Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2014.05.08 WestCommonsCentralPark_Drainage Report
WEST COMMONS CENTRAL PARK CARMEL, INDIANA DEVELOPER: Carmel Clay Parks and Recreation 1055 311 Avenue SW Carmel, IN 46032 317-848-7275 DESIGNER: The Schneider Corporation THE SCHNEIDER CORPORATION Historic Fort Harrison 8901 Otis Avenue Schneider Indianapolis, IN 46216-1037 ,+���.G �W��V4� ���QO�.,..••.. *, GoSTER�©.�%.0 317-826-7100 : O 317-826-7300 Fax •' No * PE11011395 : May 87 2014 STATE OF q i '.NDI AU T:\2k\2722\012\drainage\drainreport-050814.doc TABLE OF CONTENTS 1-2 DRAINAGE NARRATIVE 3-8 SITE MAPS Appendix A VICINITY MAP SOILS MAP FEMA FIRM MAP LAGOON MODELING Appendix B DEVELOPED DRAINAGE BASIN MAP DEVELOPED CN VALUE TABLE CN SELECTION POND ROUTING SCHEMATIC NODE COMPARISONS INPUTS FOR DEVELOPED BASIN MODEL PROPOSED BMP MODELING Appendix C EXTENDED DRY DETENTION WATERSHED BASIN MAP POND ROUTING SCHEMATIC - WATER QUALITY EVENT ONLY TIME OF CONCENTRATION CALCULATIONS CN SELECTION TABLES WATER QUALITY CN DEVELOPED CN VALUE TABLE WATER QUALITY VOLUME CALCULATIONS DETENTION OUTLET STRUCTURE AND WEIR FILTER CALCULATIONS NODE COMPARISONS - WATER QUALITY EVENT ONLY LINK COMPARISONS - WATER QUALITY EVENT ONLY BASIN SUMMARY - WATER QUALITY EVENT ONLY WATER QUALITY EVENT NODE TIME SERIES INPUTS FOR DEVELOPED BASIN MODEL - W/ WATER QUALITY EVENT CN EXTENDED DRY DETENTION POND ROUTING SCHEMATIC - 100-YR, 10-YR, I-YR DEVELOPED CN VALUE TABLE TIME OF CONCENTRATION CALCULATIONS NODE COMPARISONS - 100-YR, 10-YR, 1-YR LINK COMPARISON - 100-YR, 10-YR, 1-YR BASIN SUMMARY- 100-YR, 10-YR, I-YR INPUTS FOR DEVELOPED BASIN MODEL - 100-YR, 10-YR, I -YR -I- EMERGENCY SPILLWAY CALCULATIONS DOWNSTREAM DITCH VERIFICATION WATER QUALITY FILTER STRIP WATERSHED BASIN MAP FILTER STRIP AND LEVEL SPREAD SIZING CALCULATIONS STORM PIPE CALCULATIONS Appendix D STORM SEWER WATERSHED BASIN MAPS (Culvert and Storm Pipes) RUNOFF COEFFICIENT CALCULATIONS RUNOFF COEFFICIENT SELECTION TIME OF CONCENTRATION CALCULATIONS RATIONAL METHOD CALCULATIONS (Culvert) CULVERT INLET/OUTLET DESIGN CALCULATIONS HYDROFLOW STORM SEWER CALCULATIONS INLET CAPACITY CALCULATIONS 2- DRAINAGE NARRATIVE Carmel Clay Parks and Recreation developed plans for Central Park during 2004 and 2005. Several park expansions have occurred since then, and recently the Parks Department has decided to finish development at the far northwest corner of Central Park. This section, referred to as Carmel Central Park West Commons, was included in the 2004 original master plan drainage calculations. A copy of the Schneider drainage report submitted April 25, 2012 (revised September 14, 2012) has been included with this report. The Schneider 2012 report calibrated the 2004 calculations with current calculation methods and added the recently constructed swim center parking lot to the Lake 2/1-agoon drainage watershed basin and model. This 2014 report uses the 2012 Lake 2/1-agoon drainage model to confirm that final development plans for the West Commons park section conform to the original 2004 master plan for the area. DESIGN CRITERIA The following drainage calculations are based on given data and design criteria to install a 0.39-acre playground, a 145-space parking lot, two 16' x 16' shelters, two 45' x 21' shelters with storage, one 34' x 72' shelter with restrooms, a 20' x 20' shelter, and 2,750 square feet of concrete sidewalk. Original storm calculations showed this proposed park area draining to the existing 10.42-acre water quality lagoon. After the original drainage calculations were submitted in 2004, the City of Carmel changed their storm water quality ordinance