-3-0 11-7-8 7-10-3 7-10-3 15-4-13 7-6-11 23-3-0 7-10-3 2-10-214-5-102-9-414-5-106.00 12 Plate Offsets (X,Y)-- [5:0-6-8,Edge], [9:0-1-12,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.82 0.97 0.56 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.37 -0.94 -0.22 (loc) 8-10 8-10 12 l/defl >749 >295 n/a L/d 240 180 n/a PLATES MT20 Weight: 131 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-8,1-10: 2x4 SPF-S Stud OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 4-7, 2-10, 5-12 REACTIONS. (lb/size)10=921/0-5-8, 12=901/0-1-8 Max Horz10=350(LC 6) Max Uplift12=-197(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-833/0, 3-4=-648/22, 7-11=-154/729, 5-11=-154/729 BOT CHORD 9-10=-254/768, 8-9=-254/768, 7-8=-101/488 WEBS 2-8=-224/254, 4-8=-67/557, 4-7=-766/269, 2-10=-895/0, 5-12=-901/246 NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 12. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M05 Truss Type MONOPITCH Qty 7 Ply 1 CALA 55 CLAY Job Reference (optional) I34638805 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:53 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-LC9c57aM2lLjIgpz1InhAVIThjq0E5cTlem665yePJC Scale = 1:51.7 1 2 3 4 5 7 6 2x4 5x6 3x4 5x6 3x4 5x6 7-5-9 7-5-9 13-2-12 5-9-3 -0-11-4 0-11-4 7-5-9 7-5-9 13-2-12 5-9-3 0-6-87-1-144-10-62-3-85-1-142-0-06.00 12 3.50 12 Plate Offsets (X,Y)-- [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix-M) 0.33 0.51 0.79 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.06 -0.17 0.05 (loc) 7-12 7-12 6 l/defl >999 >915 n/a L/d 240 180 n/a PLATES MT20 Weight: 46 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud SLIDER Left 2x3 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)2=595/0-7-4, 6=508/0-1-8 Max Horz2=191(LC 5) Max Uplift2=-46(LC 6), 6=-73(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-364/0, 3-4=-1102/194 BOT CHORD 2-7=-209/963, 6-7=-188/881 WEBS 4-7=0/439, 4-6=-926/271 NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M06 Truss Type Monopitch Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638806 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:53 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-LC9c57aM2lLjIgpz1InhAVIRNjttE9TTlem665yePJC Scale = 1:45.2 1 2 3 6 5 4 7 3x4 2x4 5x6 3x4 3x6 5x6 4-10-5 4-10-5 10-7-8 5-9-3 4-10-5 4-10-5 10-7-8 5-9-3 1-10-21-2-26-5-140-8-04-10-61-7-85-1-141-4-06.00 12 3.50 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.48 0.26 0.54 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.04 -0.11 -0.03 (loc) 4-5 4-5 4 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 43 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)7=413/0-3-8, 4=413/0-1-8 Max Horz7=186(LC 5) Max Uplift4=-72(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-750/180, 6-7=-413/51, 1-6=-388/128 BOT CHORD 5-6=-301/100, 4-5=-173/610 WEBS 2-5=-6/266, 2-4=-635/255, 1-5=-5/540 NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 7, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). VERTICAL LEGS ARE NOT DESIGNED FOR LATERALLOADS IMPOSED BY SUPPORTS (BEARINGS). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M07 Truss Type Monopitch Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638807 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:53 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-LC9c57aM2lLjIgpz1InhAVISYjtnEHuTlem665yePJC Scale = 1:38.3 1 2 4 3 3x4 3x6 3x63x4 5-11-8 5-11-8 5-11-8 5-11-8 1-10-24-9-146.00 12 Plate Offsets (X,Y)-- [3:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.40 0.27 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.04 -0.11 -0.00 (loc) 3-4 3-4 3 l/defl >999 >626 n/a L/d 240 180 n/a PLATES MT20 Weight: 20 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)3=227/5-11-8, 3=227/5-11-8, 4=227/5-11-8 Max Horz4=136(LC 5) Max Uplift3=-43(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (6-7) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 4) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss M08 Truss Type Monopitch Qty 9 Ply 1 CALA 55 CLAY Job Reference (optional) I34638808 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:54 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-pOj?ITb_p2UawqO9b0IwjiqcI7D0zk7czIVfeXyePJB Scale = 1:36.2 1 2 4 3 3x4 3x6 3x4 3x6 5-11-8 5-11-8 1-10-24-9-144-6-60-3-84-9-146.00 12 Plate Offsets (X,Y)-- [3:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.40 0.27 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.04 -0.11 -0.00 (loc) 3-4 3-4 3 l/defl >999 >626 n/a L/d 240 180 n/a PLATES MT20 Weight: 20 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)4=227/0-3-8, 3=227/0-1-8 Max Horz4=136(LC 5) Max Uplift3=-43(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T01 Truss Type Roof Special Qty 3 Ply 1 CALA 55 CLAY Job Reference (optional) I34638809 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:54 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-pOj?ITb_p2UawqO9b0IwjiqaH7BVzcQczIVfeXyePJB Scale = 1:97.7 1 2 3 4 5 6 7 10 9 86x8 3x4 4x6 3x4 6x8 8x10 3x123x12 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 4-1-12 4-1-12 8-0-0 3-10-4 11-10-4 3-10-4 16-0-0 4-1-12 17-3-4 1-3-4 2-8-012-0-02-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [8:0-2-7,Edge], [10:0-2-7,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.53 0.43 0.56 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.21 -0.58 0.72 (loc) 9-10 9-10 8 l/defl >893 >325 n/a L/d 240 180 n/a PLATES MT20 Weight: 93 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 4-9: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-5-2 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 7-2-4 oc bracing. WEBS 1 Row at midpt 5-8, 3-10 REACTIONS. (lb/size)10=713/0-3-8, 8=713/0-3-8 Max Horz10=-317(LC 4) Max Uplift10=-48(LC 7), 8=-48(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-1604/287, 4-5=-1604/363 BOT CHORD 9-10=-650/1223, 8-9=-107/1041 WEBS 4-9=-484/2123, 5-9=-264/859, 5-8=-1280/99, 3-9=0/810, 3-10=-1280/251 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T02 Truss Type Roof Special Qty 2 Ply 1 CALA 55 CLAY Job Reference (optional) I34638810 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:55 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-HbHNWpccaMcRY_zM8jp9FwNl0XXii3QmCyFCAzyePJA Scale = 1:97.7 1 2 3 4 5 6 9 8 76x8 3x4 4x6 3x4 6x8 8x10 3x123x12 8-0-0 8-0-0 16-0-0 8-0-0 4-1-12 4-1-12 8-0-0 3-10-4 11-10-4 3-10-4 16-0-0 4-1-12 17-3-4 1-3-4 2-8-012-0-02-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [7:0-2-7,Edge], [9:0-2-7,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.53 0.43 0.57 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.21 -0.58 0.73 (loc) 8-9 7-8 7 l/defl >891 >325 n/a L/d 240 180 n/a PLATES MT20 Weight: 91 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 3-8: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-13 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 7-3-4 oc bracing. WEBS 1 Row at midpt 4-7, 2-9 REACTIONS. (lb/size)9=625/0-3-8, 7=717/0-3-8 Max Horz9=-335(LC 4) Max Uplift9=-44(LC 7), 7=-42(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1623/275, 3-4=-1621/350, 5-7=-250/238 BOT CHORD 8-9=-634/1238, 7-8=-101/1050 WEBS 3-8=-467/2138, 4-8=-259/865, 4-7=-1291/92, 2-8=0/806, 2-9=-1318/276 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 9, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 7. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T03 Truss Type Roof Special Qty 2 Ply 1 CALA 55 CLAY Job Reference (optional) I34638811 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:55 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-HbHNWpccaMcRY_zM8jp9FwNlyXXli3qmCyFCAzyePJA Scale: 1/8"=1' 1 2 3 4 5 6 9 8 76x8 2x4 4x6 3x4 6x8 3x12 8x10 3x12 7-8-8 7-8-8 15-8-8 8-0-0 3-10-4 3-10-4 7-8-8 3-10-4 11-6-12 3-10-4 15-8-8 4-1-12 16-11-12 1-3-4 2-8-012-0-00-4-12-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [7:0-2-7,Edge], [9:0-2-7,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.53 0.43 0.55 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.21 -0.58 0.68 (loc) 7-8 7-8 7 l/defl >874 >320 n/a L/d 240 180 n/a PLATES MT20 Weight: 90 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 3-8: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-5-13 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 7-5-10 oc bracing. WEBS 1 Row at midpt 2-9, 4-7 REACTIONS. (lb/size)9=613/Mechanical, 7=706/0-3-8 Max Horz9=-334(LC 4) Max Uplift9=-42(LC 7), 7=-40(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1567/262, 3-4=-1566/337 BOT CHORD 8-9=-606/1183, 7-8=-95/1024 WEBS 2-9=-1248/262, 2-8=0/802, 3-8=-446/2081, 4-8=-254/859, 4-7=-1257/84 NOTES- (9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Refer to girder(s) for truss to truss connections. 