Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
LENNAR 23 CLAY TRS
16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. Re: The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by ProBuild (CarterLee Bldg Components). April 25,2019 Liu, Xuegang Pages or sheets covered by this seal: I36868585 thru I36868627 My license renewal date for the state of Indiana is July 31, 2020. B19901366 Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2. IMPORTANT NOTE: LENNAR 23 CLAY 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE01 Truss Type Roof Special Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868585 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:24 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-lpWFXR3Hm7Tb3CmP_LMqRb5MnLPjUfA?ZBqCQDzNF7z Scale = 1:77.4 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 3x8 3x8 4x6 3x8 3x8 5x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 14-2-158-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 2-8-012-0-02-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [8:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.79 0.35 0.16 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.02 (loc) 15 14-15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 92 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 16-0-0. (lb) - Max Horz 28=317(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except 28=-696(LC 4), 16=-307(LC 5), 22=-134(LC 5), 27=-453(LC 5), 17=-430(LC 4) Max Grav All reactions 250 lb or less at joint(s) 16, 23, 24, 25, 26, 21, 20, 19, 18 except 28=620(LC 5), 22=828(LC 7), 27=479(LC 4), 17=457(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-28=-255/333, 2-3=-259/353, 4-5=-38/323, 5-6=-24/394, 6-7=-24/478, 7-8=-28/525, 8-9=-28/525, 9-10=-24/478, 10-11=-24/394, 11-12=-26/323, 13-14=-240/334, 14-16=-236/315 BOT CHORD 27-28=-374/391, 25-26=-241/263, 24-25=-229/253, 23-24=-234/256, 22-23=-232/252, 21-22=-232/252, 20-21=-232/255, 19-20=-235/257, 17-18=-262/285 WEBS 8-22=-743/0 NOTES-(13-14) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 9) Bearing at joint(s) 28, 16, 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except (jt=lb) 28=696, 16=307, 22=134, 27=453, 17=430. 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17. 12) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Continued on page 2 April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE01 Truss Type Roof Special Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868585 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:24 2019 Page 2 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-lpWFXR3Hm7Tb3CmP_LMqRb5MnLPjUfA?ZBqCQDzNF7z 13) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 14) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE02 Truss Type GABLE Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868586 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:25 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-D?4ekn4vXRbShMLbY2t3_pddRlnAD199oralyfzNF7y Scale = 1:75.4 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 29 31 30 32 33 34 3x4 3x6 4x6 3x6 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 6-0-02-0-02-0-014-2-158-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 17-3-4 1-3-4 1-7-310-11-31-7-314.00 12 Plate Offsets (X,Y)-- [8:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.41 0.21 0.50 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.01 -0.02 0.00 (loc) 15 15 16 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 126 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 7-23,9-21: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. JOINTS 1 Brace at Jt(s): 29, 30, 31, 32 REACTIONS.All bearings 16-0-0. (lb) - Max Horz 28=-278(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 25, 26, 19, 18 except 28=-240(LC 4), 16=-224(LC 5), 24=-108(LC 6), 27=-262(LC 5), 20=-109(LC 7), 17=-252(LC 4) Max Grav All reactions 250 lb or less at joint(s) 23, 24, 25, 26, 27, 21, 20, 19, 18, 17, 22 except 28=307(LC 5), 16=291(LC 4) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 6-7=-24/344, 7-8=-38/255, 8-9=-38/255, 9-10=-24/344 NOTES-(11-12) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 26, 19, 18 except (jt=lb) 28=240, 16=224, 24=108, 27=262, 20=109, 17=252. 10) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 12) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE03 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868587 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:27 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-9OCO9T5A32rAwgVzfTvX3Ej?dZVxh0SSF93s1YzNF7w Scale = 1:64.7 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 4x6 3x4 3x8 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 21-9-5 6-7- 1 1 25-5-0 25-5-0 19-5-12 19-5-12 25-5-0 5-11-4 0-6-810-3-67-3-126.00 12 Plate Offsets (X,Y)-- [1:0-2-9,Edge], [1:0-0-0,0-0-13], [7:0-3-0,0-3-0], [29:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.30 0.12 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 21 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 182 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 15-25,14-26,13-27,16-24,17-23: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 15-25, 14-26, 13-27, 16-24, 17-23 REACTIONS.All bearings 25-5-0. (lb) - Max Horz 1=251(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1 Max Grav All reactions 250 lb or less at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21, 29, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 24, 23, 22, 1. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE04 Truss Type Roof Special Structural Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868588 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:28 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-dammMp6oqMz1Yp4ADBQmcRF79zfzQI2bUpoPZ_zNF7v Scale = 1:66.7 Sheet Back Left Option 2-11-0 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 13 12 11 10 9 14 15 16 17 4x6 3x4 6x6 3x8 3x4 2x4 3x6 3x6 3x6 3x6 2x4 2x4 3x6 2x4 3x6 5x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5-3-122-2- 1 3 22-9-1 5 2-11-0 2-11-0 2-11-0 9-9-13 6-10-13 19-5-12 9-7-15 25-5-0 5-11-4 -0-11-4 0-11-4 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 21-5-12 2-0-0 25-5-0 3-11-4 0-6-810-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:0-0-15,0-0-7], [2:0-6-8,0-0-15], [4:0-3-0,0-3-0], [10:0-2-8,0-1-8], [13:0-2-0,0-0-11], [16:0-3-12,0-2-8], [16:0-1-8,0-0-4] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.51 0.78 0.88 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.19 -0.54 0.05 (loc) 10-12 10-12 9 l/defl >999 >563 n/a L/d 240 180 n/a PLATES MT20 Weight: 138 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 8-9: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-10, 7-9 JOINTS 1 Brace at Jt(s): 15 REACTIONS.