Loading...
HomeMy WebLinkAboutLENNAR 2 CLAY TRS16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. Re: The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by ProBuild (CarterLee Bldg Components). February 6,2019 Liu, Xuegang Pages or sheets covered by this seal: I36056551 thru I36056594 My license renewal date for the state of Indiana is July 31, 2020. B19900354 Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2. IMPORTANT NOTE: LENNAR 2 CLAY 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE05 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056551 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:44 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-NeJCFfGuNeFou4?DjtudbZ_F3pBic7wlPXOBHxzoAVb Scale = 1:61.4 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 3x6 4x6 3x4 3x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 20-7-1 4-4- 1 3 21-5-0 21-5-0 -0-11-4 0-11-4 17-5-12 17-5-12 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:Edge,0-0-13], [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.31 0.13 0.11 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.00 (loc) 1 1 20 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 140 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 16-23,15-24,17-22: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 16-23, 15-24, 17-22 REACTIONS.All bearings 21-5-0. (lb) - Max Horz 2=245(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2 Max Grav All reactions 250 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 22, 21, 2 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE06 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056552 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:45 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-rqtbT?HX8xNfWEaQHbPs8nXQTDX3LamueB8kpNzoAVa Scale = 1:12.9 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 6 5 2x4 2x4 3x4 2x4 2x4 7-1-5 -0-11-4 0-11-4 5-11-8 5-11-8 0-4-01-9-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.26 0.19 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 0.01 0.00 (loc) 1 1 5 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 17 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)5=-88/5-11-8, 2=212/5-11-8, 6=397/5-11-8 Max Horz 2=51(LC 5) Max Uplift 5=-88(LC 1), 2=-42(LC 4), 6=-36(LC 6) Max Grav 5=9(LC 4), 2=212(LC 1), 6=397(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-293/176 NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE07 Truss Type GABLE Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056553 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:46 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-J0RzgLI9vFVW8O9crIw5h_3Ubdkl4_32srtHLpzoAVZ Scale = 1:94.6 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 33 17 3x6 6x8 3x6 3x6 3x6 3x6 4x8 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 20-9-5 18-7-0 18-7-0 18-7-0 18-7-0 5-2-214-5-106.00 12 Plate Offsets (X,Y)-- [16:0-4-8,Edge], [23:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.75 0.73 0.26 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 17 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 220 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 1-9: 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 *Except* 23-32: 2x4 SP 2400F 2.0E WEBS 2x4 SPF No.2 *Except* 1-32: 2x6 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 6-27,5-28,4-29,3-30,2-31: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 16-18, 15-19, 14-20, 13-21, 12-22, 11-23, 10-24, 8-25, 7-26, 6-27 REACTIONS.All bearings 18-7-0. (lb) - Max Horz 32=428(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 19, 21, 23, 25, 26, 27, 28, 29, 30 except 32=-375(LC 4), 17=-263(LC 5), 31=-1792(LC 5), 18=-208(LC 4) Max Grav All reactions 250 lb or less at joint(s) 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 18 except 32=1747(LC 5), 31=420(LC 4) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-575/105, 2-3=-268/50, 1-32=-784/157 WEBS 2-31=-140/673 NOTES-(9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 21, 23, 25, 26, 27, 28, 29, 30 except (jt=lb) 32=375, 17=263, 31=1792, 18=208. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE08 Truss Type GABLE Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056554 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:47 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-nD?LthJnfZdNlYkoP?RKDCcil0AKpOzB5VdruGzoAVY Scale = 1:90.0 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 38 6x8 3x6 3x6 3x6 3x6 6x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 25-11- 1 5 0-9-423-3-0 23-3-0 23-3-0 23-3-0 2-10-214-5-106.00 12 Plate Offsets (X,Y)-- [11:0-3-0,0-3-0], [19:0-4-8,Edge], [29:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.53 0.33 0.41 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 20 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 241 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 1-11: 2x4 SP 2400F 2.0E BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 10-29,9-30,8-31,7-32,6-33,5-34,4-35,3-36,2-37: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 19-20, 18-21, 17-22, 16-23, 15-24, 14-25, 13-26, 12-27, 11-28, 10-29 REACTIONS.All bearings 23-3-0. (lb) - Max Horz 37=435(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 37, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 20 except 36=-839(LC 5) Max Grav All reactions 250 lb or less at joint(s) 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 20 except 37=842(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-43/278, 2-3=-570/47, 3-4=-274/28, 4-5=-303/38, 5-6=-291/46, 6-7=-276/53, 7-8=-262/60, 1-37=-102/983 WEBS 3-36=-94/645, 2-37=-1647/157 NOTES-(9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 37, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 20 except (jt=lb) 36=839. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE09 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056555 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:48 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-FPYj50KPQslENiJ?yjyZmP9xgQZiYwWKK9MOQizoAVX Scale = 1:41.0 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 3x4 3x4 3x4 3x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 15-10- 1 -0-11-4 0-11-4 13-2-12 13-2-12 0-6-87-1-146.