so that it now requires storm water to flow through two water quality best management practice (BMP) structures. To accommodate the need for a second post construction BMP, a new extended dry detention basin and a grass filter strip will be constructed upstream from the lagoon to pretreat storm runoff from the new park area before it enters the lagoon. Site location: Central Park is a proposed 165-acre recreation/park facility located in Carmel Indiana. The site is a part of the North''/2 of Section 1, Township 17N, Range 3E in Carmel, IN. Specifically, the site is bounded by 111 th Street and 116th Street on the south and north and by College Ave. and Westfield Blvd. / Rangeline Road on the west and east. Terrain and existing ground condition: The previously developed park is divided by the Monon trail which passes through the -3- site from north to south such that two thirds of the park is west of the trail and one third of the park is east of the trail. The western two-thirds is a mixture of developed lawns, buildings, parking lots, outdoor aquatics, and lakes/detention ponds. The eastern third of the park is mostly woods, but also has a community center and parking lot adjacent to the Monon Trail. Adjoining land conditions: The park is surrounded by residential uses in all directions except for the far northeast corner which is adjacent to a commercial lot. Soil types: Soils maps from the United States Department of Agriculture, Soil Conservation Service identify Brookston, and Crosby soils on the West Commons part area. Brookston (Br) soils are part of hydrologic soil group B/D and Crosby (CrA) soils are a part of hydrologic group C/D. Per the current Carmel Storm Water Ordinance, the new Extended Detention Basin storm calculations will use hydrologic group C for Brookston soils and hydrologic group D for Crosby soils. However, the original lagoon master plan calculations, prepared and approved in 2004, used hydrologic soil groups B and C respectively per the requirements at that time. Thus, the Lagoon modeling remains as it was prepared originally. This report includes documentation that final ground cover and curve numbers do not adversely affect original Lagoon modeling. Overall Lagoon/Lake 2 Drainage Conditions - Existing and Proposed: The proposed parking lot, playground and picnic shelters will be placed in a watershed basin identified as Lake 2-B in the original 2004 drainage calculations (See page D-1 found in Appendix B of Schneider 2012 drainage report). In the current drainage calculations contained herein (See Appendix B), we have provided final curve number calculations including this final phase within Basin Lake 2-B. The curve number calculations also account for a future splash park planned for the grass circle northwest of the planned playground being built in 2014. Although not in the bid package now, the splash park will be built in the near future. With the final revised Lake 2-B Basin curve number, we re -ran the Central Park ]CPR Lagoon Drainage model resulting in the following data for Lake-2/1-agoon (after West Commons Construction): Pond Peak Pond Peak Pond Peak Elevation Discharge Elevation Discharge Elevation Discharge 10-yr 839.01 1.38 839.05 1.42 839.02 1.39 100-yr 839.63 1.91 839.68 1.95 839.64 1.92 -4- Based on the chart above, completion of Central Park West Commons will not have negative effects on the Lagoon/Lake 2 basin or the overall park drainage. PROPOSED DESIGN As mentioned above, the Carmel Storm Water Ordinance was revised after the original master drainage plan for Central Park was designed and approved. The lagoon/Lake 2 was originally designed and