(lb/size)2=1071/0-3-8, 9=1004/0-3-8 Max Horz 2=254(LC 5) Max Uplift 2=-90(LC 6), 9=-62(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1881/204, 3-5=-1625/188, 5-6=-997/161, 6-7=-955/185 BOT CHORD 2-13=-163/1571, 12-13=-212/1256, 10-12=-80/865, 9-10=-34/394 WEBS 3-14=-284/180, 12-14=-289/179, 12-15=-18/464, 5-15=-16/449, 5-16=-655/208, 10-16=-670/212, 10-17=-58/656, 6-17=-57/653, 7-9=-953/52, 13-14=0/407, 14-15=0/402, 15-16=0/440, 16-17=0/501, 7-17=0/518 NOTES-(9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE05 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868589 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:29 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-6mK8a87Qbg5uAzfMnux?8foL3M9I9xCljTYz5RzNF7u Scale = 1:59.5 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 3x6 4x6 3x4 3x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 20-7-1 4-4- 1 3 21-5-0 21-5-0 -0-11-4 0-11-4 17-5-12 17-5-12 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:Edge,0-0-13], [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.31 0.13 0.11 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.00 (loc) 1 1 20 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 140 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud *Except* 16-23,15-24,17-22: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 16-23, 15-24, 17-22 REACTIONS.All bearings 21-5-0. (lb) - Max Horz 2=245(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2 Max Grav All reactions 250 lb or less at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 22, 21, 2 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 21, 2. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE06 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868590 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:30 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-azuXnU72MzDln7EYLbTEhsKWUmVfuO2uy7HWetzNF7t Scale = 1:13.1 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 6 5 2x4 2x4 3x4 2x4 2x4 7-1-5 -0-11-4 0-11-4 5-11-8 5-11-8 0-4-01-9-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.26 0.19 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 0.01 0.00 (loc) 1 1 5 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 17 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)5=-88/5-11-8, 2=212/5-11-8, 6=397/5-11-8 Max Horz 2=51(LC 5) Max Uplift 5=-88(LC 1), 2=-42(LC 4), 6=-36(LC 6) Max Grav 5=9(LC 4), 2=212(LC 1), 6=397(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-293/176 NOTES-(9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE07 Truss Type GABLE Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868591 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:31 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-29Rv?q8g7HLcPHoluJ_TD4tacAiLcoL1An14AJzNF7s Scale = 1:90.9 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 3317 3x6 6x8 3x6 3x6 3x6 3x6 4x8 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 20-9-5 18-7-0 18-7-0 18-7-0 18-7-0 5-2-214-5-106.00 12 Plate Offsets (X,Y)-- [16:0-4-8,Edge], [23:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.75 0.73 0.26 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 17 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 220 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 1-9: 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 *Except* 23-32: 2x4 SP 2400F 2.0E WEBS 2x4 SPF No.2 *Except* 1-32: 2x6 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 6-27,5-28,4-29,3-30,2-31: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 16-18, 15-19, 14-20, 13-21, 12-22, 11-23, 10-24, 8-25, 7-26, 6-27 REACTIONS.All bearings 18-7-0. (lb) - Max Horz 32=428(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 19, 21, 23, 25, 26, 27, 28, 29, 30 except 32=-375(LC 4), 17=-263(LC 5), 31=-1792(LC 5), 18=-208(LC 4) Max Grav All reactions 250 lb or less at joint(s) 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 18 except 32=1747(LC 5), 31=420(LC 4) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-575/105, 2-3=-268/50, 1-32=-784/157 WEBS 2-31=-140/673 NOTES-(10-11) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 21, 23, 25, 26, 27, 28, 29, 30 except (jt=lb) 32=375, 17=263, 31=1792, 18=208. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE08 Truss Type GABLE Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868592 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:32 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-WL?HCA9IubTT1RNxS0VimHQola8wLDFBPRmdilzNF7r Scale = 1:89.7 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 38 6x8 3x6 3x6 3x6 3x6 6x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 5x6 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 25-11- 1 5 0-9-423-3-0 23-3-0 23-3-0 23-3-0 2-10-214-5-106.00 12 Plate Offsets (X,Y)-- [11:0-3-0,0-3-0], [19:0-4-8,Edge], [29:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.53 0.33 0.41 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 20 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 241 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 1-11: 2x4 SP 2400F 2.0E BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 *Except* 10-29,9-30,8-31,7-32,6-33,5-34,4-35,3-36,2-37: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 19-20, 18-21, 17-22, 16-23, 15-24, 14-25, 13-26, 12-27, 11-28, 10-29 REACTIONS.All bearings 23-3-0. (lb) - Max Horz 37=435(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 37, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 20 except 36=-839(LC 5) Max Grav All reactions 250 lb or less at joint(s) 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 20 except 37=842(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-43/278, 2-3=-570/47, 3-4=-274/28, 4-5=-303/38, 5-6=-291/46, 6-7=-276/53, 7-8=-262/60, 1-37=-102/983 WEBS 3-36=-94/645, 2-37=-1647/157 NOTES-(10-11) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 37, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 20 except (jt=lb) 36=839. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE09 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868593 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:33 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-_YZfPWAweucKeby70k0xJVy1g_YI4lnKe5WAECzNF7q Scale = 1:40.2 Sheet Back Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 3x4 3x4 3x4 3x8 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 15-10- 1 -0-11-4 0-11-4 13-2-12 13-2-12 0-6-87-1-146.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-1], [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.27 0.13 0.08 DEFL. Vert(LL) Vert(TL) Horz(TL) in 0.00 0.00 0.00 (loc) 1 1 12 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 68 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 13-2-12. (lb) - Max Horz 2=217(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20 Max Grav All reactions 250 lb or less at joint(s) 12, 2, 13, 14, 15, 16, 17, 18, 19, 20 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 20. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE10 Truss Type Common Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868594 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:34 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-Sk71dsBZPCkBGkXKaRXAriVGdNuCpDGUslFknezNF7p Scale = 1:43.0 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 4x6 3x4 3x8 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x4 3x8 13-4-3 22-0-0 22-0-0 -0-11-4 0-11-4 11-0-0 11-0-0 22-0-0 11-0-0 22-11-4 0-11-4 0-6-86-0-80-6-86.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-13], [2:0-2-9,Edge], [18:0-0-0,0-0-13], [18:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.06 0.02 0.06 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.00 -0.00 0.00 (loc) 19 19 18 l/defl n/r n/r n/a L/d 180 120 n/a PLATES MT20 Weight: 101 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 22-0-0. (lb) - Max Horz 2=60(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18 Max Grav All reactions 250 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 26, 25, 24, 23, 22, 21, 20, 18. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE11 Truss Type Monopitch Supported Gable Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868595 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:35 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-wwhQqCBBAWs2uu6W792POw2MCnChYfbd5P?HJ4zNF7o Scale = 1:29.2 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 4 5 6 12 11 10 9 8 7 3x4 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 6-7-15 5-11-8 5-11-8 1-10-24-9-146.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.27 0.13 0.06 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 30 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 5-11-8. (lb) - Max Horz 12=136(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 12, 7, 8, 9, 10 except 11=-308(LC 5) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 9, 10, 11 except 12=344(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(10-11) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 7, 8, 9, 10 except (jt=lb) 11=308. 9) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 11) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss GE12 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868596 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:35 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-wwhQqCBBAWs2uu6W792POw2P_nEuYfSd5P?HJ4zNF7o Scale = 1:8.8 Sheet Front Full Sheathing 1 Ply 1/2RyDOW8 1 2 3 2x4 2x4 2x4 2-7-14 2-4-10 2-4-10 0-0-41-2-56.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.09 0.06 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-4-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=64/2-4-10, 3=64/2-4-10 Max Horz 1=26(LC 5) Max Uplift 1=-2(LC 6), 3=-9(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(9-10) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss M01 Truss Type Monopitch Qty 7 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868597 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:36 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-O7Fo2YCpxp_uV2hihsZew7aU_BVuH6imK3krrXzNF7n Scale = 1:13.3 1 2 3 4 2x4 3x4 2x4 -0-11-4 0-11-4 5-11-8 5-11-8 0-4-01-9-141-6-60-3-81-9-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.46 0.33 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.05 -0.14 0.00 (loc) 2-4 2-4 4 l/defl >999 >487 n/a L/d 240 180 n/a PLATES MT20 Weight: 16 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=304/0-11-4, 4=210/0-1-8 Max Horz 2=51(LC 5) Max Uplift 2=-60(LC 4), 4=-17(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss M02 Truss Type Monopitch Qty 3 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868598 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:36 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-O7Fo2YCpxp_uV2hihsZew7aO8BRVH6imK3krrXzNF7n Scale = 1:17.0 1 2 3 4 2x4 3x4 2x4 -0-11-4 0-11-4 7-11-8 7-11-8 0-4-02-3-142-0-60-3-82-3-143.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.89 0.61 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.19 -0.47 0.00 (loc) 2-4 2-4 4 l/defl >478 >191 n/a L/d 240 180 n/a PLATES MT20 Weight: 21 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=382/0-11-4, 4=293/0-1-8 Max Horz 2=68(LC 5) Max Uplift 2=-65(LC 4), 4=-26(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss M03 Truss Type Monopitch Qty 8 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868599 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:37 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-tJpAFuDRi76l7CGuFa5tTL7hAbnU0QwwZjUONzzNF7m Scale = 1:78.5 1 2 3 4 5 10 9 8 76 11 12 3x6 4x8 3x6 3x4 3x4 3x6 4x8 2x4 3x6 3x6 3x6 3x6 3x6 9-3-8 9-3-8 18-7-0 9-3-8 6-3-8 6-3-8 12-3-8 6-0-0 18-7-0 6-3-8 5-2-214-5-100-9-414-5-106.00 12 Plate Offsets (X,Y)-- [5:0-4-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.36 0.62 0.58 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.45 -0.04 (loc) 9-10 9-10 12 l/defl >999 >491 n/a L/d 240 180 n/a PLATES MT20 Weight: 121 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-9,1-10,2-10: 2x3 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-11, 2-9, 4-7, 2-10, 5-12 REACTIONS.(lb/size)10=736/0-5-8, 12=713/0-1-8 Max Horz 10=345(LC 6) Max Uplift 12=-210(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-493/32, 7-11=-189/575, 5-11=-189/575 BOT CHORD 9-10=-241/397, 7-9=-116/290 WEBS 2-9=-82/261, 4-9=-123/372, 4-7=-559/267, 2-10=-625/0, 5-12=-713/260 NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 4) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=210. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss M04 Truss Type Monopitch Qty 10 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868600 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:37 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-tJpAFuDRi76l7CGuFa5tTL7cJbhs0MPwZjUONzzNF7m Scale = 1:78.7 1 2 3 4 5 10 9 8 76 11 12 3x6 4x10 6x18 MT18HS 3x4 3x6 5x12 3x6 5x6 3x6 3x6 3x6 3x6 11-7-8 11-7-8 23-3-0 11-7-8 7-10-3 7-10-3 15-4-13 7-6-11 23-3-0 7-10-3 2-10-214-5-100-9-414-5-106.00 12 Plate Offsets (X,Y)-- [5:0-6-8,Edge], [9:0-0-0,0-1-12], [9:0-7-12,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.67 0.98 0.87 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.40 -1.01 -0.08 (loc) 8-10 8-10 12 l/defl >693 >275 n/a L/d 240 180 n/a PLATES MT20 MT18HS Weight: 129 lb FT = 20% GRIP 197/144 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 2-8,1-10,2-10: 2x3 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-9-6 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-11, 4-7, 2-10, 5-12 REACTIONS.(lb/size)10=923/0-5-8, 12=900/0-1-8 Max Horz 10=381(LC 6) Max Uplift 12=-201(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-837/16, 7-11=-158/726, 5-11=-158/726 BOT CHORD 8-10=-302/774, 7-8=-148/489 WEBS 2-8=-227/257, 4-8=-65/562, 4-7=-769/268, 2-10=-915/0, 5-12=-900/251 NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) All plates are MT20 plates unless otherwise indicated. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=201. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss M05 Truss Type Monopitch Qty 7 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868601 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:38 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-LVNYTDE3TREclMr5pHc60Ygtm?8Qlr43nNDxwPzNF7l Scale = 1:39.3 1 2 3 4 5 8 7 6 9 16 4x6 4x8 3x4 5x6 3x4 4x6 3x6 7-5-9 7-5-9 13-2-12 5-9-3 -0-11-4 0-11-4 7-5-9 7-5-9 13-2-12 5-9-3 0-6-86-10-147-1-145-1-142-9-42-0-06.00 12 3.50 12 Plate Offsets (X,Y)-- [2:0-2-9,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-MSH 0.31 0.51 0.71 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.06 -0.18 0.04 (loc) 8-14 8-14 16 l/defl >999 >891 n/a L/d 240 180 n/a PLATES MT20 Weight: 48 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x4 SPF-S Stud SLIDER Left 2x3 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=598/0-7-4, 16=490/0-1-8 Max Horz 2=209(LC 6) Max Uplift 2=-25(LC 6), 16=-90(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1110/164, 7-9=-73/385, 5-9=-73/385 BOT CHORD 2-8=-299/970, 7-8=-273/896 WEBS 4-8=-14/431, 4-7=-903/297, 5-16=-492/136 NOTES-(8-9) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 4) Bearing at joint(s) 2, 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 16. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss M06 Truss Type Monopitch Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868602 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:39 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-phwwgZEhEkMTMWQHM_7LYmCzrORbUNSD01zVSrzNF7k Scale = 1:36.8 1 2 3 7 6 5 4 9 10 8 4x8 4x6 3x8 5x6 3x4 4x6 3x6 4-10-5 4-10-5 10-7-8 5-9-3 4-10-5 4-10-5 10-7-8 5-9-3 1-10-21-2-26-10-146-5-140-8-05-1-142-1-41-4-06.00 12 3.50 12 Plate Offsets (X,Y)-- [7:0-5-4,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.61 0.71 0.38 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.11 -0.27 -0.04 (loc) 6 5-6 10 l/defl >999 >459 n/a L/d 240 180 n/a PLATES MT20 Weight: 41 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 1-8: 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)8=416/0-3-8, 10=396/0-1-8 Max Horz 8=173(LC 6) Max Uplift 10=-94(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-667/194, 5-9=-81/255, 3-9=-81/255, 7-8=-416/0, 1-7=-453/127 BOT CHORD 6-7=-328/535, 5-6=-302/511 WEBS 2-6=-40/256, 2-5=-487/326, 3-10=-398/154 NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 8, 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 10. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). VERTICAL LEGS ARE NOT DESIGNED FOR LATERAL LOADS IMPOSED BY SUPPORTS (BEARINGS). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss M08 Truss Type Monopitch Qty 10 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868603 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:39 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-phwwgZEhEkMTMWQHM_7LYmC0rOYOUTSD01zVSrzNF7k Scale = 1:27.8 1 2 4 3 2x4 3x6 3x4 3x6 5-11-8 5-11-8 1-10-24-9-144-6-60-3-84-9-146.00 12 Plate Offsets (X,Y)-- [3:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.42 0.27 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.05 -0.11 -0.00 (loc) 3-4 3-4 3 l/defl >999 >603 n/a L/d 240 180 n/a PLATES MT20 Weight: 20 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud *Except* 1-4: 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)4=228/0-3-8, 3=228/0-1-8 Max Horz 4=136(LC 5) Max Uplift 3=-43(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T01 Truss Type Roof Special Qty 3 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868604 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:40 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-HuUJtvFJ?2UK_f?Twiea5zlBGoszDlyMFgi2_IzNF7j Scale = 1:75.7 1 2 3 4 5 6 7 10 9 8 4x6 2x4 4x8 2x4 4x6 8x10 3x12 3x12 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 4-1-12 4-1-12 8-0-0 3-10-4 11-10-4 3-10-4 16-0-0 4-1-12 17-3-4 1-3-4 2-8-012-0-02-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [4:Edge,0-2-0], [8:0-1-8,0-2-0], [10:0-1-8,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.44 0.44 0.75 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.62 0.78 (loc) 9-10 9-10 8 l/defl >835 >304 n/a L/d 240 180 n/a PLATES MT20 Weight: 88 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-5-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 7-1-11 oc bracing. WEBS 1 Row at midpt 5-8, 3-10 REACTIONS.(lb/size)10=714/0-3-8, 8=714/0-3-8 Max Horz 10=-318(LC 4) Max Uplift 10=-48(LC 7), 8=-48(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-1617/291, 4-5=-1617/364 BOT CHORD 9-10=-656/1241, 8-9=-113/1068 WEBS 4-9=-489/2134, 5-9=-261/847, 5-8=-1318/102, 3-9=0/798, 3-10=-1318/253 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 5) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T02 Truss Type Roof Special Qty 2 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868605 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:40 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-HuUJtvFJ?2UK_f?Twiea5zlBFosxDkeMFgi2_IzNF7j Scale = 1:75.7 1 2 3 4 5 6 9 8 7 4x6 2x4 4x8 2x4 4x6 8x10 3x12 3x12 8-0-0 8-0-0 16-0-0 8-0-0 4-1-12 4-1-12 8-0-0 3-10-4 11-10-4 3-10-4 16-0-0 4-1-12 17-3-4 1-3-4 2-8-012-0-02-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [3:Edge,0-2-0], [7:0-1-8,0-2-0], [9:0-1-8,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.44 0.45 0.77 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.62 0.79 (loc) 8-9 8-9 7 l/defl >834 >303 n/a L/d 240 180 n/a PLATES MT20 Weight: 85 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 7-2-11 oc bracing. WEBS 1 Row at midpt 4-7, 2-9 REACTIONS.