Loading...
HomeMy WebLinkAboutLENNAR 21 CLAY TRSRe: The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by ProBuild (CarterLee Bldg Components). Pages or sheets covered by this seal: I35362196 thru I35362242 My license renewal date for the state of Indiana is July 31, 2020. B18803363 Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2. IMPORTANT NOTE: LENNAR 21 CLAY 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. November 20,2018 Vance, Jeff Job B18803363 Truss GE03 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362196 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:44 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-0JnzMXlXCNn53vv63gHXxjoc_leY06Ptxz1PbpyHJoP Scale = 1:65.1 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 4x6 3x4 5x6 2x4 3x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 Job B18803363 Truss GE04 Truss Type Roof Special Structural Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362197 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:45 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-UVLLZtm9zgvyg3UJdNomTwLkW9pNlVl0Admy7FyHJoO Scale = 1:65.4 Sheet Front Left Option 2-11-0 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 13 12 11 10 9 14 15 16 17 4x6 3x4 5x8 3x6 3x8 2x4 3x6 3x6 3x6 3x6 2x4 2x4 3x6 2x4 3x8 2x4 5x8 3x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 Job B18803363 Truss GE05 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362198 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:46 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-yivjnDnnj_1pID3VA4J?08uyQZIvU19APHWWfhyHJoN Scale = 1:60.2 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 3x6 4x6 3x4 3x6 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 Job B18803363 Truss GE07 Truss Type GABLE Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362199 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:48 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-u41UBvo2FbHXXXDuIVMT5ZzBzNryyuISsa?ckayHJoL Scale = 1:90.9 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 3317 3x6 6x8 3x6 3x6 3x6 3x6 4x8 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 Job B18803363 Truss GE08 Truss Type GABLE Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362200 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:49 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-MHbsPFpg0vPO9hn4sDtiemWP8mHYhJCc5EkAG0yHJoK Scale = 1:86.2 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 39 20 6x8 3x6 3x6 3x6 6x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 Job B18803363 Truss GE09 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362201 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:50 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-qT8EcbqInDXFnqMGPwOxA_2e1AhvQrklKuUjoSyHJoJ Scale = 1:40.7 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 3x4 3x4 3x4 3x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 15-10-1 -0-11-4 0-11-4 13-2-12 13-2-12 0-6-8 7-1-14 6.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-1], [2:0-2-9,Edge] LOADING (psf) Job B18803363 Truss GE11 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362202 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:50 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-qT8EcbqInDXFnqMGPwOxA_2e3AgqQs2lKuUjoSyHJoJ Scale = 1:30.4 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 12 11 10 9 8 7 3x4 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 6-7-15 5-11-8 5-11-8 1-10-2 4-9-14 6.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 Job B18803363 Truss GE12 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362203 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:51 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-JficqxqwYWf6O_xSzevAjBbsba2G9I9vYYDGKvyHJoI Scale = 1:8.8 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 2x4 2x4 2x4 2-7-14 2-4-10 2-4-10 0-0-4 1-2-5 6.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.09 0.06 0.00 DEFL. Vert(LL) Job B18803363 Truss GE18 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362204 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:52 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-nsG_1GrYJqoz08WfXLQPGP8_Z_MHujL2nCzqtLyHJoH Scale = 1:61.0 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 3x4 3x6 4x6 3x6 2x4 2x4 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 13-1-5 Job B18803363 Truss GE19 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362205 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:52 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-nsG_1GrYJqoz08WfXLQPGP81g_OpulP2nCzqtLyHJoH Scale = 1:11.8 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 2x4 2x4 2x4 3-5-12 -0-11-4 0-11-4 1-11-8 1-11-8 0-4-7 1-8-2 8.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.07 0.04 0.00 Job B18803363 Truss GE19A Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362206 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:53 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-F2qNFcsA48wqeI5r53xeocgCQOj2dCfC0siNPnyHJoG Scale = 1:11.8 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 2x4 2x4 2x4 3-5-12 -0-11-4 0-11-4 1-11-8 1-11-8 0-4-7 1-8-2 8.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.07 0.04 0.00 Job B18803363 Truss GE20 Truss Type Monopitch Structural Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362207 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:54 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-jEOlSytprR2gFSg1emStLqDLXn2vMfvLEWSxxEyHJoF Scale = 1:18.2 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 5 4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 6-5-1 -1-3-4 1-3-4 4-11-8 4-11-8 1-10-0 3-0-14 2-9-6 0-3-8 3-0-14 3.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 Job B18803363 Truss GE21 Truss Type Scissor Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362208 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:55 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-BRy7fIuRclAXtcFECT_6t1lUXBNP53AUTABUUgyHJoE Scale = 1:61.9 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 3x4 3x6 4x6 3x4 3x6 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 Job B18803363 Truss GE22 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362209 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:56 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-fdWVteu3N3IOVlqQmBVLQFIjjblwpXxeiqx106yHJoD Scale = 1:62.0 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 4x6 3x4 3x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 Job B18803363 Truss M03 Truss Type Monopitch Qty 8 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362210 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:57 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-7p3t4_vh8MQF7vPcKu0azSroE?y_Yv9nxUgbYYyHJoC