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 7. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T04 Truss Type COMMON Qty 8 Ply 1 CALA 55 CLAY Job Reference (optional) I34638812 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:55 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-HbHNWpccaMcRY_zM8jp9FwNnRXRFi7nmCyFCAzyePJA Scale = 1:75.8 1 2 3 4 5 6 10 9 8 7 3x6 4x6 5x8 3x63x6 2x4 3x6 2x43x12 4x6 9-9-13 9-9-13 19-5-12 9-7-15 25-5-0 5-11-4 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 25-5-0 5-11-4 0-6-810-3-67-3-126.00 12 Plate Offsets (X,Y)-- [1:0-3-8,Edge], [6:0-3-0,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.44 0.78 0.29 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.52 0.05 (loc) 1-10 1-10 7 l/defl >999 >574 n/a L/d 240 180 n/a PLATES MT20 Weight: 112 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-10,4-10,6-7: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 4-8, 6-7 REACTIONS. (lb/size)1=1005/0-3-8, 7=1005/0-3-8 Max Horz1=251(LC 5) Max Uplift1=-56(LC 6), 7=-63(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1670/241, 2-3=-1412/195, 3-4=-1254/227, 4-5=-621/195, 5-6=-600/196, 6-7=-963/167 BOT CHORD 1-10=-195/1416, 9-10=-74/961, 8-9=-74/961 WEBS 2-10=-336/177, 4-10=-9/564, 4-8=-718/204, 6-8=-26/731 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T05 Truss Type Common Qty 3 Ply 1 CALA 55 CLAY Job Reference (optional) I34638813 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:56 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-lnrlj9dELgkI98YYiQLOo7wyCxnbRa2vRc_miQyePJ9 Scale = 1:75.8 1 2 3 4 5 6 7 11 10 9 8 3x6 4x6 5x8 3x63x6 2x4 3x6 2x43x12 4x6 9-9-13 9-9-13 19-5-12 9-7-15 25-5-0 5-11-4 -0-11-4 0-11-4 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 25-5-0 5-11-4 0-6-810-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:0-3-8,Edge], [7:0-3-0,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.44 0.77 0.29 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.52 0.05 (loc) 2-11 2-11 8 l/defl >999 >583 n/a L/d 240 180 n/a PLATES MT20 Weight: 113 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 3-11,5-11,7-8: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-0-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-9, 7-8 REACTIONS. (lb/size)2=1071/0-3-8, 8=1004/0-3-8 Max Horz2=254(LC 5) Max Uplift2=-90(LC 6), 8=-62(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1662/235, 3-4=-1406/191, 4-5=-1247/222, 5-6=-621/194, 6-7=-599/195, 7-8=-962/166 BOT CHORD 2-11=-189/1407, 10-11=-72/959, 9-10=-72/959 WEBS 3-11=-332/174, 5-11=-5/562, 5-9=-715/201, 7-9=-25/730 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T06 Truss Type Common Qty 4 Ply 1 CALA 55 CLAY Job Reference (optional) I34638814 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:56 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-lnrlj9dELgkI98YYiQLOo7wsLxlARZRvRc_miQyePJ9 Scale = 1:68.5 1 2 3 4 5 6 9 8 7 3x6 4x10 3x4 4x8 3x63x6 2x4 3x8 10-7-11 10-7-11 21-5-0 10-9-5 -0-11-4 0-11-4 8-9-13 8-9-13 17-5-12 8-7-15 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.81 0.93 0.33 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.31 -0.76 0.03 (loc) 7-9 7-9 7 l/defl >828 >335 n/a L/d 240 180 n/a PLATES MT20 Weight: 88 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 3-9,6-7: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-7 REACTIONS. (lb/size)2=912/0-3-8, 7=843/0-3-8 Max Horz2=245(LC 5) Max Uplift2=-79(LC 6), 7=-64(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1289/182, 3-4=-1091/211, 4-5=-956/253 BOT CHORD 2-9=-119/1048, 8-9=-60/294, 7-8=-60/294 WEBS 3-9=-513/260, 5-9=-139/930, 5-7=-732/83 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T07 Truss Type COMMON Qty 3 Ply 1 CALA 55 CLAY Job Reference (optional) I34638815 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:57 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-DzP7xVds6zs9nH6kG8sdKLS1zL5MA0g3gGkJFsyePJ8 Scale = 1:68.5 1 2 3 4 5 8 7 6 3x6 4x10 3x4 4x8 3x63x6 2x4 3x8 10-7-11 10-7-11 21-5-0 10-9-5 8-9-13 8-9-13 17-5-12 8-7-15 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [1:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.82 0.93 0.33 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.31 -0.76 0.03 (loc) 6-8 