(lb/size)9=628/0-3-8, 7=718/0-3-8 Max Horz 9=-335(LC 4) Max Uplift 9=-44(LC 7), 7=-42(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1635/279, 3-4=-1634/352 BOT CHORD 8-9=-640/1255, 7-8=-107/1076 WEBS 3-8=-471/2148, 4-8=-256/853, 4-7=-1329/94, 2-8=0/795, 2-9=-1354/279 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 5) Bearing at joint(s) 9, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 7. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T03 Truss Type Roof Special Qty 2 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868606 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:41 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-l42h5FGymMcBcpZgUP9pdBIJdCA7yCOWTKSbWkzNF7i Scale = 1:77.3 1 2 3 4 5 6 10 9 8 7 11 5x8 4x6 2x4 4x6 8x10 4x8 3x12 4x6 3x6 7-8-8 7-8-8 15-8-8 8-0-0 3-10-4 3-10-4 7-8-8 3-10-4 11-6-12 3-10-4 15-8-8 4-1-12 16-11-12 1-3-4 2-10-512-0-00-11-42-8-08-11-1514.00 12 14.00 12 Plate Offsets (X,Y)-- [1:Edge,0-1-5], [7:0-1-8,0-2-0], [9:0-2-8,0-1-3] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.59 0.45 0.74 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.23 -0.63 0.67 (loc) 7-8 7-8 7 l/defl >809 >298 n/a L/d 240 180 n/a PLATES MT20 Weight: 86 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 3-8: 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-5-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 8-1-3 oc bracing. WEBS 1 Row at midpt 4-7, 2-9 REACTIONS.(lb/size)7=708/0-3-8, 11=597/0-1-8 Max Horz 11=-294(LC 4) Max Uplift 7=-39(LC 7), 11=-36(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-9=-17/351, 1-2=-272/64, 2-3=-1584/199, 3-4=-1585/273 BOT CHORD 8-9=-520/1146, 7-8=-71/1053 WEBS 2-8=0/758, 3-8=-350/2010, 4-8=-224/840, 4-7=-1297/46, 2-9=-1170/271, 1-11=-604/56 NOTES-(9-10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 5) Bearing at joint(s) 7, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 11. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 11. 8) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T04 Truss Type Common Qty 8 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868607 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:42 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-DGc3IbHaXfk2Dz8s27g2AOqWqcRFhh9fi_B93AzNF7h Scale = 1:61.3 1 2 3 4 5 6 10 9 8 7 4x6 3x6 2x4 3x6 4x8 3x6 3x4 2x4 5x8 6x6 5-11-4 5-11-4 15-7-3 9-7-15 25-5-0 9-9-13 5-11-4 5-11-4 12-4-9 6-5-5 18-9-14 6-5-5 25-5-0 6-7-2 7-3-1210-3-60-6-86.00 12 Plate Offsets (X,Y)-- [1:Edge,0-2-11], [6:0-0-15,0-5-3], [6:0-3-8,Edge], [6:0-0-7,0-0-15] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.50 0.78 0.58 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.53 0.05 (loc) 6-7 6-7 6 l/defl >999 >572 n/a L/d 240 180 n/a PLATES MT20 Weight: 100 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 WEDGE Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 3-9, 1-10 REACTIONS.(lb/size)10=1007/0-3-8, 6=1007/0-3-8 Max Horz 10=-251(LC 4) Max Uplift 10=-62(LC 7), 6=-56(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-588/196, 2-3=-625/195, 3-5=-1415/228, 5-6=-1673/242, 1-10=-965/169 BOT CHORD 7-9=-11/964, 6-7=-137/1419 WEBS 3-9=-717/203, 3-7=-9/564, 5-7=-336/178, 1-9=-28/737 NOTES-(6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T05 Truss Type Common Qty 3 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868608 8.220 s Mar 22 2019 MiTek Industries, Inc. Thu Apr 25 10:15:20 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-lrZWQ5G3FL2rNQl61PDbmhqds_cdbHQGXUIGcpzNCbr Scale = 1:58.8 1 2 3 4 5 6 7 11 10 9 8 3x6 4x6 3x6 2x4 3x4 2x4 3x6 5x8 6x6 4x8 9-9-13 9-9-13 25-5-0 15-7-3 -0-11-4 0-11-4 6-7-2 6-7-2 13-0-7 6-5-5 19-5-12 6-5-5 25-5-0 5-11-4 0-6-810-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:0-0-7,0-0-15], [2:0-0-15,0-5-3], [2:0-3-8,Edge], [7:0-2-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.50 0.77 0.58 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.18 -0.52 0.05 (loc) 2-11 2-11 8 l/defl >999 >580 n/a L/d 240 180 n/a PLATES MT20 Weight: 101 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-0-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 7-8, 5-9 REACTIONS.(lb/size)8=1005/0-3-8, 2=1073/0-3-8 Max Horz 2=254(LC 5) Max Uplift 8=-62(LC 6), 2=-90(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1665/236, 3-4=-1409/191, 4-5=-1251/223, 5-6=-624/195, 6-7=-587/196, 7-8=-964/168 BOT CHORD 2-11=-189/1410, 10-11=-73/961, 9-10=-73/961 WEBS 3-11=-332/174, 5-11=-4/562, 5-9=-714/201, 7-9=-27/736 NOTES-(6-7) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 8 and 90 lb uplift at joint 2. 5) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 7) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T06 Truss Type COMMON Qty 4 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868609 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:43 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-hTARWxICIzsvr7j2bqBHjcNce0luQ8coxexibdzNF7g Scale = 1:56.0 1 2 3 4 5 6 9 8 7 3x6 4x10 3x4 4x8 3x6 3x6 2x4 4x6 10-7-11 10-7-11 21-5-0 10-9-5 -1-0-0 1-0-0 8-9-13 8-9-13 17-5-12 8-7-15 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [2:0-0-7,0-0-15], [2:0-0-15,0-5-3], [2:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.81 0.94 0.63 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.33 -0.82 0.03 (loc) 7-9 7-9 7 l/defl >765 >309 n/a L/d 240 180 n/a PLATES MT20 Weight: 83 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 5-9: 2x4 SPF No.2 WEDGE Left: 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-7 REACTIONS.