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-1], [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.27 0.13 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 0.00 0.00 (loc) 1 1 12 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 68 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 13-2-12. (lb) - Max Horz 2=217(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20 Max Grav All reactions 250 lb or less at joint(s) 12, 2, 13, 14, 15, 16, 17, 18, 19, 20 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE11 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056556 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:48 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-FPYj50KPQslENiJ?yjyZmP9xiQYdYxqKK9MOQizoAVX Scale = 1:30.7 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 12 11 10 9 8 7 3x4 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 6-7-15 5-11-8 5-11-8 1-10-24-9-146.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.27 0.13 0.06 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 30 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 5-11-8. (lb) - Max Horz 12=136(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 7, 8, 9, 10 except 11=-308(LC 5) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 9, 10, 11 except 12=344(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 7, 8, 9, 10 except (jt=lb) 11=308. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE12 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056557 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:49 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-jb65IMK1BAt5?ruBWQToIdh9Eqw3HOxUZp6yy8zoAVW Scale = 1:8.8 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 2x4 2x4 2x4 2-7-14 2-4-10 2-4-10 0-0-41-2-56.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.09 0.06 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-4-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=64/2-4-10, 3=64/2-4-10 Max Horz 1=26(LC 5) Max Uplift 1=-2(LC 6), 3=-9(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE13 Truss Type Scissor Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056558 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:50 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-BogUWiLfyU?yc?TN48?1rqEJwEGF0rbdnTrVUbzoAVV Scale = 1:39.4 Sheet Front Full Sheathing 1 Ply 7/16OSB8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 2x4 3x4 4x6 3x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 11- 1 - 1 1 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 0-11-116-3-110-11-113-2-98.00 12 5.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.16 0.06 0.04 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.00 (loc) 15 15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 132 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 16-0-0. (lb) - Max Horz 28=152(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 16, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 except 28=-128(LC 4) Max Grav All reactions 250 lb or less at joint(s) 28, 16, 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(11-12) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 except (jt=lb) 28=128. 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17. 10) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 12) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE14 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056559 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:51 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-f_Esj2MHjn7pE92ZerWGO2nUfdcYlHmn07b211zoAVU Scale = 1:38.8 Sheet Front Full Sheathing 1 Ply 7/16OSB8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 2x4 3x4 4x6 2x4 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 11- 1 - 1 1 16-0-0 16-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 0-11-36-3-30-11-38.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.16 0.05 0.11 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.00 (loc) 15 15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 195 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 16-0-0. (lb) - Max Horz 28=-149(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 28, 16, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 Max Grav All reactions 250 lb or less at joint(s) 28, 16, 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 28, 16, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE15 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056560 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:52 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-8AoExONwU5FfsJcmBZ1VwFJd61wZUjfwFnKcZTzoAVT Scale = 1:68.0 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 3x8 3x4 4x6 3x6 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 21- 6 - 0 6-7-11 25-2-0 25-2-0 5-11-4 5-11-4 25-2-0 19-2-12 7-3-1210-3-60-8-06.00 12 Plate Offsets (X,Y)-- [14:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.30 0.13 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.01 (loc) - - 21 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 181 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 6-36,5-37,4-38,7-35,8-34: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-36, 5-37, 4-38, 7-35, 8-34 REACTIONS.All bearings 25-2-0. (lb) - Max Horz 40=-250(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 40, 21, 36, 37, 38, 39, 35, 34, 33, 32, 31, 29, 28, 27, 26, 25, 24 except 22=-105(LC 7) Max Grav All reactions 250 lb or less at joint(s) 40, 21, 36, 37, 38, 39, 35, 34, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 40, 21, 36, 37, 38, 39, 35, 34, 33, 32, 31, 29, 28, 27, 26, 25, 24 except (jt=lb) 22=105. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE16 Truss Type GABLE Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056561 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:54 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-4Zw_L4OA0iVN5dm8J_3z?gOwkrRkyZEDi5pidMzoAVR Scale = 1:63.3 Sheet Back Right Option 2-11-0 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 12 11 10 9 8 13 14 15 16 3x4 4x6 3x6 3x6 3x6 3x6 2x4 6x6 3x6 3x6 3x8 5x8 3x8 2x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2-2-13 2-11-0 21- 9 - 5 5-11-4 5-11-4 15-7-3 9-7-15 22-6-0 6-10-13 25-5-0 2-11-0 3-11-4 3-11-4 5-11-4 2-0-0 12-4-9 6-5-5 18-9-14 6-5-5 25-5-0 6-7-2 7-3-1210-3-60-6-86.00 12 Plate Offsets (X,Y)-- [5:0-3-0,0-3-0], [7:0-6-8,0-0-15], [7:0-0-15,0-0-7], [14:0-2-4,0-2-4], [14:0-2-2,0-0-6] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.49 0.79 0.44 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.51 0.05 (loc) 9-11 9-11 7 l/defl >999 >589 n/a L/d 240 180 n/a PLATES MT20 Weight: 150 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 3-11,4-11,2-12: 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud WEDGE Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-2 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 4-11, 2-12 JOINTS 1 Brace at Jt(s): 15 REACTIONS.(lb/size)7=1005/0-3-8, 12=1005/0-3-8 Max Horz 12=-251(LC 4) Max Uplift 7=-56(LC 7), 12=-63(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-964/187, 3-4=-999/165, 4-6=-1624/194, 6-7=-1887/213 BOT CHORD 11-12=0/395, 9-11=-23/874, 8-9=-157/1272, 7-8=-113/1578 WEBS 11-13=-59/658, 3-13=-58/651, 11-14=-675/213, 4-14=-657/209, 4-15=-20/455, 9-15=-22/471, 9-16=-294/182, 6-16=-293/183, 2-12=-951/52, 2-13=0/538, 13-14=0/502, 14-15=0/427, 15-16=0/390, 8-16=0/410 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 12. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE17 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056562 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:54 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-4Zw_L4OA0iVN5dm8J_3z?gOxIrdFyfXDi5pidMzoAVR Scale = 1:33.6 Sheet Back Full Sheathing 1 Ply 7/16OSB8 1 2 3 4 5 6 11 10 9 8 72x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 10-1-78-5-1 8-5-1 0-0-45-7-68.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.39 0.05 0.04 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 84 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 8-5-1. (lb) - Max Horz 1=157(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 8, 9, 10, 11 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 8, 9, 10, 11 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 8, 9, 10, 11. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss GE22 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056563 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:56 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-0y1lmlQQYKl5KwwXQO6R55UNseJBQXCWAPIpiEzoAVP Scale = 1:61.1 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 4x6 3x4 3x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 17- 9 - 1 3 30-0-0 30-0-0 -0-11-4 0-11-4 15-0-0 15-0-0 30-0-0 15-0-0 30-11-4 0-11-4 0-6-88-0-80-6-86.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-13], [2:0-2-9,Edge], [9:0-3-0,0-3-0], [17:0-3-0,0-3-0], [24:Edge,0-0-13], [24:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.06 0.02 0.16 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.01 (loc) 25 25 24 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 158 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 30-0-0. (lb) - Max Horz 2=-79(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26 Max Grav All reactions 250 lb or less at joint(s) 2, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 24 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M01 Truss Type Monopitch Qty 7 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056564 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:56 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-0y1lmlQQYKl5KwwXQO6R55UGjeETQZfWAPIpiEzoAVP Scale = 1:13.3 1 2 3 4 2x4 3x4 2x4 -0-11-4 0-11-4 5-11-8 5-11-8 0-4-01-9-141-6-60-3-81-9-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.46 0.33 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.05 -0.14 0.00 (loc) 2-4 2-4 4 l/defl >999 >487 n/a L/d 240 180 n/a PLATES MT20 Weight: 16 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=304/0-11-4, 4=210/0-1-8 Max Horz 2=51(LC 5) Max Uplift 2=-60(LC 4), 4=-17(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M02 Truss Type Monopitch Qty 3 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056565 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:57 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-U8b7_5R2Jduyy4Vj_6dgdJ0Ld2WJ90vfO32NEhzoAVO Scale = 1:17.0 1 2 3 4 2x4 3x4 2x4 -0-11-4 0-11-4 7-11-8 7-11-8 0-4-02-3-142-0-60-3-82-3-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.89 0.61 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.19 -0.47 0.00 (loc) 2-4 2-4 4 l/defl >478 >191 n/a L/d 240 180 n/a PLATES MT20 Weight: 21 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=382/0-11-4, 4=293/0-1-8 Max Horz 2=68(LC 5) Max Uplift 2=-65(LC 4), 4=-26(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M03 Truss Type Monopitch Qty 9 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056566 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:58 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-yK9VBRRg4x0paE4wYp8vAWZd6SsUuMgpdjnwm7zoAVN Scale = 1:80.2 1 2 3 4 5 10 9 8 76 11 12 3x6 4x8 3x6 3x4 3x4 3x6 4x8 3x4 3x6 3x6 3x6 3x6 3x6 9-3-8 9-3-8 18-7-0 9-3-8 6-3-8 6-3-8 12-3-8 6-0-0 18-7-0 6-3-8 5-2-214-5-100-9-414-5-106.00 12 Plate Offsets (X,Y)-- [5:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.40 0.61 0.48 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.16 -0.41 -0.05 (loc) 9-10 9-10 12 l/defl >999 >535 n/a L/d 240 180 n/a PLATES MT20 Weight: 127 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 1-10: 2x4 SPF-S Stud OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-11, 2-9, 4-7, 2-10, 5-12 REACTIONS.(lb/size)10=735/0-5-8, 12=711/0-1-8 Max Horz 10=345(LC 6) Max Uplift 12=-210(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-490/32, 7-11=-189/574, 5-11=-189/574 BOT CHORD 9-10=-241/394, 7-9=-116/289 WEBS 2-9=-80/261, 4-9=-123/368, 4-7=-557/267, 2-10=-614/0, 5-12=-712/261 NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=210. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M04 Truss Type Monopitch Qty 9 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056567 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:58 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-yK9VBRRg4x0paE4wYp8vAWZXVSmvuGhpdjnwm7zoAVN Scale = 1:80.4 1 2 3 4 5 10 9 8 7 6 11 12 3x6 4x10 6x18 MT18HS 3x6 3x6 5x12 3x6 4x8 3x6 3x6 3x6 3x6 11-7-8 11-7-8 23-3-0 11-7-8 7-10-3 7-10-3 15-4-13 7-6-11 23-3-0 7-10-3 2-10-214-5-100-9-414-5-106.00 12 Plate Offsets (X,Y)-- [5:0-6-8,Edge], [9:0-0-0,0-1-12], [9:0-7-12,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.82 0.97 0.86 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.37 -0.93 -0.08 (loc) 8-10 8-10 12 l/defl >748 >296 n/a L/d 240 180 n/a PLATES MT20 MT18HS Weight: 134 lb FT = 20% GRIP 169/123 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-8,1-10: 2x4 SPF-S Stud OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-9-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-11, 4-7, 2-10, 5-12 REACTIONS.(lb/size)10=921/0-5-8, 12=898/0-1-8 Max Horz 10=381(LC 6) Max Uplift 12=-201(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-833/15, 7-11=-159/725, 5-11=-159/725 BOT CHORD 8-10=-302/769, 7-8=-148/488 WEBS 2-8=-224/255, 4-8=-64/558, 4-7=-767/269, 2-10=-896/0, 5-12=-899/251 NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) All plates are MT20 plates unless otherwise indicated. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=201. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M05 Truss Type Monopitch Qty 3 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056568 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:33:59 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-QXjtPnSJrF8gBOf66Xf8ik6nRsEIdmgysNXTJZzoAVM Scale = 1:40.1 1 2 3 4 5 8 7 6 9 16 4x8 4x8 3x4 5x6 3x4 3x12 3x6 7-5-9 7-5-9 13-2-12 5-9-3 -0-11-4 0-11-4 7-5-9 7-5-9 13-2-12 5-9-3 0-6-86-10-67-1-145-1-142-9-42-0-06.00 12 3.50 12 Plate Offsets (X,Y)-- [2:0-2-9,Edge], [5:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-MSH 0.42 0.51 0.69 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.06 -0.18 0.04 (loc) 8-14 8-14 16 l/defl >999 >885 n/a L/d 240 180 n/a PLATES MT20 Weight: 50 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud SLIDER Left 2x3 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=598/0-7-4, 16=488/0-1-8 Max Horz 2=208(LC 6) Max Uplift 2=-25(LC 6), 16=-88(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1106/163, 7-9=-74/389, 5-9=-74/389 BOT CHORD 2-8=-297/966, 7-8=-271/885 WEBS 4-8=-15/427, 4-7=-887/295, 5-16=-490/135 NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 2, 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 16. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M08 Truss Type Monopitch Qty 9 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056569 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:00 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-vjHFc7TxcYGXpYEIfEANFxeyYGcKMNf540G1r?zoAVL Scale = 1:29.2 1 2 4 3 3x4 3x6 3x4 3x6 5-11-8 5-11-8 1-10-24-9-144-6-60-3-84-9-146.00 12 Plate Offsets (X,Y)-- [3:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.40 0.27 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.04 -0.11 -0.00 (loc) 3-4 3-4 3 l/defl >999 >626 n/a L/d 240 180 n/a PLATES MT20 Weight: 20 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)4=227/0-3-8, 3=227/0-1-8 Max Horz 4=136(LC 5) Max Uplift 3=-43(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M09 Truss Type Jack-Closed Qty 5 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056570 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:00 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-vjHFc7TxcYGXpYEIfEANFxexhGWBMC_540G1r?zoAVL Scale = 1:37.1 1 2 3 6 5 4 7 8 4x8 4x8 3x8 5x6 3x4 3x6 7-1-13 7-1-13 13-2-8 6-0-11 7-1-13 7-1-13 13-2-8 6-0-11 0-8-67-3-105-3-103-3-02-0-06.00 12 3.50 12 Plate Offsets (X,Y)-- [3:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.46 0.66 0.75 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.09 -0.23 0.06 (loc) 5 5-6 8 l/defl >999 >667 n/a L/d 240 180 n/a PLATES MT20 Weight: 48 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 1-6: 2x6 SP 2400F 2.0E OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-0-6 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)6=514/0-3-8, 8=489/0-3-0 Max Horz 6=184(LC 6) Max Uplift 8=-94(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1111/165, 4-7=-76/373, 3-7=-76/373, 1-6=-678/145 BOT CHORD 5-6=-294/948, 4-5=-271/878 WEBS 2-5=-1/423, 2-4=-880/306, 3-8=-492/140 NOTES-(6-7) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 6, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss M10 Truss Type Jack-Closed Structural Gable Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056571 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:01 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-NvrepTUZMsOORioVDyhco9B91fza5p2FJg0aNSzoAVK Scale = 1:42.7 1 2 3 4 9 8 7 6 5 10 11 2x4 4x6 3x6 3x4 2x4 3x4 2x4 2x4 2x4 3x6 7-10-0 7-10-0 12-9-8 4-11-8 7-10-0 7-10-0 12-9-8 4-11-8 0-10-147-3-105-3-103-3-02-0-06.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.29 0.20 0.12 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.02 -0.06 -0.04 (loc) 5-6 5-6 11 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 52 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 3-7: 2x4 SPF 2100F 1.8E OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 7-10-0 except (jt=length) 11=0-3-0. (lb) - Max Horz 9=182(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 11 Max Grav All reactions 250 lb or less at joint(s) 9, 11 except 7=267(LC 1), 7=267(LC 1), 8=362(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 6-7=-261/28, 2-8=-252/165 NOTES-(6-7) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 11. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T04 Truss Type Common Qty 4 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056572 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:01 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-NvrepTUZMsOORioVDyhco9B7ifqZ5mJFJg0aNSzoAVK Scale = 1:60.0 1 2 3 4 5 6 10 9 8 7 4x6 3x6 2x4 3x6 3x12 3x6 3x6 2x4 5x8 4x6 5-11-4 5-11-4 15-7-3 9-7-15 25-5-0 9-9-13 5-11-4 5-11-4 12-4-9 6-5-5 18-9-14 6-5-5 25-5-0 6-7-2 7-3-1210-3-60-6-86.00 12 Plate Offsets (X,Y)-- [1:0-3-0,0-1-8], [6:0-0-15,0-6-8], [6:0-3-8,Edge], [6:0-0-7,0-0-15] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.44 0.78 0.29 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.52 0.05 (loc) 6-7 6-7 6 l/defl >999 >574 n/a L/d 240 180 n/a PLATES MT20 Weight: 112 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 3-7,5-7,1-10: 2x4 SPF-S Stud WEDGE Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 3-9, 1-10 REACTIONS.