approved to remove 80 percent total suspended solids from Watershed Basin Lake 2-B as required. One significant ordinance revision was the requirement that all post -construction storm runoff now flow through two approved water quality BMP structures. Since all storm water must now flow through two BMP structures, the proposed Central Park West Commons Design includes an Extended Dry Detention Basin and a Grass Filter Strip. Calculations for a water quality BMP use a 1-inch rain event. Extended Dry Detention Two basins, "Detention Basin —1.07 ac" and "Developed Basin — 2.04 ac.," will flow to the extended dry detention basin adjacent to existing Central Park Drive West (See Watershed Basin Map C-1). An Extended Dry Detention Basin must be capable of holding the Water Quality Volume as calculated below: Total Drainage Area contribution to Extended Detention Basin: 3.11 Acres Impervious Area = 1.87 acres = 60 percent of the Drainage Area (See Sheet C- 7). WQv = P Rv A = 0.15 ac.-ft. or 6,534 W 12 P = 1 inch of rainfall Rv = 0.05 + 0.009(Percent Impervious (1)) = 0.05 + 0.009(60) = 0.59 A = Area of watershed basin in Acres = 3.11 acres The volume of the proposed Extended Dry Detention Basin is 0.62 ac.-ft. or 26,885 ft.3 which is greater than the required 0.15 ac.-ft. Additional requirements for the proposed Extended Dry Detention Basin are met as follows: -s- Required Provided No more than 50 percent of the water 50% of 0.016 ac.-ft. has left basin at 12 quality volume should be released at WQV = hours. (See Sheet C-19) the 12 hour point in storm. 0.075 ac.-ft. A 24-to 48-hour emptying time should Basin is empty at 29 hours in 1- be used for the runoff volume inch water quality event. (See generated from the water quality Sheet C-23) Volume A crushed rock outlet should be A 3' x 3' gabion filter is specified provided to prevent clogging of the for the front of the Extended Dry primary basin outlet. Detention Outlet. (See Sheet C- 9) Since larger storm events will also run through the Extended Dry Detention basin we also checked the 10yr, and 100yr events (See Sheet C-33). These results are as follows: Emergency Spillway Per the City Storm Water Ordinance, emergency spillways should be designed to handle 1.25 times the peak 100-year inflow into the detention basin. The 100-year inflow into the Extended -Dry Detention Basin is 19.5 cfs. 19.5 * 1.25 = 24.4 cfs A 20-foot wide bottom overflow weir will carry 26.9 cfs at a depth of 0.55 feet (See Sheet C-46). Thus the Extended Dry Detention Pond will have a 20-foot wide emergency spillway set at an elevation of 848.8 (100-year elevation in the pond is 848.8). 100-year ditch capacity calculations for the ditch downstream from the extended detention basin are also provided. See Sheet C-47. 6- Filter Strip Two basins, "Filter Strip 1 — 0.27 ac" and "Filter Strip 2 — 0.28 ac.," will flow to a concrete level spreader connected to a grass filter strip adjacent to the new playground area. See Sheet C-49. The Lake 2 Lagoon will provide of the water quality requirements for watershed basins "Filter Strip 1" and "Filter Strip 2." However, since Carmel now requires all storm runoff to flow through two post construction BMP's, all runoff from these two basins will flow through this grass filter strip before it reaches the Lagoon. A concrete level spreader will ensure water flows to the filter strip in sheet flow formation with depths less than 0.04 feet (1/2 inch) during a 1" storm event. (See Sheet C-50 in Appendix C). The slopes on the filter strip will be less than 5 percent (they are 1 percent) and velocities coming from the filter strip will be less than 0.9 ft./sec. (See page C-54). This filter strip was designed to meet the requirements listed in BMP PC- 108 in the Technical Standards Manual. Design Procedure 1. Filter strip slopes must be no greater than 5 percent: The Central Park filter strip slope is 1.0 percent. 