Scale = 1:78.5 1 2 3 4 5 10 9 8 76 11 12 3x6 4x8 3x4 3x6 3x4 3x6 4x8 3x4 3x6 3x6 3x6 3x6 3x6 9-3-8 9-3-8 18-7-0 9-3-8 6-3-8 6-3-8 12-3-8 6-0-0 18-7-0 6-3-8 5-2-2 14-5-10 0-9-4 14-5-10 6.00 12 Plate Offsets (X,Y)-- [5:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 Job B18803363 Truss M04 Truss Type Monopitch Qty 10 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362211 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:58 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-b0dGIKwJvgY6k3zptcXpVgNtNPCeHGQx98Q84?yHJoB Scale = 1:78.7 1 2 3 4 5 10 98 76 11 12 3x6 4x10 6x18 MT18HS 3x6 3x6 5x12 3x6 4x8 3x6 3x6 3x6 3x6 11-7-8 11-7-8 23-3-0 11-7-8 7-10-3 7-10-3 15-4-13 7-6-11 23-3-0 7-10-3 2-10-2 14-5-10 0-9-4 14-5-10 6.00 12 Plate Offsets (X,Y)-- [5:0-6-8,Edge], [9:0-0-0,0-1-12], [9:0-7-12,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 Job B18803363 Truss M05 Truss Type Monopitch Qty 3 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362212 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:58 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-b0dGIKwJvgY6k3zptcXpVgNzZPKoHJ9x98Q84?yHJoB Scale = 1:39.2 1 2 3 4 5 8 7 6 9 16 4x8 4x8 3x4 5x6 3x4 3x12 3x6 7-5-9 7-5-9 13-2-12 5-9-3 -0-11-4 0-11-4 7-5-9 7-5-9 13-2-12 5-9-3 0-6-8 6-10-6 7-1-14 5-1-14 2-9-4 2-0-0 6.00 12 3.50 12 Plate Offsets (X,Y)-- [2:0-2-9,Edge], [5:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Job B18803363 Truss M08 Truss Type Monopitch Qty 10 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362213 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:59 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-4CBeVgxxg_gzMDY?RJ222tw8goir0w84Oo9idRyHJoA Scale = 1:28.3 1 2 4 3 3x4 3x6 3x4 3x6 5-11-8 5-11-8 1-10-2 4-9-14 4-6-6 0-3-8 4-9-14 6.00 12 Plate Offsets (X,Y)-- [3:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.40 0.27 0.00 Job B18803363 Truss M11 Truss Type MONOPITCH Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362214 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:18:59 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-4CBeVgxxg_gzMDY?RJ222tw8JofB0mD4Oo9idRyHJoA Scale = 1:39.2 1 2 3 4 7 6 5 8 15 4x8 3x4 4x8 5x6 3x4 3x12 3x6 7-5-9 7-5-9 13-2-12 5-9-3 7-5-9 7-5-9 13-2-12 5-9-3 0-6-8 6-10-6 7-1-14 5-1-14 2-9-4 2-0-0 6.00 12 3.50 12 Plate Offsets (X,Y)-- [1:0-1-9,Edge], [4:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code Job B18803363 Truss M12 Truss Type Monopitch Qty 4 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362215 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:00 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-YOl0j0xZQHoq_N7B?1ZHa5TJ4C0DlDSEdSvF9tyHJo9 Scale = 1:39.7 1 2 3 4 7 6 5 8 13 4x8 3x4 4x8 5x6 3x4 3x12 3x6 7-1-13 7-1-13 12-11-0 5-9-3 7-1-13 7-1-13 12-11-0 5-9-3 0-8-6 6-10-6 7-1-14 5-1-14 2-9-4 2-0-0 6.00 12 3.50 12 Plate Offsets (X,Y)-- [1:0-2-4,Edge], [4:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Job B18803363 Truss T04 Truss Type COMMON Qty 8 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362216 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:01 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-0aJOwLyCBbwhbXiNZk5W7I?UacGJUm2Nr6eohKyHJo8 Scale = 1:57.9 1 2 3 4 5 6 10 9 8 7 3x6 4x6 3x6 2x4 3x6 2x4 3x6 5x8 4x6 3x12 9-9-13 9-9-13 25-5-0 15-7-3 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 25-5-0 5-11-4 0-6-8 10-3-6 7-3-12 6.00 12 Plate Offsets (X,Y)-- [1:0-0-7,0-0-15], [1:0-0-15,0-6-8], [1:0-3-8,Edge], [6:0-3-0,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Job B18803363 Truss T05 Truss Type Common Qty 3 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362217 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:01 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-0aJOwLyCBbwhbXiNZk5W7I?UbcGQUm3Nr6eohKyHJo8 Scale = 1:57.9 1 2 3 4 5 6 7 11 10 9 8 3x6 4x6 3x6 2x4 3x6 2x4 3x6 5x8 4x6 3x12 9-9-13 9-9-13 25-5-0 15-7-3 -0-11-4 0-11-4 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 25-5-0 5-11-4 0-6-8 10-3-6 7-3-12 6.00 12 Plate Offsets (X,Y)-- [2:0-0-7,0-0-15], [2:0-0-15,0-6-8], [2:0-3-8,Edge], [7:0-3-0,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 Job B18803363 Truss T06 Truss Type COMMON Qty 6 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362218 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:02 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Untm7hzqyv2YDgHa6RclgWYZU0aEDCiW4mOMDmyHJo7 Scale = 1:56.0 1 2 3 4 5 6 9 8 7 3x6 4x10 3x4 4x8 3x6 3x6 2x4 3x8 10-7-11 10-7-11 21-5-0 10-9-5 -1-0-0 1-0-0 8-9-13 8-9-13 17-5-12 8-7-15 21-5-0 3-11-4 0-6-8 9-3-6 7-3-12 6.00 12 Plate Offsets (X,Y)-- [2:0-0-7,0-0-15], [2:0-0-15,0-6-8], [2:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Job B18803363 Truss T07 Truss Type Common Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362219 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:02 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Untm7hzqyv2YDgHa6RclgWYZL0aBDCgW4mOMDmyHJo7 Scale = 1:56.0 1 2 3 4 5 8 7 6 3x6 4x10 3x4 4x8 3x6 3x6 2x4 3x8 10-7-11 10-7-11 21-5-0 10-9-5 8-9-13 8-9-13 17-5-12 8-7-15 21-5-0 3-11-4 0-6-8 9-3-6 7-3-12 6.00 12 Plate Offsets (X,Y)-- [1:0-0-7,0-0-15], [1:0-0-15,0-6-8], [1:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 Job B18803363 Truss T14 Truss Type Monopitch Qty 3 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362220 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:03 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-yzR9L1_SjCAPrqsmg97?Cj5vrQ8Pyk7gJQ7vmCyHJo6 Scale = 1:11.8 1 2 3 4 2x4 2x4 2x4 -0-11-4 0-11-4 1-11-8 1-11-8 0-4-7 1-8-2 1-4-10 0-3-8 1-8-2 8.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.07 0.03 0.00 Job B18803363 Truss T15 Truss Type Monopitch Qty 3 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362221 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:03 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-yzR9L1_SjCAPrqsmg97?Cj5npQ53yk7gJQ7vmCyHJo6 Scale = 1:21.0 1 2 3 5 4 3x6 3x4 3x4 3x8 -1-3-4 1-3-4 6-11-8 6-11-8 1-10-0 3-6-14 3-3-6 0-3-8 3-6-14 3.00 12 Plate Offsets (X,Y)-- [4:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R Job B18803363 Truss T16 Truss Type Scissor Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362222 Builders First Source, mooresville,in 8.220 s May 24 2018 MiTek Industries, Inc. Tue Nov 20 14:17:17 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-FmCaYNcsWDNjBANUE4HXK16SXPV23NDdDHhIRiyHGIm Scale = 1:59.8 1 2 3 4 5 8 7 6 4x8 3x6 5x6 8x8 8x8 3x6 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 1-9-3 9-9-3 1-9-3 4-5-15 12.00 12 7.00 12 Plate Offsets (X,Y)-- [2:0-1-10,0-1-8], [3:0-4-8,0-2-0], [4:0-1-10,0-1-8], [6:0-0-14,0-1-8], [8:0-0-14,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Job B18803363 Truss T17 Truss