(lb/size)2=917/0-3-8, 7=845/0-3-8 Max Horz 2=245(LC 5) Max Uplift 2=-81(LC 6), 7=-64(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1293/182, 3-5=-1095/253 BOT CHORD 2-9=-118/1051, 7-9=-61/296 WEBS 3-9=-512/260, 5-9=-138/932, 5-7=-736/80 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T07 Truss Type Common Qty 3 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868610 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:43 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-hTARWxICIzsvr7j2bqBHjcNcV0lrQ8aoxexibdzNF7g Scale = 1:56.0 1 2 3 4 5 8 7 6 3x6 4x10 3x4 4x8 3x6 3x6 2x4 4x6 10-7-11 10-7-11 21-5-0 10-9-5 8-9-13 8-9-13 17-5-12 8-7-15 21-5-0 3-11-4 0-6-89-3-67-3-126.00 12 Plate Offsets (X,Y)-- [1:0-0-7,0-0-15], [1:0-0-15,0-5-3], [1:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.82 0.95 0.63 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.33 -0.82 0.03 (loc) 6-8 6-8 6 l/defl >765 >310 n/a L/d 240 180 n/a PLATES MT20 Weight: 82 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 4-8: 2x4 SPF No.2 WEDGE Left: 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-8-13 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 4-6 REACTIONS.(lb/size)1=847/0-3-8, 6=847/0-3-8 Max Horz 1=241(LC 5) Max Uplift 1=-45(LC 6), 6=-65(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1299/187, 2-4=-1101/257 BOT CHORD 1-8=-123/1057, 6-8=-61/297 WEBS 2-8=-515/263, 4-8=-144/939, 4-6=-739/81 NOTES-(7-8) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T08 Truss Type COMMON Qty 9 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868611 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:44 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-9fkpjHIq3H_mTHIF9YjWFpwvrP7K9fxyAIgG73zNF7f Scale = 1:41.3 1 2 3 4 5 6 7 8 9 11 10 5x12 3x4 3x8 3x8 4x6 2x4 2x4 5x12 3x4 11-0-0 11-0-0 22-0-0 11-0-0 -0-11-4 0-11-4 5-6-15 5-6-15 11-0-0 5-5-1 16-5-1 5-5-1 22-0-0 5-6-15 22-11-4 0-11-4 0-6-86-0-80-6-86.00 12 Plate Offsets (X,Y)-- [2:Edge,0-2-4], [8:Edge,0-2-4] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-MSH 0.27 0.80 0.37 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.19 -0.50 0.04 (loc) 11-18 11-18 8 l/defl >999 >524 n/a L/d 240 180 n/a PLATES MT20 Weight: 75 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-0-15 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)2=933/0-3-8, 8=933/0-3-8 Max Horz 2=65(LC 6) Max Uplift 2=-77(LC 6), 8=-77(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1265/231, 4-5=-1045/167, 5-6=-1045/167, 6-8=-1265/231 BOT CHORD 2-11=-111/1179, 8-11=-111/1179 WEBS 5-11=-14/599, 6-11=-380/161, 4-11=-380/161 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss T09 Truss Type Common Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868612 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:45 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-erICxdJSqa6d4RtRjFElo1S17pRzu675OyQpgVzNF7e Scale = 1:40.1 1 2 3 4 5 7 6 4x6 3x8 3x8 2x4 2x4 6x6 6x6 11-0-0 11-0-0 22-0-0 11-0-0 5-6-15 5-6-15 11-0-0 5-5-1 16-5-1 5-5-1 22-0-0 5-6-15 0-6-86-0-80-6-86.00 12 Plate Offsets (X,Y)-- [1:0-0-4,0-1-0], [1:0-0-5,0-5-4], [1:Edge,0-1-4], [5:0-0-4,0-1-0], [5:0-0-5,0-5-4], [5:Edge,0-1-4] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.49 0.90 0.37 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.25 -0.67 0.05 (loc) 1-7 5-7 5 l/defl >999 >387 n/a L/d 240 180 n/a PLATES MT20 Weight: 68 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 WEDGE Left: 2x3 SPF No.2, Right: 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-2-15 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=868/0-3-8, 5=868/0-3-8 Max Horz 1=-56(LC 4) Max Uplift 1=-42(LC 6), 5=-42(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1411/242, 2-3=-1068/173, 3-4=-1068/173, 4-5=-1411/242 BOT CHORD 1-7=-146/1200, 5-7=-146/1200 WEBS 3-7=-27/625, 4-7=-385/174, 2-7=-385/174 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss TG01 Truss Type Common Girder Qty 1 Ply 2 LENNAR 23 CLAY Job Reference (optional) I36868613 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:46 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-62ra8yK4buEUiaSdHzl_KE?9BDsndXSFdc9MCxzNF7d Scale = 1:65.6 1 2 3 4 7 6 58910111213 4x6 3x6 5x12 5x12 3x12 3x6 8-0-0 8-0-0 16-0-0 8-0-0 -1-3-4 1-3-4 8-0-0 8-0-0 16-0-0 8-0-0 1-7-310-11-31-7-314.00 12 Plate Offsets (X,Y)-- [2:0-2-0,0-1-8], [4:0-2-0,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2003/TPI2002 CSI. TC BC WB Matrix-R 0.66 0.61 0.49 DEFL. Vert(LL) Vert(TL) Horz(TL) in -0.12 -0.30 0.01 (loc) 6-7 6-7 5 l/defl >999 >614 n/a L/d 240 180 n/a PLATES MT20 Weight: 171 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x6 SP 2400F 2.0E *Except* 3-6: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)7=4140/0-3-8, 5=4089/0-3-8 Max Horz 7=295(LC 4) Max Uplift 7=-309(LC 5), 5=-295(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3111/335, 3-4=-3088/331, 2-7=-2581/312, 4-5=-2461/258 BOT CHORD 6-7=-181/1875, 5-6=-181/1875 WEBS 3-6=-304/4029 NOTES-(9-10) 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=309, 5=295. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 985 lb down and 75 lb up at 2-0-12, 985 lb down and 75 lb up at 4-0-12, 985 lb down and 75 lb up at 6-0-12, 985 lb down and 75 lb up at 8-0-12, 985 lb down and 75 lb up at 10-0-12, and 985 lb down and 75 lb up at 12-0-12, and 985 lb down and 75 lb up at 14-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 9) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 10) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). LOAD CASE(S) Standard Continued on page 2 April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss TG01 Truss Type Common Girder Qty 1 Ply 2 LENNAR 23 CLAY Job Reference (optional) I36868613 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:46 2019 Page 2 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-62ra8yK4buEUiaSdHzl_KE?9BDsndXSFdc9MCxzNF7d LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 6=-985(B) 8=-985(B) 9=-985(B) 10=-985(B) 11=-985(B) 12=-985(B) 13=-985(B) 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V01 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868614 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:46 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-62ra8yK4buEUiaSdHzl_KE?H3DyEddCFdc9MCxzNF7d Scale = 1:57.7 1 2 3 4 5 9 8 7 63x4 4x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 16-1-8 16-1-8 8-0-12 8-0-12 16-1-8 8-0-12 0-0-49-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.16 0.20 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 58 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 5-7: 2x4 SPF-S Stud OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 3-8 REACTIONS.All bearings 16-1-8. (lb) - Max Horz 1=219(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-229(LC 6), 6=-229(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 8 except 9=367(LC 10), 6=367(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-268/261, 4-6=-270/263 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=229, 6=229. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V02 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868615 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:47 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-aEPyMILiLBMLKk1pqgGDtSYSMdJ8M3hOsGvwkOzNF7c Scale = 1:53.8 1 2 3 4 5 8 7 63x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 14-4-14 14-4-14 7-2-7 7-2-7 14-4-14 7-2-7 0-0-48-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.19 0.09 0.18 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 52 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 14-4-14. (lb) - Max Horz 1=-195(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-204(LC 6), 6=-204(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 10), 6=326(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=204, 6=204. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V03 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868616 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:48 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-2QzKZeLL6VUCxuc0ONnTQf4dG1fH5WaY4weTGqzNF7b Scale = 1:45.8 1 2 3 4 5 8 7 63x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 12-8-5 12-8-5 6-4-3 6-4-3 12-8-5 6-4-3 0-0-47-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.18 0.10 0.13 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 45 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 12-8-5. (lb) - Max Horz 1=-171(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-189(LC 6), 6=-189(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=298(LC 10), 6=298(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=189, 6=189. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V04 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868617 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:48 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-2QzKZeLL6VUCxuc0ONnTQf4c_1fH5XAY4weTGqzNF7b Scale = 1:39.9 1 2 3 4 5 8 7 63x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 0-0-3 0-0-3 10-11-12 10-11-9 5-5-14 5-5-14 10-11-12 5-5-14 0-0-46-4-140-0-414.00 12 Plate Offsets (X,Y)-- [3:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.20 0.10 0.10 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 37 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 10-11-5. (lb) - Max Horz 1=-147(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-194(LC 6), 6=-194(LC 7) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=303(LC 10), 6=303(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-251/271, 4-6=-251/271 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=194, 6=194. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V05 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868618 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:49 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-WdXim_Mztpd2Z2BCy5IiytdmkQzeq_WhJaO1pGzNF7a Scale = 1:36.4 1 2 3 43x8 4x6 3x8 2x4 0-0-3 0-0-3 9-3-3 9-3-0 4-7-9 4-7-9 9-3-3 4-7-9 0-0-45-4-140-0-414.00 12 Plate Offsets (X,Y)-- [1:0-5-12,Edge], [2:Edge,0-1-14], [3:0-2-15,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.26 0.22 0.09 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 27 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=192/9-2-12, 3=192/9-2-12, 4=307/9-2-12 Max Horz 1=-122(LC 4) Max Uplift 1=-14(LC 7), 3=-9(LC 6), 4=-9(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V06 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868619 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:49 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-WdXim_Mztpd2Z2BCy5IiytdkWQyvq?9hJaO1pGzNF7a Scale = 1:30.2 1 2 3 42x4 4x6 2x4 2x4 7-6-10 7-6-10 3-9-5 3-9-5 7-6-10 3-9-5 0-0-44-4-140-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.40 0.26 0.05 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 21 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=172/7-6-10, 3=172/7-6-10, 4=210/7-6-10 Max Horz 1=-98(LC 4) Max Uplift 1=-33(LC 7), 3=-27(LC 6) Max Grav 1=172(LC 1), 3=172(LC 1), 4=214(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V07 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868620 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:50 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-_p55_KNbe6lvBClOWoqxV49xyqDzZSAqYE7aLjzNF7Z Scale = 1:23.6 1 2 3 2x4 3x4 2x4 5-10-1 5-10-1 2-11-0 2-11-0 5-10-1 2-11-0 0-0-43-4-140-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-3-1] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.23 0.59 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 14 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-10-1 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=208/5-10-1, 3=208/5-10-1 Max Horz 1=-74(LC 4) Max Uplift 1=-8(LC 7), 3=-8(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V08 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868621 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:50 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-_p55_KNbe6lvBClOWoqxV49zsqI2ZSAqYE7aLjzNF7Z Scale = 1:14.9 1 2 3 2x4 3x4 2x4 4-1-8 4-1-8 2-0-12 2-0-12 4-1-8 2-0-12 0-0-42-4-140-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-3-1] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.11 0.27 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-1-8 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=140/4-1-8, 3=140/4-1-8 Max Horz 1=-49(LC 4) Max Uplift 1=-5(LC 7), 3=-5(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V09 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868622 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:51 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-S?fTBgODPQtmpMKb3WLA1Ii9NEgDIvQ_nut7t9zNF7Y Scale = 1:12.1 1 2 3 2x4 3x4 2x4 0-0-3 0-0-3 3-2-4 3-2-1 1-7-2 1-7-2 3-2-4 1-7-2 0-0-41-10-50-0-414.00 12 Plate Offsets (X,Y)-- [2:Edge,0-3-1] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.06 0.15 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-2-4 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=102/3-1-13, 3=102/3-1-13 Max Horz 1=-36(LC 4) Max Uplift 1=-4(LC 7), 3=-4(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V10 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868623 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:51 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-S?fTBgODPQtmpMKb3WLA1Ii7sEgqIuL_nut7t9zNF7Y Scale = 1:27.8 1 2 3 4 5 9 8 7 63x4 4x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 16-4-4 16-4-4 8-2-2 8-2-2 16-4-4 8-2-2 0-0-44-1-10-0-46.