2. Filter strip must have a minimum hydraulic residence time no less than 5 minutes. The Central Park— West Commons filter strip has a minimum residence time of 10 minutes (7.4 minutes TR 55 method). (See Sheets C-50 and C-54). 3. The filter strip must have an average velocity no greater than 0.9 feet/second: This 40-foot filter strip has a velocity of 0.09 feet per second (40 feet divided by 0.09 ft/sec equals 444 seconds (7.4 minutes) which is the TR55 method sheet flow travel time. 4. Per the Carmel standards Mannings Friction factor should be 0.024 for infrequently mowed: However, we believe the code mistakenly refers to Mannings n for Channel flow. We have included another source with our calculations that states that Mannings n for sheet flow over dense grass is 0.25 and that is what we used. We then used TR55 formula and method for determining travel time and velocity in Sheet flow conditions. 5. The width of the filter strip should be no greater than that where a uniform flow distribution can be assured. We have used a concrete sill/weir width of 147 feet and a filter strip length of 40 feet. 6. The average flow depth should be no more than 0.5 inches. The max depth of flow over the level spreader during a 1-inch storm event will be less than 0.5- inches (See Page C-50). 7. The hydraulic radius is taken to equal the flow depth: Acknowledged. 8. Filter strips should be a minimum of 8 feet wide. This filter strip is 147 feet wide. STORM SEWER DESIGN CRITERIA: The storm sewer was designed using the Rational Method for storm water runoff calculations and Manning's Equation for storm sewer pipe sizing. The driveway culvert was sized using an Excel Rational spreadsheet and culvert sizing nomographs. The remaining pipes were sized using Rational Method and Hydraflow. A roughness coefficient of 0.013 was used. Time of Concentration for Basin 603 was calculated to be 14 minutes and the culvert time of construction was calculated as 11 minutes. The remaining times of concentration were assumed to be 5 minutes. Inlet capacity calculations were also run for Structures 603, 604, 606, 607, and 609. Structure 602 only operates as an overflow back up for Extended Dry Detention Basin. Thus inlet capacity calculations were not run for Structure 602. Calculations for the above are provided in Appendix D. CONCLUSION In summary, the Extended Dry Detention Pond and the Filter Strip will perform as required in the Carmel Storm Water Ordinance, and the Extended Dry Detention pond has capacity to hold the 100-year event with a controlled discharge rate. Thus the project meets the Carmel Water Quality requirements. Overall water quantity control for this project is provided by Lake 2/Lagoon. Per page 3 in this report, this project falls within the master planned description for the lagoon watershed calculations. Thus, the Central Park West Commons will not have any detrimental effects on the Carmel Creek Watershed. REFERENCES Design and data methods are based on the following references: 1. HERPICC County Storm Drainage Manual 2. Hamilton County Soils Survey 3. ICPR Computer pond routing program 4. 