6-8 6 l/defl >828 >336 n/a L/d 240 180 n/a PLATES MT20 Weight: 87 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-8,5-6: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-9-14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 4-6 REACTIONS. (lb/size)1=845/0-3-8, 6=845/0-3-8 Max Horz1=241(LC 5) Max Uplift1=-44(LC 6), 6=-65(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1270/186, 2-3=-1097/215, 3-4=-962/257 BOT CHORD 1-8=-123/1054, 7-8=-60/295, 6-7=-60/295 WEBS 2-8=-516/262, 4-8=-144/936, 4-6=-734/85 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T08 Truss Type Common Qty 9 Ply 1 CALA 55 CLAY Job Reference (optional) I34638816 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:57 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-DzP7xVds6zs9nH6kG8sdKLS6IL5qA053gGkJFsyePJ8 Scale = 1:50.0 1 2 3 4 5 6 7 9 8 4x6 6x10 3x8 3x8 2x42x4 6x10 11-0-0 11-0-0 22-0-0 11-0-0 -0-11-4 0-11-4 5-6-15 5-6-15 11-0-0 5-5-1 16-5-1 5-5-1 22-0-0 5-6-15 22-11-4 0-11-4 0-6-86-0-80-6-86.00 12 Plate Offsets (X,Y)-- [2:0-1-8,Edge], [6:0-1-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.48 0.90 0.37 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.25 -0.67 0.05 (loc) 6-9 2-9 6 l/defl >999 >391 n/a L/d 240 180 n/a PLATES MT20 Weight: 74 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-2 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)2=933/0-3-8, 6=933/0-3-8 Max Horz2=60(LC 6) Max Uplift2=-77(LC 6), 6=-77(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1399/233, 3-4=-1060/167, 4-5=-1060/167, 5-6=-1399/233 BOT CHORD 2-9=-124/1187, 8-9=-124/1187, 6-8=-124/1187 WEBS 4-9=-20/622, 5-9=-379/170, 3-9=-379/170 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss T09 Truss Type Common Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638817 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:57 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-DzP7xVds6zs9nH6kG8sdKLS65L5mA0_3gGkJFsyePJ8 Scale = 1:48.5 1 2 3 4 5 7 6 4x6 3x8 3x8 2x42x4 6x6 6x6 11-0-0 11-0-0 22-0-0 11-0-0 5-6-15 5-6-15 11-0-0 5-5-1 16-5-1 5-5-1 22-0-0 5-6-15 0-6-86-0-80-6-86.00 12 Plate Offsets (X,Y)-- [1:Edge,0-1-4], [5:Edge,0-1-4] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.49 0.90 0.38 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.25 -0.67 0.05 (loc) 1-7 5-7 5 l/defl >999 >387 n/a L/d 240 180 n/a PLATES MT20 Weight: 72 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 WEBS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-3-1 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=868/0-3-8, 5=868/0-3-8 Max Horz1=-56(LC 4) Max Uplift1=-42(LC 6), 5=-42(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1411/242, 2-3=-1068/173, 3-4=-1068/173, 4-5=-1411/242 BOT CHORD 1-7=-146/1200, 6-7=-146/1200, 5-6=-146/1200 WEBS 3-7=-27/625, 4-7=-385/174, 2-7=-385/174 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss TG01 Truss Type Common Girder Qty 1 Ply 2 CALA 55 CLAY Job Reference (optional) I34638818 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:58 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-iAzV8reUtH_0PRhwqrNstY?ECkcqvYZCuwTsnIyePJ7 Scale = 1:85.0 1 2 3 4 7 6 5 4x6 3x6 3x6 3x62x4 3x6 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 1-7-310-11-31-7-314.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.66 0.15 0.04 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.04 -0.06 0.00 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 146 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x6 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 3-6: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)7=717/0-3-8, 5=625/0-3-8 Max Horz7=292(LC 4) Max Uplift7=-47(LC 5), 5=-31(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-587/137, 3-4=-576/135, 2-7=-637/149, 4-5=-538/106 BOT CHORD 6-7=-55/257, 5-6=-55/257 WEBS 3-6=0/323 NOTES- (9-10) 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). THIS TRUSS IS DESIGNED TO SUPPORT ONLY 2'-0" OF UNIFORM LOAD AS SHOWN. 