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.16 0.17 0.07 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 42 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 5-7: 2x4 SPF-S Stud OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 16-4-4. (lb) - Max Horz 1=-37(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=263(LC 1), 9=358(LC 10), 6=357(LC 11) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-265/131, 4-6=-268/132 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 6. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V11 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868624 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:52 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-wCDrP0PrAk?dQVvndDsPaVFD_ezN1LZ7?YchPbzNF7X Scale = 1:21.0 1 2 3 43x12 4x8 3x12 2x4 12-4-4 12-4-4 6-2-2 6-2-2 12-4-4 6-2-2 0-0-43-1-10-0-46.00 12 Plate Offsets (X,Y)-- [1:0-9-11,Edge], [3:0-3-3,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-SH 0.45 0.34 0.07 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 28 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=198/12-4-4, 3=198/12-4-4, 4=492/12-4-4 Max Horz 1=-27(LC 4) Max Uplift 1=-21(LC 6), 3=-25(LC 7), 4=-3(LC 6) Max Grav 1=202(LC 10), 3=202(LC 11), 4=492(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-296/103 NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V12 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868625 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:52 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-wCDrP0PrAk?dQVvndDsPaVFEQe0Z1M67?YchPbzNF7X Scale = 1:15.8 1 2 3 4 2x4 4x6 2x4 2x4 8-4-4 8-4-4 4-2-2 4-2-2 8-4-4 4-2-2 0-0-42-1-10-0-46.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.42 0.14 0.04 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 18 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=144/8-4-4, 3=144/8-4-4, 4=279/8-4-4 Max Horz 1=17(LC 5) Max Uplift 1=-20(LC 6), 3=-23(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V13 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868626 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:53 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-POnDcMPTx17U2fUzBxNe7jnUX2KWmpvHECMEy2zNF7W Scale = 1:8.3 1 2 3 2x4 3x4 2x4 4-4-4 4-4-4 2-2-2 2-2-2 4-4-4 2-2-2 0-0-41-1-10-0-46.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.08 0.22 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 8 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-4-4 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=124/4-4-4, 3=124/4-4-4 Max Horz 1=8(LC 5) Max Uplift 1=-6(LC 6), 3=-6(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(8-9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 9) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B19901366 Truss V14 Truss Type Valley Qty 1 Ply 1 LENNAR 23 CLAY Job Reference (optional) I36868627 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Apr 25 07:22:54 2019 Page 1 Builders First Source, mooresville,in ID:wnwdDqo9FWZSvR?mVjmvEmzUs4h-taKbqiQ5iLFLgp3AleutfwKf5RjGVF9QTs5nUUzNF7V Scale = 1:8.8 1 2 3 2x4 2x4 2x4 2-4-12 2-4-12 0-0-41-2-66.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2003/TPI2002 CSI. TC BC WB Matrix-P 0.09 0.06 0.00 DEFL. Vert(LL) Vert(TL) Horz(TL) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud WEBS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-4-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.(lb/size)1=67/2-4-12, 3=67/2-4-12 Max Horz 1=26(LC 5) Max Uplift 1=-2(LC 6), 3=-9(LC 6) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES-(7-8) 1) Wind: ASCE 7-05; 90mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) This truss is designed in accordance with the 2003 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI-B1 8) It is extremely important to properly install temporary lateral restraint and diagonal bracing, in accordance with BCSI-B2 or using proprietary methods (e.g. Stabilizer, etc.). April 25,2019 PRODUCT CODE APPROVALSLATERAL BRACING LOCATIONIndicates location where bearings(supports) occur. Icons vary butreaction section indicates jointnumber where bearings occur.Min size shown is for crushing only.Indicated by symbol shown and/orby text in the bracing section of theoutput. Use T or I bracingif indicated.The first dimension is the plate width measured perpendicular to slots. Second dimension isthe length parallel to slots.Center plate on joint unless x, yoffsets are indicated.Dimensions are in ft-in-sixteenths.Apply plates to both sides of trussand fully embed teeth.1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.5. Cut members to bear tightly against each other.6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.13. Top chords must be sheathed or purlins provided at spacing indicated on design.14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.15. Connections not shown are the responsibility of others.16. Do not cut or alter truss member or plate without prior approval of an engineer.17. Install and load vertically unless indicated otherwise.18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.Failure to Follow Could Cause PropertyDamage or Personal Injury (Drawings not to scale)© 2012 MiTek® All Rights ReservedMiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015edge of truss.from outside"16/1-0ICC-ES Reports:ESR-1311, ESR-1352, ESR1988ER-3907, ESR-2362, ESR-1397, ESR-3282JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISEAROUND THE TRUSS STARTING AT THE JOINT FARTHEST TOTHE LEFT.CHORDS AND WEBS ARE IDENTIFIED BY END JOINTNUMBERS/LETTERS.W 4 - 6 W3-6W3 - 7 W2-7W1-7C1-8 C5-6C6-7C7-8C4-5 C3-4C2-3C1-2TOP CHORD TOP CHORD 87654321BOTTOM CHORDSTOP CHORDSBEARING4 x 4PLATE SIZEThis symbol indicates the required direction of slots inconnector plates."16/1For 4 x 2 orientation, locateplates 0- 1"4/3PLATE LOCATION AND ORIENTATIONSymbolsNumbering SystemGeneral Safety Notes *Plate location details available in MiTek 20/20software or upon request.Industry Standards:ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.DSB-89: Design Standard for Bracing.BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.6-4-8WEBSTrusses are designed for wind loads in the plane of the truss unless otherwise shown.Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.dimensions shown in ft-in-sixteenths