210-VI-TR-55, Second Ed., June 1986 5. Hamilton County IDS 2' Contour Mapping OVERALL WATERSHED: Carmel Creek 8- - Appendix A - i 116TH ST 111 TH ST (4qbl Schneider w Lu z w CD w J J O U VICINITY MAP 0 Q O W Z J W CD Z Q 0 Cr w J O O m Cm J w_ (/) W CENTRAL PARK ADDITIONAL PARKING IMPROVEMENTS 1195 CENTRAL PARK DRM WEST, CARMEI, WDIANA, 48092 HAMILTON COUNTY, INDIANA w Lu w z OO W i x Not to Scale Soil Map —Hamilton County, Indiana Map Unit Legend West Campus Soils Hamiltorj County Indiana (IN057); v r Map bn�tSymbol , � .Map Unit Nanje° Acres rriAO1 , P,ersent ofAOh Br Brookston silty clay loam 57.2 46 8% CrA Crosby silt loam, 0 to 3 percent 40.8 33.4% slopes MmB2 Miami silt loam, 2 to 6 percent 8.2 6.7% slopes, eroded i W Water 5.7 4,6 ;Wh Whitaker loam 10.5 8.5% Totals for Area of Interest 122.4 100.0% USD.a Natural Resources Web Soil Survey 11/13/2013 Conservation Service National Cooperative Soil Survey Page 3 of 3 A-3 Hydrologic Soil Group —Hamilton County, Indiana Hydrologic Soil Group West Campus Soils - Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit —Hamilton County, Indiana (I14057) : Map unit symbol Map unit name Rating Acres in AOI Percent of AD[ Br Brookston silty clay loam B/D 57.2 46.8% CrA Crosby silt loam, 0 to 3 percent slopes CID 40.8 33A%, MmB2 Miami silt loam, 2 to 6 percent slopes, eroded C 8.2 6.7% �W Water 5.7 4.6% lWh Whitaker loam B/D 10.5 8.5% Totals for Area of Interest 122.4 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (AID, BID, and CID). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture orfine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (AID, BID, or CID), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. USDA Natural Resources Web Soil Survey 11/1312013 ; Conservation Service National Cooperative Soil Survey Page 3 of 4 ■ ( §~ Jig�2 �° ` \\ /_\\ g. A` \ ,.Efo NOfIVI&OdSNV&l m c _ � 8\ %\w U—@ z y}7 ±{— � = J § : 2 ! G { \ : A-6 - Appendix B - LAKE 2-13 DETENTION WATERSHED BASIN MAP NOT TO SCALE ................................. T............... _N---------- Ac. r _ o LAKE2-B p 65.27 Ac. r 2.77 AC. = I. _------_ �. LAKEI-B 3.94 AC. 8.70 Ac. DEV-E2 5.86 Ac. DO-E 6;14 Ac. NDEV- ----- s • °'•., DEV-ESL-.4 �g`� �0.88 Ac. yi Y v,- TJ—l.i� 49.38 Ac. DEV-E8•••••'•• 2.54 Ac. CARMEL CENTRAL PARK REVISED DRAINAGE BASIN - LAKE 2-B `rhF-cc A'J.er,l.ce.s Rt��Ape-stia} r-it"Al- G&OUAJA Cnvct, V4A� "R00'sa�.c Lake PROPOSED Area Cover Type Curve Number F Lake 2-B (AC) (Ac.) % T-"A CA ,A;,v� r-v..k oduct I %Pfj 'y NO- 1 65.27 16.9 LAWN GROUP C 741 1250.61 16.9 LAWN GROUP B 61 1030.9 4.6 WOODS Group C 70 322.0 4.5 WOODS GROUP B 55 247.5 10.42 LAKE SURFACE 98 1021.2 11.95 PAVEMENT 98 1171.1 CN Sheef O-Z 06 ZOIZ, Z"c2 R,..e,u i3 -2 Table 2-2a.—Runoff curve numbers for urban areas] Curve numbers for Cover description hydrologic soil group — Average percent Cover type and hydrologic condition impervious areal A B C D Fully developed urban areas (vegetation established) Open space (lawns, parks, golf courses, cemeteries, ete.}o: Poor condition (grass cover < 50%) .............. Fair condition (grass cover 50% to 7590)........... Good condition (grass cover > 75%).............. npervious areas: Paved parking lots, roofs, driveways, etc. Paved; curbs and storm sewers (excluding right-of-way) .................................. Paved; open ditches (including right-of-way) ....... Gravel (including right-of-way) ................... Dirt (including right-of-way) ..................... Western desert urban areas: Natural desert landscaping (pervious areas only)'... Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) ............... Urban districts: Commercial and business .......................... Industrial ........................................ Residential districts by average lot size: 1/8 acre or less (town houses) ...................... 1/4 acre ......................................... 