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V01 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638819 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:58 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-iAzV8reUtH_0PRhwqrNstY?M2kb5vW0CuwTsnIyePJ7 Scale = 1:74.4 1 2 3 4 5 9 8 7 63x4 4x6 3x4 3x62x42x4 2x4 2x4 2x4 16-1-8 16-1-8 8-0-12 8-0-12 16-1-8 8-0-12 0-0-49-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.16 0.19 0.14 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 63 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 *Except* 5-7: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 3-8: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 3-8 REACTIONS. All bearings 16-1-8. (lb) - Max Horz1=219(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-229(LC 6), 6=-229(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 8 except 9=368(LC 10), 6=367(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-268/262, 4-6=-271/263 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=229, 6=229. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V02 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638820 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:58 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-iAzV8reUtH_0PRhwqrNstY?MbkdivWMCuwTsnIyePJ7 Scale = 1:67.3 1 2 3 4 5 8 7 63x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 14-4-14 14-4-14 7-2-7 7-2-7 14-4-14 7-2-7 0-0-48-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.19 0.09 0.18 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 54 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 14-4-14. (lb) - Max Horz1=195(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-205(LC 6), 6=-205(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=327(LC 10), 6=327(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=205, 6=205. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V03 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638821 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:59 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-AMWuMBf6eb6t0bG7NZu5QmYXW8zreyGM7aDQJlyePJ6 Scale = 1:59.3 1 2 3 4 5 8 7 63x4 4x6 3x42x42x4 2x4 2x4 2x4 12-8-5 12-8-5 6-4-3 6-4-3 12-8-5 6-4-3 0-0-47-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.18 0.10 0.14 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 47 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 12-8-5. (lb) - Max Horz1=-171(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-189(LC 6), 6=-189(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=299(LC 10), 6=299(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=189, 6=189. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V04 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638822 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:13:59 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-AMWuMBf6eb6t0bG7NZu5QmYWD8zrezjM7aDQJlyePJ6 Scale = 1:51.6 1 2 3 4 5 8 7 6 3x4 4x6 3x42x4 2x4 2x4 2x4 2x4 0-0-3 0-0-3 10-11-12 10-11-9 5-5-14 5-5-14 10-11-12 5-5-14 0-0-46-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.20 0.10 0.11 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 39 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 10-11-5. (lb) - Max Horz1=-147(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-195(LC 6), 6=-194(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=304(LC 10), 6=304(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-251/271, 4-6=-251/271 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=195, 6=194. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V05 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638823 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:00 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-eY4GZWglPuEkelrJxGPKyz4gzYHCNQ9VMEyzrByePJ5 Scale = 1:46.1 1 2 3 43x8 4x6 3x8 2x4 0-0-3 0-0-3 9-3-3 9-3-0 4-7-9 4-7-9 9-3-3 4-7-9 0-0-45-4-140-0-414.00 12 Plate Offsets (X,Y)-- [1:0-5-12,Edge], [2:Edge,0-1-14], [3:0-2-15,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.26 0.22 0.09 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 28 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=192/9-2-12, 3=192/9-2-12, 4=307/9-2-12 Max Horz1=-122(LC 4) Max Uplift1=-14(LC 7), 3=-9(LC 6), 4=-9(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V06 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638824 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:00 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-eY4GZWglPuEkelrJxGPKyz4elYGTNRnVMEyzrByePJ5 Scale = 1:37.6 1 2 3 42x4 4x6 2x4 2x4 7-6-10 7-6-10 3-9-5 3-9-5 7-6-10 3-9-5 