Type Scissor Qty 4 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362223 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:05 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-uMYvmj?iFqQ74809oa9TH8A2QDdiQZFzmkc0q5yHJo4 Scale = 1:66.0 1 2 3 4 7 6 5 8x8 7x16 MT18HS 4x8 5x8 4x8 8x8 8-0-0 8-0-0 16-0-0 8-0-0 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 1-9-3 9-9-3 1-9-3 4-5-15 12.00 12 7.00 12 Plate Offsets (X,Y)-- [1:0-1-10,0-1-8], [3:0-1-10,0-1-8], [5:0-8-0,Edge], [7:0-8-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code Job B18803363 Truss T19 Truss Type Common Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362224 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:05 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-uMYvmj?iFqQ74809oa9TH8A7uDemQaczmkc0q5yHJo4 Scale = 1:48.7 1 2 3 4 5 8 7 6 3x4 4x10 3x6 3x8 3x6 2x4 4x8 3x6 10-0-13 10-0-13 20-0-0 9-11-3 5-0-0 5-0-0 12-5-1 7-5-1 20-0-0 7-6-15 5-6-8 8-0-8 0-6-8 6.00 12 Plate Offsets (X,Y)-- [5:0-0-7,0-0-15], [5:0-0-15,0-6-8], [5:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 Job B18803363 Truss T20 Truss Type Common Qty 9 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362225 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:06 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-MY6Hz30K07YziIbLLHgiqMjIUdzi92_6?OMZMXyHJo3 Scale = 1:52.7 1 2 3 4 5 6 7 8 9 12 11 10 3x6 4x6 3x6 6x6 3x6 3x6 2x4 3x6 2x4 6x6 10-0-10 10-0-10 19-11-6 9-10-13 30-0-0 10-0-10 -0-11-4 0-11-4 7-6-15 7-6-15 15-0-0 7-5-1 22-5-1 7-5-1 30-0-0 7-6-15 30-11-4 0-11-4 0-6-8 8-0-8 0-6-8 6.00 12 Plate Offsets (X,Y)-- [2:0-0-15,0-0-7], [2:0-6-8,0-0-15], [2:0-1-9,0-2-15], [8:0-0-15,0-0-7], [8:0-6-8,0-0-15], [8:0-1-9,0-2-15] LOADING (psf) TCLL Job B18803363 Truss T22 Truss Type Scissor Qty 2 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362226 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:06 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-MY6Hz30K07YziIbLLHgiqMjFdd4X9xj6?OMZMXyHJo3 Scale = 1:58.4 1 2 3 4 5 9 8 7 6 10 11 5x8 4x6 8x8 3x4 4x8 5x8 4x6 3x6 4-0-14 4-0-14 7-8-8 3-7-10 15-8-8 8-0-0 4-0-14 4-0-14 7-8-8 3-7-10 15-8-8 8-0-0 16-11-12 1-3-4 1-10-10 9-9-3 0-11-9 1-9-3 4-5-15 12.00 12 7.00 12 Plate Offsets (X,Y)-- [1:Edge,0-1-7], [4:0-2-4,0-1-12] LOADING (psf) TCLL TCDL BCLL Job B18803363 Truss TG03 Truss Type Common Girder Qty 1 Ply 2 LENNAR 21 CLAY Job Reference (optional) I35362227 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:07 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-rkgfBP1ynRhqJSAXv?BxMZFRi1JyuQgFE257vzyHJo2 Scale = 1:56.0 1 2 3 4 5 6 9 8 7 10 11 12 13 14 15 4x6 3x6 10x10 4x6 4x6 3x6 8x8 8x8 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 4-1-12 4-1-12 8-0-0 3-10-4 11-10-4 3-10-4 16-0-0 4-1-12 1-4-8 9-4-8 1-4-8 12.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Job B18803363 Truss TG03 Truss Type Common Girder Qty 1 Ply 2 LENNAR 21 CLAY Job Reference (optional) I35362227 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:07 2018 Page 2 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-rkgfBP1ynRhqJSAXv?BxMZFRi1JyuQgFE257vzyHJo2 LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-6=-60, 7-9=-20 Concentrated Loads (lb) Vert: 8=-985 10=-985 11=-985 12=-985 13=-985 14=-985 15=-985 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B18803363 Truss V22 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362228 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:08 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-JxE2Ol2bYlphxbkkTijAvnolKRqgdzgPSirgRQyHJo1 Scale = 1:49.8 1 2 3 4 5 3x4 8 7 6 4x6 3x4 2x4 2x4 2x4 2x4 2x4 15-8-2 15-8-2 15-8-6 0-0-4 7-10-3 7-10-3 15-8-6 7-10-3 0-0-4 7-10-3 0-0-4 12.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. Job B18803363 Truss V23 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362229 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:08 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-JxE2Ol2bYlphxbkkTijAvnolqRqcdzHPSirgRQyHJo1 Scale = 1:43.7 1 2 3 4 5 3x4 8 7 6 4x6 3x4 2x4 2x4 2x4 2x4 2x4 13-8-2 13-8-2 13-8-6 0-0-4 6-10-3 6-10-3 13-8-6 6-10-3 0-0-4 6-10-3 0-0-4 12.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. Job B18803363 Truss V24 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362230 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:09 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-n7oQb42DJ2xYZlJw1QEPS_LsPqArMQzYhMaDzsyHJo0 Scale = 1:36.2 1 2 3 4 5 3x4 8 7 6 4x6 3x4 2x4 2x4 2x4 2x4 2x4 0-0-4 0-0-4 11-8-6 11-8-2 5-10-3 5-10-3 11-8-6 5-10-3 0-0-4 5-10-3 0-0-4 12.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. Job B18803363 Truss V25 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362231 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:10 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-FJMopQ3r4M3PAvu6a7le_Ct3gEUy5tTiw0KnVIyHJo? Scale = 1:32.4 1 2 3 3x8 4 4x6 3x8 2x4 0-0-4 0-0-4 9-8-6 9-8-2 4-10-3 4-10-3 9-8-6 4-10-3 0-0-4 4-10-3 0-0-4 12.00 12 Plate Offsets (X,Y)-- [1:0-5-13,Edge], [3:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH Job B18803363 Truss V26 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362232 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:10 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-FJMopQ3r4M3PAvu6a7le_Ct1jETN5u4iw0KnVIyHJo? Scale = 1:26.4 1 2 3 4 2x4 4x6 2x4 2x4 0-0-4 0-0-4 7-8-6 7-8-2 3-10-3 3-10-3 7-8-6 3-10-3 0-0-4 3-10-3 0-0-4 12.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P Job B18803363 Truss V27 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362233 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:11 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-jWwA0m4TrgBGo3TI8qGtXPQEcelEqL6r9f3K2kyHJo_ Scale = 1:20.2 1 2 3 2x4 3x4 2x4 0-0-4 0-0-4 5-8-6 5-8-2 2-10-3 2-10-3 5-8-6 2-10-3 0-0-4 2-10-3 0-0-4 12.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.21 Job B18803363 Truss V28 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362234 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:11 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-jWwA0m4TrgBGo3TI8qGtXPQGkeqhqL6r9f3K2kyHJo_ Scale: 1"=1' 1 2 3 2x4 3x4 2x4 0-0-4 0-0-4 3-8-6 3-8-2 1-10-3 1-10-3 3-8-6 1-10-3 0-0-4 1-10-3 0-0-4 12.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.08 Job B18803363 Truss V29 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362235 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:12 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-BiUYE655czJ7QD2ViYn63dzSX2ChZoM?NJpuZByHJnz Scale = 1:7.0 1 2 3 2x4 3x4 2x4 1-8-2 1-8-2 1-8-6 0-0-4 0-10-3 0-10-3 1-8-6 0-10-3 0-0-4 0-10-3 0-0-4 12.