(lb/size)10=1005/0-3-8, 6=1005/0-3-8 Max Horz 10=-251(LC 4) Max Uplift 10=-63(LC 7), 6=-56(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-600/196, 2-3=-621/195, 3-5=-1412/227, 5-6=-1670/241, 1-10=-963/167 BOT CHORD 7-9=-10/961, 6-7=-137/1416 WEBS 3-9=-718/204, 3-7=-9/564, 5-7=-336/177, 1-9=-26/731 NOTES-(6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T06 Truss Type COMMON Qty 6 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056573 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:02 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-r5P01pUB7AWF2rNhnfCrKMkCd38UqCzOYKl8wuzoAVJ Scale = 1:54.8 1 2 3 4 5 6 9 8 7 3x6 4x10 3x4 4x8 3x6 3x6 2x4 3x8 10-7-11 10-7-11 21-5-0 10-9-5 -1-0-0 1-0-0 8-9-13 8-9-13 17-5-12 8-7-15 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:0-0-7,0-0-15], [2:0-0-15,0-6-8], [2:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.81 0.93 0.33 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.31 -0.76 0.03 (loc) 7-9 7-9 7 l/defl >828 >334 n/a L/d 240 180 n/a PLATES MT20 Weight: 88 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 3-9,6-7: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-7 REACTIONS.(lb/size)2=916/0-3-8, 7=843/0-3-8 Max Horz 2=245(LC 5) Max Uplift 2=-81(LC 6), 7=-64(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1288/182, 3-5=-1091/252 BOT CHORD 2-9=-118/1047, 7-9=-60/294 WEBS 3-9=-512/260, 5-9=-139/929, 5-7=-731/83 NOTES-(6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T10 Truss Type COMMON Qty 7 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056574 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:03 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-JIyOE9VpuTe6g?ytLMk4taGTBTYHZgtYn_VhSKzoAVI Scale = 1:60.0 1 2 3 4 5 6 7 11 10 9 8 4x6 3x6 5x8 3x4 3x6 3x12 3x6 4x6 3x6 2x4 2x4 5-11-4 5-11-4 15-7-3 9-7-15 25-2-0 9-6-13 5-11-4 5-11-4 12-4-9 6-5-5 18-9-14 6-5-5 25-2-0 6-4-2 7-3-1210-3-60-8-06.00 12 Plate Offsets (X,Y)-- [1:0-3-0,0-1-8], [7:0-4-1,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-MSH 0.44 0.70 0.29 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.16 -0.43 0.04 (loc) 8-10 8-10 7 l/defl >999 >695 n/a L/d 240 180 n/a PLATES MT20 Weight: 112 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 3-8,1-11,5-8: 2x4 SPF-S Stud SLIDER Right 2x3 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 3-10, 1-11 REACTIONS.(lb/size)7=1001/Mechanical, 11=1001/0-3-8 Max Horz 11=-244(LC 4) Max Uplift 7=-55(LC 7), 11=-62(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-599/195, 2-3=-622/195, 3-5=-1373/222, 5-7=-1606/238, 1-11=-962/166 BOT CHORD 8-10=-22/953, 7-8=-141/1378 WEBS 3-10=-707/203, 1-10=-25/730, 3-8=-3/530, 5-8=-323/170 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 11. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T11 Truss Type Scissor Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056575 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:03 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-JIyOE9VpuTe6g?ytLMk4taGMnTZSZdJYn_VhSKzoAVI Scale = 1:38.9 1 2 3 4 5 8 7 6 4x6 3x6 5x6 3x6 5x8 5x8 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 0-11-116-3-110-11-113-2-98.00 12 5.00 12 Plate Offsets (X,Y)-- [2:0-1-1,0-1-8], [4:0-1-1,0-1-8], [6:0-0-10,0-1-8], [8:0-0-10,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.85 0.62 0.45 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.16 -0.47 0.39 (loc) 7-8 7-8 6 l/defl >999 >401 n/a L/d 240 180 n/a PLATES MT20 Weight: 52 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 WEBS 2x6 SP 2400F 2.0E *Except* 3-7: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-6-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)8=712/0-3-8, 6=712/0-3-8 Max Horz 8=152(LC 5) Max Uplift 8=-73(LC 6), 6=-73(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1209/0, 3-4=-1209/28, 2-8=-971/100, 4-6=-971/77 BOT CHORD 7-8=0/953, 6-7=0/953 WEBS 3-7=0/830 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T12 Truss Type Scissor Qty 4 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056576 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:04 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-nUWmSVWRfnmzI9X3u4FJPnpXetqLI5kh?eEE_nzoAVH Scale = 1:38.7 1 2 3 4 7 6 5 4x8 4x6 3x6 5x6 3x6 5x8 8-0-0 8-0-0 16-0-0 8-0-0 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 0-11-116-3-110-11-113-2-98.00 12 5.00 12 Plate Offsets (X,Y)-- [1:0-1-1,0-1-8], [3:0-1-1,0-1-8], [5:0-0-10,0-1-8], [7:0-0-10,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.84 0.90 0.44 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.61 0.54 (loc) 6 5-6 5 l/defl >798 >306 n/a L/d 240 180 n/a PLATES MT20 Weight: 50 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 2-4: 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 WEBS 2x6 SP 2400F 2.0E *Except* 2-6: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)7=617/0-3-8, 5=716/0-3-8 Max Horz 7=-164(LC 4) Max Uplift 7=-24(LC 6), 5=-73(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1202/5, 2-3=-1215/34, 1-7=-860/55, 3-5=-972/81 BOT CHORD 6-7=0/952, 5-6=0/957 WEBS 2-6=0/809 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 7, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T13 Truss Type ROOF SPECIAL Qty 2 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056577 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:04 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-nUWmSVWRfnmzI9X3u4FJPnpYitsyI7ih?eEE_nzoAVH Scale = 1:38.5 1 2 3 4 7 6 5 8 5x6 4x6 5x6 6x10 5x12 3x6 6-0-0 6-0-0 14-0-0 8-0-0 6-0-0 6-0-0 14-0-0 8-0-0 15-3-4 1-3-4 1-6-85-6-86-3-110-4-70-11-110-8-93-2-98.00 12 5.00 12 Plate Offsets (X,Y)-- [3:0-1-13,0-2-12], [5:Edge,0-5-8], [5:0-1-2,0-2-12], [7:0-8-8,Edge], [7:0-3-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-S 0.77 0.80 0.32 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.19 -0.57 0.42 (loc) 5-6 5-6 5 l/defl >885 >290 n/a L/d 240 180 n/a PLATES MT20 Weight: 46 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-6: 2x4 SPF-S Stud, 3-5: 2x6 SP 2400F 2.0E OTHERS 2x4 SP 2400F 2.0E BRACING- TOP CHORD Structural wood sheathing directly applied