0-0-44-4-140-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.40 0.26 0.05 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 21 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=172/7-6-10, 3=172/7-6-10, 4=210/7-6-10 Max Horz1=-98(LC 4) Max Uplift1=-33(LC 7), 3=-27(LC 6) Max Grav1=172(LC 1), 3=172(LC 1), 4=214(LC 2) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V07 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638825 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:00 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-eY4GZWglPuEkelrJxGPKyz4hRYBINRdVMEyzrByePJ5 Scale = 1:28.9 1 2 3 2x4 3x4 2x4 5-10-1 5-10-1 2-11-0 2-11-0 5-10-1 2-11-0 0-0-43-4-140-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-3-1] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.23 0.59 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 14 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-10-1 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=208/5-10-1, 3=208/5-10-1 Max Horz1=-74(LC 4) Max Uplift1=-8(LC 7), 3=-8(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V08 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638826 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:01 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-6leemshNACMbGvQVV_wZVBdu5ycc6useauiXOdyePJ4 Scale = 1:17.9 1 2 3 2x4 3x4 2x4 4-1-8 4-1-8 2-0-12 2-0-12 4-1-8 2-0-12 0-0-42-4-140-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-3-1] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.11 0.27 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-1-8 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=140/4-1-8, 3=140/4-1-8 Max Horz1=-49(LC 4) Max Uplift1=-5(LC 7), 3=-5(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V09 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638827 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:01 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-6leemshNACMbGvQVV_wZVBdvsyeY6useauiXOdyePJ4 Scale = 1:14.6 1 2 3 2x4 3x4 2x4 0-0-3 0-0-3 3-2-4 3-2-1 1-7-2 1-7-2 3-2-4 1-7-2 0-0-41-10-50-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-3-1] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.06 0.15 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-2-4 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=102/3-1-13, 3=102/3-1-13 Max Horz1=-36(LC 4) Max Uplift1=-4(LC 7), 3=-4(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V10 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638828 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:01 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-6leemshNACMbGvQVV_wZVBdtLye96tfeauiXOdyePJ4 Scale = 1:33.6 1 2 3 4 5 9 8 7 63x4 4x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 16-4-4 16-4-4 8-2-2 8-2-2 16-4-4 8-2-2 0-0-44-1-10-0-46.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.16 0.17 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 43 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF No.2 BOT CHORD2x4 SPF No.2 *Except* 5-7: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 16-4-4. (lb) - Max Horz1=-37(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=263(LC 1), 9=358(LC 10), 6=357(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-265/131, 4-6=-268/132 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V11 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638829 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:02 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-axC0_Ch?xWURt3?i3hSo1OAzTMxirKiopYR4w3yePJ3 Scale = 1:25.4 1 2 3 43x12 4x8 3x122x4 12-4-4 12-4-4 6-2-2 6-2-2 12-4-4 6-2-2 0-0-43-1-10-0-46.00 12 Plate Offsets (X,Y)-- [1:0-9-11,Edge], [3:0-3-3,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.45 0.34 0.09 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 29 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=198/12-4-4, 3=198/12-4-4, 4=492/12-4-4 Max Horz1=-27(LC 4) Max Uplift1=-21(LC 6), 3=-25(LC 7), 4=-3(LC 6) Max Grav1=202(LC 10), 3=202(LC 11), 4=492(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-296/103 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V12 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638830 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:02 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-axC0_Ch?xWURt3?i3hSo1OA_vM_urLKopYR4w3yePJ3 Scale = 1:18.8 1 2 3 4 2x4 4x6 2x42x4 8-4-4 8-4-4 4-2-2 4-2-2 8-4-4 4-2-2 0-0-42-1-10-0-46.