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.01 0.02 Job B18803363 Truss V30 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362236 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:12 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-BiUYE655czJ7QD2ViYn63dzPO2A?Zn3?NJpuZByHJnz Scale = 1:26.6 1 2 3 5 4 3x6 2x4 2x4 2x4 2x4 9-2-2 9-2-2 0-0-4 4-7-1 6.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.21 0.13 0.08 DEFL. Vert(LL) Vert(TL) Job B18803363 Truss V31 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362237 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:13 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-fu1xRS5jNHR_1NdhGFILcqVb4SXuID78czYR5dyHJny Scale = 1:41.8 1 2 3 4 5 6 7 13 12 11 10 9 8 3x4 4x6 3x4 2x4 2x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 24-4-4 24-4-4 12-2-2 12-2-2 24-4-4 12-2-2 0-0-4 6-1-1 0-0-4 6.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 Job B18803363 Truss V32 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362238 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:14 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-75bJfo6L7bZrfWCtpzpa922jDroK1hEHrdI_d3yHJnx Scale = 1:34.3 1 2 3 4 5 3x8 8 7 6 4x6 3x6 2x4 2x4 2x4 5x6 2x4 20-4-4 20-4-4 10-2-2 10-2-2 20-4-4 10-2-2 0-0-4 5-1-1 0-0-4 6.00 12 Plate Offsets (X,Y)-- [6:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC Job B18803363 Truss V33 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362239 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:15 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-cH9hs87_uuhiHgn4NgLphFaxRFC5m8uR4H1YAWyHJnw Scale = 1:28.1 1 2 3 4 5 3x4 9 8 7 6 4x6 3x4 2x4 2x4 3x6 2x4 2x4 2x4 16-4-4 16-4-4 8-2-2 8-2-2 16-4-4 8-2-2 0-0-4 4-1-1 0-0-4 6.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC Job B18803363 Truss V34 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362240 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:15 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-cH9hs87_uuhiHgn4NgLphFasqF9Pm8hR4H1YAWyHJnw Scale = 1:21.0 1 2 3 4 3x12 4x8 2x4 3x12 12-4-4 12-4-4 6-2-2 6-2-2 12-4-4 6-2-2 0-0-4 3-1-1 0-0-4 6.00 12 Plate Offsets (X,Y)-- [1:0-9-11,Edge], [3:0-3-3,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.45 0.34 Job B18803363 Truss V35 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362241 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:16 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-4Tj34U8cfCpZuqMGxOs2ET720fYqVcZaIxn5iyyHJnv Scale = 1:15.7 1 2 3 4 2x4 4x6 2x4 2x4 8-4-4 8-4-4 4-2-2 4-2-2 8-4-4 4-2-2 0-0-4 2-1-1 0-0-4 6.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.42 0.14 0.05 Job B18803363 Truss V36 Truss Type Valley Qty 1 Ply 1 LENNAR 21 CLAY Job Reference (optional) I35362242 Builders First Source, mooresville,in 8.220 s Oct 6 2018 MiTek Industries, Inc. Tue Nov 20 10:19:17 2018 Page 1 ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-YfHRHq9EQWxQW_wSV5NHmggI73tnE3bkXbWfEOyHJnu Scale = 1:8.3 1 2 3 2x4 3x4 2x4 4-4-4 4-4-4 2-2-2 2-2-2 4-4-4 2-2-2 0-0-4 1-1-1 0-0-4 6.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.08 0.22 0.00 edge of truss. / 16 " from outside 1 0 - PRODUCT CODE APPROVALS JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT. CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS. W4-6 W3-6 W3-7 W2-7 W1-7 C1-8 C7-8 C6-7 C5-6 C4-5 C3-4 C1-2 C2-3 TOP CHORD TOP CHORD 8 7 6 5 4 1 2 3 BOTTOM CHORDS TOP CHORDS BEARING LATERAL BRACING LOCATION Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only. Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated. The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots. 4 x 4 PLATE SIZE This symbol indicates the required direction of slots in connector plates. / 16 " 1 For 4 x 2 orientation, locate plates 0- Center plate on joint unless x, y offsets are indicated. Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth. 1 " / 4 3 PLATE LOCATION AND ORIENTATION Symbols Numbering System 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI. 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered. 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses. 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. 5. Cut members to bear tightly against each other. 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1. 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection. 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements. 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified. 13. Top chords must be sheathed or purlins provided at spacing indicated on design. 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted. 15. Connections not shown are the responsibility of others. 16. Do not cut or alter truss member or plate without prior approval of an engineer. 17. Install and load vertically unless indicated otherwise. 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient. 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria. Failure to Follow Could Cause Property Damage or Personal Injury General Safety Notes * Plate location details available in MiTek 20/20 software or upon request. Industry Standards: 6-4-8 dimensions shown in ft-in-sixteenths (Drawings not to scale) © 2012 MiTek® All Rights Reserved MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015 WEBS edge of truss. / 16 " from outside 1 0 - ICC-ES Reports: ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282 JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT. CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS. W4-6 W3-6 W3-7 W2-7 W1-7 C1-8 C7-8 C6-7 C5-6 C4-5 C3-4 C1-2 C2-3 TOP CHORD TOP CHORD 8 7 6 5 4 1 2 3 BOTTOM CHORDS TOP CHORDS BEARING Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. 4 x 4 PLATE SIZE This symbol indicates the required direction of slots in connector plates. / 16 " 1 For 4 x 2 orientation, locate plates 0- 1 " / 4 3 PLATE LOCATION AND ORIENTATION Symbols Numbering System General Safety Notes * Plate location details available in MiTek 20/20 software or upon request. Industry Standards: ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing. BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses. 6-4-8 dimensions shown in ft-in-sixteenths WEBS Trusses are designed for wind loads in the plane of the truss unless otherwise shown. Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others. DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 8 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-4 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=124/4-4-4, 3=124/4-4-4 Max Horz 1=8(LC 5) Max Uplift 1=-6(LC 6), 3=-6(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 19 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=144/8-4-4, 3=144/8-4-4, 4=279/8-4-4 Max Horz 1=-17(LC 4) Max Uplift 1=-20(LC 6), 3=-23(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.09 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 29 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=198/12-4-4, 3=198/12-4-4, 4=492/12-4-4 Max Horz 1=-27(LC 4) Max Uplift 1=-21(LC 6), 3=-25(LC 7), 4=-3(LC 6) Max Grav 1=202(LC 10), 3=202(LC 11), 4=492(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-296/103 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 WB Matrix-SH 0.16 0.17 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 43 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 5-7: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 16-4-4. (lb) - Max Horz 1=37(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=263(LC 1), 9=358(LC 10), 6=357(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-265/131, 4-6=-268/132 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 BC WB Matrix-SH 0.38 0.40 0.10 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 56 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 5-6: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 20-4-4. (lb) - Max Horz 1=-47(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=482(LC 10), 6=477(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-342/163, 4-6=-340/160 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.15 0.09 0.16 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 72 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 24-4-4. (lb) - Max Horz 1=-56(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=271(LC 1), 12=336(LC 10), 13=334(LC 1), 9=336(LC 11), 8=334(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-12=-260/130, 5-9=-260/130 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 9, 8. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Horz(TL) in n/a n/a 0.00 (loc) - - 4 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 27 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=146/9-2-2, 4=111/9-2-2, 5=415/9-2-2 Max Horz 1=132(LC 5) Max Uplift 4=-13(LC 5), 5=-76(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-5=-298/180 NOTES- (6-7) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 3 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-8-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=40/1-7-14, 3=40/1-7-14 Max Horz 1=12(LC 5) Max Uplift 1=-1(LC 7), 3=-1(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.20 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 8 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-8-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=120/3-7-14, 3=120/3-7-14 Max Horz 1=35(LC 5) Max Uplift 1=-3(LC 7), 3=-3(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.55 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-8-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=200/5-7-14, 3=200/5-7-14 Max Horz 1=58(LC 5) Max Uplift 1=-5(LC 7), 3=-5(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.41 0.27 0.05 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 20 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=167/7-7-14, 3=167/7-7-14, 4=225/7-7-14 Max Horz 1=-81(LC 4) Max Uplift 1=-28(LC 7), 3=-28(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.29 0.23 0.09 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 28 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=193/9-7-14, 3=193/9-7-14, 4=334/9-7-14 Max Horz 1=105(LC 5) Max Uplift 1=-14(LC 7), 3=-14(LC 7), 4=-3(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 TC BC WB Matrix-SH 0.38 0.10 0.11 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 36 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 11-7-14. (lb) - Max Horz 1=-128(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-147(LC 6), 6=-147(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=296(LC 10), 6=296(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=147, 6=147. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 TC BC WB Matrix-SH 0.18 0.10 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 47 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 13-7-14. (lb) - Max Horz 1=-151(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-153(LC 6), 6=-153(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=312(LC 10), 6=312(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=153, 6=153. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 TC BC WB Matrix-SH 0.15 0.09 0.17 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 56 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 15-7-14. (lb) - Max Horz 1=-174(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-172(LC 6), 6=-172(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=355(LC 10), 6=355(LC 11) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-261/208, 4-6=-261/208 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=172, 6=172. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.72 0.83 0.54 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.11 -0.28 0.02 (loc) 8-9 8-9 7 l/defl >999 >676 n/a L/d 240 180 n/a PLATES MT20 Weight: 201 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF-S Stud *Except* 4-8: 2x4 SPF No.2, 2-9,6-7: 2x4 SPF 2100F 1.8E BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 9=4141/0-3-8, 7=4096/0-3-8 Max Horz 9=241(LC 4) Max Uplift 9=-292(LC 5), 7=-260(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1439/211, 3-4=-3362/324, 4-5=-3382/324, 5-6=-1398/183, 2-9=-1185/218, 6-7=-1057/148 BOT CHORD 8-9=-220/2252, 7-8=-121/2263 WEBS 4-8=-373/4413, 3-9=-2138/110, 5-7=-2181/125 NOTES- (9-10) 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=292, 7=260. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 985 lb down and 68 lb up at 2-0-12, 985 lb down and 68 lb up at 4-0-12, 985 lb down and 68 lb up at 6-0-12, 985 lb down and 68 lb up at 8-0-12, 985 lb down and 68 lb up at 10-0-12, and 985 lb down and 68 lb up at 12-0-12, and 985 lb down and 68 lb up at 14-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). LOAD CASE(S) Standard Continued on page 2 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.80 0.33 0.65 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.13 -0.35 0.09 (loc) 6-7 6-7 6 l/defl >999 >533 n/a L/d 240 180 n/a PLATES MT20 Weight: 78 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 4-6: 2x6 SPF No.2, 4-7: 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-11-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 6=711/0-3-8, 11=587/0-1-8 Max Horz 11=-242(LC 4) Max Uplift 6=-61(LC 7), 11=-18(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-353/118, 2-3=-788/2, 3-4=-913/15, 4-6=-763/184, 8-10=0/283, 1-10=0/283 BOT CHORD 7-8=-144/648, 6-7=-136/303 WEBS 3-7=0/696, 4-7=-100/490, 2-8=-610/42, 1-11=-615/41 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 6, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 11. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 11. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.62 0.83 0.25 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.66 0.09 (loc) 2-12 2-12 8 l/defl >999 >542 n/a L/d 240 180 n/a PLATES MT20 Weight: 105 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 7-10,3-12: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-3-14 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 2=1253/0-3-8, 8=1253/0-3-8 Max Horz 2=-79(LC 7) Max Uplift 2=-92(LC 6), 8=-92(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2018/298, 3-5=-1793/319, 5-7=-1793/319, 7-8=-2018/298 BOT CHORD 2-12=-165/1718, 10-12=-12/1148, 8-10=-165/1718 WEBS 5-10=-71/680, 7-10=-419/212, 5-12=-71/680, 3-12=-419/212 NOTES- (6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.61 0.81 0.26 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.57 0.03 (loc) 6-8 6-8 5 l/defl >999 >416 n/a L/d 240 180 n/a PLATES MT20 Weight: 79 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 4-6,1-8: 2x4 SPF-S Stud WEDGE Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-6-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 2-8 REACTIONS. (lb/size) 5=788/0-3-8, 8=788/0-3-8 Max Horz 8=-191(LC 4) Max Uplift 5=-44(LC 7), 8=-46(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-982/211, 4-5=-1201/186 BOT CHORD 6-8=0/374, 5-6=-80/1001 WEBS 2-6=-78/738, 4-6=-438/222, 2-8=-673/65 NOTES- (6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.90 0.88 0.34 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.37 -0.79 0.94 (loc) 6 6 5 l/defl >498 >237 n/a L/d 240 180 n/a PLATES MT20 MT18HS Weight: 60 lb FT = 20% GRIP 169/123 169/123 LUMBER- TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 WEBS 2x6 SPF No.2 *Except* 2-6: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 7=617/0-3-8, 5=716/0-3-8 Max Horz 7=-260(LC 4) Max Uplift 7=-26(LC 7), 5=-54(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-885/0, 2-3=-900/66, 1-7=-771/23, 3-5=-881/32 BOT CHORD 6-7=-89/563, 5-6=-68/569 WEBS 2-6=0/667 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are MT20 plates unless otherwise indicated. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Bearing at joint(s) 7, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.90 0.64 0.35 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.39 -0.62 0.74 (loc) 7 7 6 l/defl >475 >300 n/a L/d 240 180 n/a PLATES MT20 Weight: 62 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 WEBS 2x6 SPF No.2 *Except* 3-7: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 8=712/0-3-8, 6=712/0-3-8 Max Horz 8=-242(LC 4) Max Uplift 8=-56(LC 6), 6=-56(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-898/0, 3-4=-898/68, 2-8=-881/70, 4-6=-881/35 BOT CHORD 7-8=-90/570, 6-7=-69/570 WEBS 3-7=0/682 NOTES- (7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 8 and 56 lb uplift at joint 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.58 0.25 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.07 -0.19 0.00 (loc) 4-5 4-5 4 l/defl >999 >426 n/a L/d 240 180 n/a PLATES MT20 Weight: 22 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 5=361/0-3-8, 4=258/0-1-8 Max Horz 5=105(LC 5) Max Uplift 5=-65(LC 4), 4=-31(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-304/172 NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.00 (loc) 2 2-4 4 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 2=145/0-3-8, 4=56/0-1-8 Max Horz 2=45(LC 5) Max Uplift 2=-42(LC 6), 4=-6(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.82 0.93 0.33 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.31 -0.76 0.03 (loc) 6-8 6-8 6 l/defl >828 >336 n/a L/d 240 180 n/a PLATES MT20 Weight: 87 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-8,5-6: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-9-14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 4-6 REACTIONS. (lb/size) 1=845/0-3-8, 6=845/0-3-8 Max Horz 1=241(LC 5) Max Uplift 1=-44(LC 6), 6=-65(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1270/186, 2-4=-1097/257 BOT CHORD 1-8=-123/1054, 6-8=-60/295 WEBS 2-8=-516/262, 4-8=-144/936, 4-6=-734/85 NOTES- (6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.81 0.93 0.33 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.31 -0.76 0.03 (loc) 7-9 7-9 7 l/defl >828 >334 n/a L/d 240 180 n/a PLATES MT20 Weight: 88 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 3-9,6-7: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-7 REACTIONS. (lb/size) 2=916/0-3-8, 7=843/0-3-8 Max Horz 2=245(LC 5) Max Uplift 2=-81(LC 6), 7=-64(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1288/182, 3-5=-1091/252 BOT CHORD 2-9=-118/1047, 7-9=-60/294 WEBS 3-9=-512/260, 5-9=-139/929, 5-7=-731/83 NOTES- (6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.44 0.77 0.29 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.52 0.05 (loc) 2-11 2-11 8 l/defl >999 >583 n/a L/d 240 180 n/a PLATES MT20 Weight: 113 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 3-11,5-11,7-8: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-0-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 7-8, 5-9 REACTIONS. (lb/size) 8=1004/0-3-8, 2=1071/0-3-8 Max Horz 2=254(LC 5) Max Uplift 8=-62(LC 6), 2=-90(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1662/235, 3-5=-1406/222, 5-6=-621/194, 6-7=-599/195, 7-8=-962/166 BOT CHORD 2-11=-189/1407, 9-11=-72/959 WEBS 3-11=-332/174, 5-11=-5/562, 5-9=-715/201, 7-9=-25/730 NOTES- (6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.44 0.78 0.29 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.52 0.05 (loc) 1-10 1-10 7 l/defl >999 >574 n/a L/d 240 180 n/a PLATES MT20 Weight: 112 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-10,4-10,6-7: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-7, 4-8 REACTIONS. (lb/size) 7=1005/0-3-8, 1=1005/0-3-8 Max Horz 1=251(LC 5) Max Uplift 7=-63(LC 6), 1=-56(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1670/241, 2-4=-1412/227, 4-5=-621/195, 5-6=-600/196, 6-7=-963/167 BOT CHORD 1-10=-195/1416, 8-10=-74/961 WEBS 2-10=-336/177, 4-10=-9/564, 4-8=-718/204, 6-8=-26/731 NOTES- (6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 1. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-MSH 0.42 0.39 0.70 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.06 -0.17 0.04 (loc) 7-11 7-11 13 l/defl >999 >885 n/a L/d 240 180 n/a PLATES MT20 Weight: 48 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud SLIDER Left 2x3 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-4-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=514/0-3-8, 13=491/0-1-8 Max Horz 1=183(LC 6) Max Uplift 13=-90(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-1037/175, 6-8=-78/394, 4-8=-78/394 BOT CHORD 1-7=-312/984, 6-7=-283/900 WEBS 3-7=-22/429, 3-6=-904/309, 4-13=-493/139 NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 1, 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 13. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-MSH 0.42 0.50 0.70 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.06 -0.18 0.04 (loc) 7-13 7-13 15 l/defl >999 >870 n/a L/d 240 180 n/a PLATES MT20 Weight: 49 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud SLIDER Left 2x3 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-1-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=539/0-7-4, 15=491/0-1-8 Max Horz 1=188(LC 6) Max Uplift 15=-90(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-1121/173, 6-8=-77/393, 4-8=-77/393 BOT CHORD 1-7=-308/982, 6-7=-281/899 WEBS 3-7=-21/429, 3-6=-902/306, 4-15=-494/137 NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 1, 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 15. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.04 -0.11 -0.00 (loc) 3-4 3-4 3 l/defl >999 >626 n/a L/d 240 180 n/a PLATES MT20 Weight: 20 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 4=227/0-3-8, 3=227/0-1-8 Max Horz 4=136(LC 5) Max Uplift 3=-43(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-MSH 0.42 0.51 0.69 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.06 -0.18 0.04 (loc) 8-14 8-14 16 l/defl >999 >885 n/a L/d 240 180 n/a PLATES MT20 Weight: 50 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud SLIDER Left 2x3 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 2=598/0-7-4, 16=488/0-1-8 Max Horz 2=208(LC 6) Max Uplift 2=-25(LC 6), 16=-88(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1106/163, 7-9=-74/389, 5-9=-74/389 BOT CHORD 2-8=-297/966, 7-8=-271/885 WEBS 4-8=-15/427, 4-7=-887/295, 5-16=-490/135 NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 2, 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 16. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.82 0.97 0.86 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.37 -0.93 -0.08 (loc) 8-10 8-10 12 l/defl >748 >296 n/a L/d 240 180 n/a PLATES MT20 MT18HS Weight: 134 lb FT = 20% GRIP 169/123 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-8,1-10: 2x4 SPF-S Stud OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-9-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-11, 4-7, 2-10, 5-12 REACTIONS. (lb/size) 10=921/0-5-8, 12=898/0-1-8 Max Horz 10=381(LC 6) Max Uplift 12=-201(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-833/15, 7-11=-159/725, 5-11=-159/725 BOT CHORD 8-10=-302/769, 7-8=-148/488 WEBS 2-8=-224/255, 4-8=-64/558, 4-7=-767/269, 2-10=-896/0, 5-12=-899/251 NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) All plates are MT20 plates unless otherwise indicated. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=201. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.40 0.61 0.48 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.16 -0.41 -0.05 (loc) 9-10 9-10 12 l/defl >999 >535 n/a L/d 240 180 n/a PLATES MT20 Weight: 127 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 1-10: 2x4 SPF-S Stud OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-11, 2-9, 4-7, 2-10, 5-12 REACTIONS. (lb/size) 10=735/0-5-8, 12=711/0-1-8 Max Horz 10=345(LC 6) Max Uplift 12=-210(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-490/32, 7-11=-189/574, 5-11=-189/574 BOT CHORD 9-10=-241/394, 7-9=-116/289 WEBS 2-9=-80/261, 4-9=-123/368, 4-7=-557/267, 2-10=-614/0, 5-12=-712/261 NOTES- (7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=210. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 17-9-13 30-0-0 30-0-0 -0-11-4 0-11-4 15-0-0 15-0-0 30-0-0 15-0-0 30-11-4 0-11-4 0-6-8 8-0-8 0-6-8 6.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-13], [2:0-2-9,Edge], [9:0-3-0,0-3-0], [17:0-3-0,0-3-0], [24:Edge,0-0-13], [24:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.06 0.02 0.16 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.01 (loc) 25 25 24 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 158 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 30-0-0. (lb) - Max Horz 2=-79(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26 Max Grav All reactions 250 lb or less at joint(s) 2, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 24 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 13-1-5 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 1-9-3 9-9-3 1-9-3 4-5-15 12.00 12 7.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.35 0.17 0.26 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.01 (loc) 15 15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 89 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 16-0-0. (lb) - Max Horz 28=-243(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except 28=-348(LC 4), 16=-190(LC 5), 27=-242(LC 5), 17=-226(LC 4) Max Grav All reactions 250 lb or less at joint(s) 16, 23, 24, 25, 26, 21, 20, 19, 18, 17 except 28=315(LC 5), 22=493(LC 7), 27=255(LC 4) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 5-6=-19/260, 6-7=-19/327, 7-8=-23/353, 8-9=-23/353, 9-10=-19/327, 10-11=-19/260 WEBS 8-22=-440/0 NOTES- (11-12) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except (jt=lb) 28=348, 16=190, 27=242, 17=226. 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17. 10) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 12) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.24 0.12 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.02 -0.05 -0.00 (loc) 4-5 4-5 4 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 22 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 5=285/0-3-8, 4=174/0-1-8 Max Horz 5=89(LC 5) Max Uplift 5=-62(LC 4), 4=-22(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable studs spaced at 1-4-0 oc. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 -0.00 0.00 (loc) 1 1 4 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 4=58/1-11-8, 2=143/1-11-8 Max Horz 2=45(LC 5) Max Uplift 4=-6(LC 5), 2=-40(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 -0.00 0.00 (loc) 1 1 4 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 4=58/1-11-8, 2=143/1-11-8 Max Horz 2=45(LC 5) Max Uplift 4=-6(LC 5), 2=-40(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 16-0-0 16-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 1-4-8 9-4-8 1-4-8 12.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.27 0.13 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.00 (loc) 15 15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 108 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 8-22: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 8-22 REACTIONS. All bearings 16-0-0. (lb) - Max Horz 28=-227(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except 28=-202(LC 4), 16=-180(LC 5), 27=-185(LC 5), 17=-170(LC 4) Max Grav All reactions 250 lb or less at joint(s) 28, 16, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 except 22=325(LC 7) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 6-7=-18/270, 7-8=-20/296, 8-9=-20/296, 9-10=-18/270 WEBS 8-22=-358/0 NOTES- (10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except (jt=lb) 28=202, 16=180, 27=185, 17=170. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-4-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 1=64/2-4-10, 3=64/2-4-10 Max Horz 1=26(LC 5) Max Uplift 1=-2(LC 6), 3=-9(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.27 0.13 0.06 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 30 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 5-11-8. (lb) - Max Horz 12=136(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 7, 8, 9, 10 except 11=-308(LC 5) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 9, 10, 11 except 12=344(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 7, 8, 9, 10 except (jt=lb) 11=308. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.27 0.13 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 0.00 0.00 (loc) 1 1 12 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 68 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 13-2-12. (lb) - Max Horz 2=217(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20 Max Grav All reactions 250 lb or less at joint(s) 12, 2, 13, 14, 15, 16, 17, 18, 19, 20 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 5x6 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x6 25-11-15 2-9-4 23-3-0 23-3-0 23-3-0 23-3-0 2-10-2 14-5-10 6.00 12 Plate Offsets (X,Y)-- [11:0-3-0,0-3-0], [19:0-4-8,Edge], [30:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.53 0.33 0.41 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 20 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 238 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 1-11: 2x4 SP 2400F 2.0E BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 10-30,9-31,8-32,7-33,6-34,5-35,4-36,3-37,2-38: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 20-21. WEBS 1 Row at midpt 19-21, 18-22, 17-23, 16-24, 15-25, 14-26, 13-27, 12-28, 11-29, 10-30 REACTIONS. All bearings 23-3-0. (lb) - Max Horz 38=435(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 38, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 except 20=-119(LC 5), 37=-835(LC 5), 21=-155(LC 6) Max Grav All reactions 250 lb or less at joint(s) 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 21 except 38=839(LC 5) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-42/277, 2-3=-568/44, 3-4=-273/26, 4-5=-302/36, 5-6=-289/44, 6-7=-275/51, 7-8=-261/58, 1-38=-97/980 WEBS 3-37=-94/643, 2-38=-1641/148 NOTES- (9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 38, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 except (jt=lb) 20=119, 37=835, 21=155. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 20-9-5 18-7-0 18-7-0 18-7-0 18-7-0 5-2-2 14-5-10 6.00 12 Plate Offsets (X,Y)-- [16:0-4-8,Edge], [23:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.75 0.73 0.26 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 17 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 220 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 1-9: 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 *Except* 23-32: 2x4 SP 2400F 2.0E WEBS 2x4 SPF No.2 *Except* 1-32: 2x6 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 6-27,5-28,4-29,3-30,2-31: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 16-18, 15-19, 14-20, 13-21, 12-22, 11-23, 10-24, 8-25, 7-26, 6-27 REACTIONS. All bearings 18-7-0. (lb) - Max Horz 32=428(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 19, 21, 23, 25, 26, 27, 28, 29, 30 except 32=-375(LC 4), 17=-263(LC 5), 31=-1792(LC 5), 18=-208(LC 4) Max Grav All reactions 250 lb or less at joint(s) 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 18 except 32=1747(LC 5), 31=420(LC 4) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-575/105, 2-3=-268/50, 1-32=-784/157 WEBS 2-31=-140/673 NOTES- (9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 21, 23, 25, 26, 27, 28, 29, 30 except (jt=lb) 32=375, 17=263, 31=1792, 18=208. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 20-7-1 4-4-13 21-5-0 21-5-0 -0-11-4 0-11-4 17-5-12 17-5-12 21-5-0 3-11-4 0-6-8 9-3-6 7-3-12 6.00 12 Plate Offsets (X,Y)-- [2:Edge,0-0-13], [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.31 0.13 0.11 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.00 (loc) 1 1 20 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 140 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 16-23,15-24,17-22: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 16-23, 15-24, 17-22 REACTIONS. All bearings 21-5-0. (lb) - Max Horz 2=245(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2 Max Grav All reactions 250 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 22, 21, 2 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5-3-12 2-2-13 22-9-15 2-11-0 2-11-0 2-11-0 9-9-13 6-10-13 19-5-12 9-7-15 25-5-0 5-11-4 -0-11-4 0-11-4 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 21-5-12 2-0-0 25-5-0 3-11-4 0-6-8 10-3-6 7-3-12 6.00 12 Plate Offsets (X,Y)-- [2:0-0-7,0-0-15], [2:0-0-15,0-6-8], [2:0-3-8,Edge], [4:0-3-0,0-3-0], [16:0-2-4,0-2-4], [16:0-2-2,0-0-6] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.51 0.79 0.44 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.51 0.05 (loc) 10-12 10-12 9 l/defl >999 >589 n/a L/d 240 180 n/a PLATES MT20 Weight: 151 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 5-10,6-10,7-9: 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-10, 7-9 JOINTS 1 Brace at Jt(s): 15 REACTIONS. (lb/size) 2=1071/0-3-8, 9=1004/0-3-8 Max Horz 2=254(LC 5) Max Uplift 2=-90(LC 6), 9=-62(LC 6) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1870/201, 3-5=-1611/185, 5-6=-993/160, 6-7=-961/185 BOT CHORD 2-13=-160/1562, 12-13=-214/1270, 10-12=-81/873, 9-10=-34/395 WEBS 3-14=-289/181, 12-14=-292/180, 12-15=-19/470, 5-15=-16/453, 5-16=-656/208, 10-16=-674/212, 10-17=-58/658, 6-17=-57/651, 7-9=-951/51, 13-14=0/405, 14-15=0/387, 15-16=0/419, 16-17=0/496, 7-17=0/533 NOTES- (8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 21-9-5 6-7-11 25-5-0 25-5-0 19-5-12 19-5-12 25-5-0 5-11-4 0-6-8 10-3-6 7-3-12 6.00 12 Plate Offsets (X,Y)-- [1:0-2-9,Edge], [1:0-0-0,0-0-13], [7:0-3-0,0-3-0], [29:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.30 0.12 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 21 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 182 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 15-25,14-26,13-27,16-24,17-23: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 15-25, 14-26, 13-27, 16-24, 17-23 REACTIONS. All bearings 25-5-0. (lb) - Max Horz 1=251(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1 Max Grav All reactions 250 lb or less at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- (9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. November 20,2018