or 3-4-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)5=643/0-3-8, 8=514/0-1-8 Max Horz 8=-148(LC 4) Max Uplift 5=-78(LC 7), 8=-15(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-905/0, 2-3=-943/9, 3-5=-813/85 BOT CHORD 6-7=0/698, 5-6=0/720 WEBS 2-6=0/603, 1-8=-572/36 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 5, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T19 Truss Type Common Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056578 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:05 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Fg48fqX3Q5upvJ6GSnmYy?Mm0HC01ZtrEI_oWDzoAVG Scale: 1/4"=1' 1 2 3 4 5 8 7 6 3x4 4x10 3x6 3x8 3x6 2x4 4x8 3x6 10-0-13 10-0-13 20-0-0 9-11-3 5-0-0 5-0-0 12-5-1 7-5-1 20-0-0 7-6-15 5-6-88-0-80-6-86.00 12 Plate Offsets (X,Y)-- [5:0-0-7,0-0-15], [5:0-0-15,0-6-8], [5:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.61 0.81 0.26 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.57 0.03 (loc) 6-8 6-8 5 l/defl >999 >416 n/a L/d 240 180 n/a PLATES MT20 Weight: 79 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 4-6,1-8: 2x4 SPF-S Stud WEDGE Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-6-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 2-8 REACTIONS.(lb/size)5=788/0-3-8, 8=788/0-3-8 Max Horz 8=-191(LC 4) Max Uplift 5=-44(LC 7), 8=-46(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-982/211, 4-5=-1201/186 BOT CHORD 6-8=0/374, 5-6=-80/1001 WEBS 2-6=-78/738, 4-6=-438/222, 2-8=-673/65 NOTES-(6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss T20 Truss Type Common Qty 9 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056579 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:06 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-jteXtAYiBO0gXThS0VHnUCuxcgYym1F_TyjL3fzoAVF Scale = 1:51.1 1 2 3 4 5 6 7 8 9 12 11 10 3x6 4x6 3x6 6x6 3x6 3x6 2x4 3x6 2x4 6x6 10-0-10 10-0-10 19-11-6 9-10-13 30-0-0 10-0-10 -0-11-4 0-11-4 7-6-15 7-6-15 15-0-0 7-5-1 22-5-1 7-5-1 30-0-0 7-6-15 30-11-4 0-11-4 0-6-88-0-80-6-86.00 12 Plate Offsets (X,Y)-- [2:0-0-15,0-0-7], [2:0-6-8,0-0-15], [2:0-1-9,0-2-15], [8:0-0-15,0-0-7], [8:0-6-8,0-0-15], [8:0-1-9,0-2-15] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.62 0.83 0.25 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.66 0.09 (loc) 2-12 2-12 8 l/defl >999 >542 n/a L/d 240 180 n/a PLATES MT20 Weight: 105 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 7-10,3-12: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-3-14 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=1253/0-3-8, 8=1253/0-3-8 Max Horz 2=-79(LC 7) Max Uplift 2=-92(LC 6), 8=-92(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2018/298, 3-5=-1793/319, 5-7=-1793/319, 7-8=-2018/298 BOT CHORD 2-12=-165/1718, 10-12=-12/1148, 8-10=-165/1718 WEBS 5-10=-71/680, 7-10=-419/212, 5-12=-71/680, 3-12=-419/212 NOTES-(6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss TG02 Truss Type GABLE Qty 1 Ply 2 LENNAR 2 CLAY Job Reference (optional) I36056580 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:07 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-B3Cv4WYKyi8X9dGeaCo01QR364qbVJM7hcTvb5zoAVE Scale = 1:53.2 Sheet Front Right Option -1-4-12 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 10 9 8 11 13 12 23 24 25 26 27 4x6 5x6 5x12 3x6 5x8 4x10 10x10 5x6 2x4 3x6 3x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 4-9-11 4-9 - 1 1 0-11-31-4-126-1-12 6-1-12 12-0-0 5-10-4 16-0-0 4-0-0 17-4-12 1-4-12 -1-3-4 1-3-4 6-1-12 6-1-12 8-0-0 1-10-4 12-0-0 4-0-0 16-0-0 4-0-0 0-11-38-11-36-3-38.00 12 Plate Offsets (X,Y)-- [2:0-0-8,0-0-11], [2:0-0-15,0-4-15], [2:0-5-8,Edge], [7:0-2-8,0-2-4], [18:0-2-0,0-0-1] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.83 0.99 0.90 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.08 -0.19 0.03 (loc) 2-10 2-10 8 l/defl >999 >995 n/a L/d 240 180 n/a PLATES MT20 Weight: 237 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x6 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 7-8 JOINTS 1 Brace at Jt(s): 11, 12 REACTIONS.(lb/size)2=4121/0-3-8, 8=4086/0-3-8 Max Horz 2=274(LC 12) Max Uplift 2=-301(LC 5), 8=-285(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-5068/327, 3-5=-2162/192, 5-6=-1968/192, 6-7=-1908/183, 8-13=-3698/279, 7-13=-3491/229 BOT CHORD 2-10=-342/4019, 9-10=-342/4019, 8-9=-50/296 WEBS 3-10=-150/3288, 3-9=-2772/244, 9-11=-147/1967, 6-11=-145/1963, 9-12=-203/2818, 7-12=-203/2818, 5-11=-338/87, 11-12=-346/89, 12-13=-374/91 NOTES-(11-12) 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=301, 8=285. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 981 lb down and 67 lb up at 2-0-12, 981 lb down and 67 lb up at 4-0-12, 981 lb down and 67 lb up at 6-0-12, 981 lb down and 67 lb up at 8-0-12, 981 lb down and 67 lb up at 10-0-12, and 981 lb down and 67 lb up at 12-0-12, and 981 lb down and 67 lb up at 14-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. Continued on page 2 February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss TG02 Truss Type GABLE Qty 1 Ply 2 LENNAR 2 CLAY Job Reference (optional) I36056580 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:07 2019 Page 2 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-B3Cv4WYKyi8X9dGeaCo01QR364qbVJM7hcTvb5zoAVE 11) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 12) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-6=-60, 6-7=-60, 2-8=-20 Concentrated Loads (lb) Vert: 10=-981(B) 9=-981(B) 23=-981(B) 24=-981(B) 25=-981(B) 26=-981(B) 27=-981(B) 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V15 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056581 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:08 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-gFmHHsZyj0GOmmrr7wJFad_OMUMKExXHwGCS7YzoAVD Scale: 1/4"=1' 1 2 3 4 5 6 7 13 12 11 10 9 83x4 4x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 0-0-6 0-0-6 21-10-1 21-9-11 10-11-1 10-11-1 21-10-1 10-11-1 0-0-47-3-60-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.16 0.19 0.20 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 69 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 7-10: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 21-9-5. (lb) - Max Horz 1=-162(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 12, 13, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 11 except 12=348(LC 10), 13=283(LC 1), 9=347(LC 11), 8=283(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-12=-266/143, 5-9=-266/143 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 13, 9, 8. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V16 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056582 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:08 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-gFmHHsZyj0GOmmrr7wJFad_M0UMFEydHwGCS7YzoAVD Scale = 1:39.0 1 2 3 4 5 8 7 63x6 4x6 3x6 5x6 2x4 2x4 2x4 2x4 0-0-6 0-0-6 18-10-1 18-9-11 9-5-1 9-5-1 18-10-1 9-5-1 0-0-46-3-60-0-48.00 12 Plate Offsets (X,Y)-- [7:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.31 0.20 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 57 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 18-9-5. (lb) - Max Horz 1=-139(LC 4) Max Uplift All uplift 100 lb or less at joint(s) except 8=-116(LC 6), 6=-116(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=439(LC 10), 6=439(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-314/161, 4-6=-314/161 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 116 lb uplift at joint 8 and 116 lb uplift at joint 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V17 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056583 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:09 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-8SKfVCaaUJOFOwQ1hdqU6rWZCukEzQFQ9wy?f_zoAVC Scale = 1:33.0 1 2 3 4 5 8 7 63x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 0-0-6 0-0-6 15-10-1 15-9-11 7-11-1 7-11-1 15-10-1 7-11-1 0-0-45-3-60-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.15 0.09 0.10 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 47 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 15-9-5. (lb) - Max Horz 1=-115(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=352(LC 10), 6=352(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-261/136, 4-6=-261/136 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V18 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056584 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:10 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-cet1iYbCFdW604_DFLMjf23hhI4LitvaOahZCQzoAVB Scale = 1:26.7 1 2 3 4 5 8 7 63x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 0-0-6 0-0-6 12-10-1 12-9-11 6-5-1 6-5-1 12-10-1 6-5-1 0-0-44-3-60-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.36 0.10 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 34 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 12-9-5. (lb) - Max Horz 1=92(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=265(LC 1), 8=298(LC 10), 6=298(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V19 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056585 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:10 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-cet1iYbCFdW604_DFLMjf23iqI2Mit4aOahZCQzoAVB Scale = 1:21.5 1 2 3 4 3x8 4x6 3x8 2x4 0-0-6 0-0-6 9-10-1 9-9-11 4-11-1 4-11-1 9-10-1 4-11-1 0-0-43-3-60-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.29 0.22 0.07 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 24 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=169/9-9-5, 3=169/9-9-5, 4=371/9-9-5 Max Horz 1=-69(LC 4) Max Uplift 1=-16(LC 6), 3=-20(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V20 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056586 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:11 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-4qRQwubq0xezeEZQp2tyBGctShG6RLNjcER6ktzoAVA Scale = 1:15.7 1 2 3 2x4 3x4 2x4 0-0-6 0-0-6 6-10-1 6-9-11 3-5-1 3-5-1 6-10-1 3-5-1 0-0-42-3-60-0-48.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.29 0.77 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 14 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=235/6-9-5, 3=235/6-9-5 Max Horz 1=46(LC 5) Max Uplift 1=-10(LC 6), 3=-10(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V21 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056587 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:11 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-4qRQwubq0xezeEZQp2tyBGcwyhP7RLNjcER6ktzoAVA Scale = 1:9.1 1 2 3 2x4 3x4 2x4 0-0-6 0-0-6 3-10-1 3-9-11 1-11-1 1-11-1 3-10-1 1-11-1 0-0-41-3-60-0-48.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.07 0.19 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-1 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=115/3-9-5, 3=115/3-9-5 Max Horz 1=-22(LC 4) Max Uplift 1=-5(LC 6), 3=-5(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V30 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056588 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:12 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Y1?o7EcSnEmqFO8cMlOBkT83W5lFAnKtruAfGJzoAV9 Scale = 1:27.3 1 2 3 5 43x6 2x4 2x4 2x4 2x4 9-2-2 9-2-2 0-0-44-7-16.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.21 0.13 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 4 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 27 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=146/9-2-2, 4=111/9-2-2, 5=415/9-2-2 Max Horz 1=132(LC 5) Max Uplift 4=-13(LC 5), 5=-76(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-5=-298/180 NOTES-(6-7) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V31 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056589 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:13 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-0DZALad5YYvhtYjowTvQHhhFCV58vDO04YwDolzoAV8 Scale = 1:41.1 1 2 3 4 5 6 7 13 12 11 10 9 83x4 4x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 24-4-4 24-4-4 12-2-2 12-2-2 24-4-4 12-2-2 0-0-46-1-10-0-46.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.15 0.09 0.16 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 72 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 24-4-4. (lb) - Max Horz 1=-56(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=271(LC 1), 12=336(LC 10), 13=334(LC 1), 9=336(LC 11), 8=334(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-12=-260/130, 5-9=-260/130 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 9, 8. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V32 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056590 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:13 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-0DZALad5YYvhtYjowTvQHhhCbV0LvEF04YwDolzoAV8 Scale = 1:34.0 1 2 3 4 5 8 7 63x8 4x6 3x6 2x4 2x4 2x4 5x6 2x4 20-4-4 20-4-4 10-2-2 10-2-2 20-4-4 10-2-2 0-0-45-1-10-0-46.00 12 Plate Offsets (X,Y)-- [6:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.38 0.40 0.10 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 56 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 5-6: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 20-4-4. (lb) - Max Horz 1=-47(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=482(LC 10), 6=477(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-342/163, 4-6=-340/160 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V33 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056591 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:14 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-UP7YYvejJs1YVhI_UAQfpuDQqvQ6ehw9JCfmLBzoAV7 Scale = 1:27.5 1 2 3 4 5 9 8 7 63x4 4x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 16-4-4 16-4-4 8-2-2 8-2-2 16-4-4 8-2-2 0-0-44-1-10-0-46.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.16 0.17 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 43 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 5-7: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 16-4-4. (lb) - Max Horz 1=37(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=263(LC 1), 9=358(LC 10), 6=357(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-265/131, 4-6=-268/132 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V34 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056592 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:15 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-zchwlFeL399P6rtB2uxuM6mVzJjfN8yJXsPKtezoAV6 Scale = 1:20.5 1 2 3 43x12 4x8 3x12 2x4 12-4-4 12-4-4 6-2-2 6-2-2 12-4-4 6-2-2 0-0-43-1-10-0-46.00 12 Plate Offsets (X,Y)-- [1:0-9-11,Edge], [3:0-3-3,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.45 0.34 0.09 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 29 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=198/12-4-4, 3=198/12-4-4, 4=492/12-4-4 Max Horz 1=-27(LC 4) Max Uplift 1=-21(LC 6), 3=-25(LC 7), 4=-3(LC 6) Max Grav 1=202(LC 10), 3=202(LC 11), 4=492(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-296/103 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V35 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056593 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:15 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-zchwlFeL399P6rtB2uxuM6mWPJmrN9aJXsPKtezoAV6 Scale = 1:15.4 1 2 3 4 2x4 4x6 2x4 2x4 8-4-4 8-4-4 4-2-2 4-2-2 8-4-4 4-2-2 0-0-42-1-10-0-46.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.42 0.14 0.05 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 19 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=144/8-4-4, 3=144/8-4-4, 4=279/8-4-4 Max Horz 1=-17(LC 4) Max Uplift 1=-20(LC 6), 3=-23(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19900354 Truss V36 Truss Type Valley Qty 1 Ply 1 LENNAR 2 CLAY Job Reference (optional) I36056594 8.220 s Nov 16 2018 MiTek Industries, Inc. Tue Feb 5 13:34:16 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-RoFJzbfzqTHGk?SNbbS7uJJmWi5o6ccSmW8tP4zoAV5 Scale = 1:8.3 1 2 3 2x4 3x4 2x4 4-4-4 4-4-4 2-2-2 2-2-2 4-4-4 2-2-2 0-0-41-1-10-0-46.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.08 0.22 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 8 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-4 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=124/4-4-4, 3=124/4-4-4 Max Horz 1=8(LC 5) Max Uplift 1=-6(LC 6), 3=-6(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). February 6,2019 PRODUCT CODE APPROVALSLATERAL BRACING LOCATIONIndicates location where bearings(supports) occur. Icons vary butreaction section indicates jointnumber where bearings occur.Min size shown is for crushing only.Indicated by symbol shown and/orby text in the bracing section of theoutput. Use T or I bracingif indicated.The first dimension is the plate width measured perpendicular to slots. Second dimension isthe length parallel to slots.Center plate on joint unless x, yoffsets are indicated.Dimensions are in ft-in-sixteenths.Apply plates to both sides of trussand fully embed teeth.1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.5. Cut members to bear tightly against each other.6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.13. Top chords must be sheathed or purlins provided at spacing indicated on design.14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.15. Connections not shown are the responsibility of others.16. Do not cut or alter truss member or plate without prior approval of an engineer.17. Install and load vertically unless indicated otherwise.18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.Failure to Follow Could Cause PropertyDamage or Personal Injury (Drawings not to scale)© 2012 MiTek® All Rights ReservedMiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015edge of truss.from outside"16/1-0ICC-ES Reports:ESR-1311, ESR-1352, ESR1988ER-3907, ESR-2362, ESR-1397, ESR-3282JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISEAROUND THE TRUSS STARTING AT THE JOINT FARTHEST TOTHE LEFT.CHORDS AND WEBS ARE IDENTIFIED BY END JOINTNUMBERS/LETTERS.W 4 - 6 W3-6W3 - 7 W2-7W1-7C1-8 C5-6C6-7C7-8C4-5 C3-4C2-3C1-2TOP CHORD TOP CHORD 87654321BOTTOM CHORDSTOP CHORDSBEARING4 x 4PLATE SIZEThis symbol indicates the required direction of slots inconnector plates."16/1For 4 x 2 orientation, locateplates 0- 1"4/3PLATE LOCATION AND ORIENTATIONSymbolsNumbering SystemGeneral Safety Notes *Plate location details available in MiTek 20/20software or upon request.Industry Standards:ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.DSB-89: Design Standard for Bracing.BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.6-4-8WEBSTrusses are designed for wind loads in the plane of the truss unless otherwise shown.Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.dimensions shown in ft-in-sixteenths