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.42 0.14 0.05 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 19 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=144/8-4-4, 3=144/8-4-4, 4=279/8-4-4 Max Horz1=17(LC 5) Max Uplift1=-20(LC 6), 3=-23(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V13 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638831 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:02 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-axC0_Ch?xWURt3?i3hSo1OA3GMzcrL6opYR4w3yePJ3 Scale = 1:9.8 1 2 3 2x4 3x4 2x4 4-4-4 4-4-4 2-2-2 2-2-2 4-4-4 2-2-2 0-0-41-1-10-0-46.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.08 0.22 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 8 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-4 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=124/4-4-4, 3=124/4-4-4 Max Horz1=8(LC 5) Max Uplift1=-6(LC 6), 3=-6(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks Job B18802802 Truss V14 Truss Type Valley Qty 1 Ply 1 CALA 55 CLAY Job Reference (optional) I34638832 7.640 s Aug 16 2017 MiTek Industries, Inc. Wed Sep 12 10:14:03 2018 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-27mOBYidipcIVCaucPz1aciEvlMPaoMx2CBdSWyePJ2 Scale = 1:10.6 1 2 3 2x4 2x4 2x4 2-4-12 2-4-12 0-0-41-2-66.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB (Matrix) 0.09 0.06 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD2x4 SPF-S Stud BOT CHORD2x4 SPF-S Stud WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-4-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size)1=65/2-4-12, 3=65/2-4-12 Max Horz1=26(LC 5) Max Uplift1=-2(LC 6), 3=-9(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. September 12,2018 10/03/18 Mike Sheeks -0PRODUCT CODE APPROVALS LATERAL BRACING LOCATIONMin size shown is for crushing only.Indicated by symbol shown and/orby text in the bracing section of theoutput. Use T or I bracingif indicated.The first dimension is the platewidth measured perpendicularto slots. Second dimension isthe length parallel to slots.Center plate on joint unless x, yoffsets are indicated.Dimensions are in ft-in-sixteenths. Apply plates to both sides of trussand fully embed teeth.1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.5. Cut members to bear tightly against each other.6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.13. Top chords must be sheathed or purlins provided at spacing indicated on design.14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.15. Connections not shown are the responsibility of others.16. Do not cut or alter truss member or plate without prior approval of an engineer.17. Install and load vertically unless indicated otherwise.18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient. 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.Failure to Follow Could Cause Property Damage or Personal InjuryGeneralSafety (Drawings not to scale)© 2012 MiTek® All Rights Reserved MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015edge of truss.from outside" 16/1-0ICC-ES Reports: ESR-1311, ESR-1352, ESR1988ER-3907, ESR-2362, ESR-1397, ESR-3282JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISEAROUND THE TRUSS STARTING AT THE JOINT FARTHEST TOTHE LEFT.CHORDS AND WEBS ARE IDENTIFIED BY END JOINTNUMBERS/LETTERS. W4- 6 W3-6W3-7 W2-7W1-7C1-8 C5-6C6-7C7-8 C4-5 C3-4C2-3C1-2 TOP CHORD TOP CHORD 8 7 6 54321 BOTTOM CHORDSTOP CHORDSBEARINGIndicates location where bearings(supports) occur. Icons vary butreaction section indicates jointnumber where bearings occur.4 x 4PLATE SIZEThis symbol indicates therequired direction of slots inconnector plates."16/1For 4 x 2 orientation, locateplates 0- 1"4/3PLATE LOCATION AND ORIENTATIONSymbols Numbering System General Safety Notes* Plate location details available in MiTek 20/20software or upon request.Industry Standards:ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing.BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.6-4-8 dimensions shown in ft-in-sixteenths WEBS Trusses are designed for wind loads in the plane of thetruss unless otherwise shown.Lumber design values are in accordance with ANSI/TPI 1section 6.3 These truss designs rely on lumber valuesestablished by others.10/03/18 Mike Sheeks