1/3 acre ......................................... 112 acre ......................................... Iacre ........................................... 2 acres .......................................... Developing urban areas Newly graded areas (pervious areas only, no vegetation)' .. ............................... Idle lands (CN's are determined using cover types similar to those in table 2-2c). I tj o "fa' lIW 4 L,. 2 ti0 (:!A1 c u 1.47 v,o s w� 8b79 86 89 4400,u &Jots 69 79 84 61 80 98 98 981 98 98 98 98 98 83 89 92 93 76 85 89 91 72 82 87 89 63 77 85 88 96 96 96 96 85 89 92 94 95 72 81 88 91 93 65 77 85 90 92 38 61 75 83 87 30 57 72 81 86 25 54 70 80 85 20 51 68 79 84 12 46 65 77 82 77 86 91 94 'Average runoff condition, and IA = 0.2S. 2The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4. OCN's shown are equivalent to those of pasture, Composite CN's may be computed for other combinations of open space cover type. 4Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. 'Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 24, based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. (210-VI-TR-55, Second Ed., June 1986) 2-5 '(;3 -3 Table 2.2c.—Runoff curve numbers for other agricultural lands' Curve numbers for Cover description hydrologic soil group — Hydrologic Cover type condition A B C D Pasture, grassland, or range —continuous Poor 68 79 86 89 forage for grazing.% Fair 49 69 79 84 Good 39 61 74 80 Meadow —continuous grass, protected from — 30 58 71 78 grazing and generally mowed for hay. Brush —brush -weed -grass mixture with brush Poor 48 67 77 83 the major element.3 Fair 35 56 70 77 Good 430 48 65 73 Woods —grass combination (orchard Poor 57 73 82 86 or tree farm) ° Fair 43 65 76 82 Good 32 58 72 79 Woods s /+ r ' C vicar Ait71 U-rM l4 O �rvlAJG�' Poor 45 66 77 83 2OW4 QAA;,VACfr lGd31. t'JAW Fair Good 36 430 60 55 73 70 79 77 e 1.4(100N WA.S A,E4i6l AND flAWdi✓CM Farmsteads—buildin s, lanes, driveways, 59 74 82 86 and surrounding lots. 'Average runoff condition, and I, = 0.2S. Tom': <50% ground cover m heavily grazed with no mulch. Fair: 50 to T'& ground cover and not heavily grazed. Good: >754r ground cover and lightly or only occasionally grazed. OPoor: <50% ground cover. Fair: 50 to 7517 ground cover. Good: >75% ground cover. ^Actual em1 e number is less than 30; use CN = 30 for runoff computations. sCN's shown were computed for areas nvith 509, goods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for Roods and pasture. s l'oor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fare Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil. (210-VI-TR-55, Second Ed., June 1986) 2 2`-7 N'�1 m m m G a� .ti 3 Ol c u 7 3 a� H O b+ O H FC j N N C .7, -Cl t75 Elmwo •W N CI [V ��Nti ill df \ O CT CP N 4 C V V' C :-1 Q Q Ul U1 N trlL F. b+ C U o W .� M'O .H N U N N m 'OY\ N 'O 4J 41 •a N M M E+x -.i w ? U a)V LA V En En I=ul>. Y G O -H Ul N W W ..i N .0 H sa N 11 67 Yi x RI '�UQm 94 l W Cl aW ',Z .m]o Z <? E+X ca .7 W 3UClmm % 3 N £ W U H % v u mow F m W mmr ,-lo a,M Mao mmN Ma o00 0� � Nm.. �n �o orn rota Mm O1M al NNO Or NWmw 000 fn WMW O� OO !- mCfr-I MMN r0 JWCI 000 OINO OOm 000 NMcf MaN WNC MOM 000 Nm v u1Nm 00p 000 O�4N O�-IN O M Nab aON -1 01NNll O0-6 a� N (I-- o,6 O, NMO Mr` !V M 10 vIO M!a 0 CNO MCM Oro M!a NM�a N 61 0 !+1 0 (n m m N (n a1 (n O r m rn m N O a1N C'i !n Nm MN OOr O OM N C W N NMc NmN M!ON 1 c rMN MtiN a oM 1a 000 0'4 !n C 00 mN MNN �~O CN!O r100 MN O(n �-1 �-10 OlD MtiM NM!a ON !N M N m . O l .-I .y ,y mm r NM aM M.. in mmm mN0 �Nvou!M. M .-IN NbN N r �IWN .4 N MMr 00 000 000 `i mtO NOIm pNW Naa oOM M N�f] NN`i MM!�1 NO NO NN MMM 000 NMN `i �-1 tiNOO NH rI M NNc O o p0 O O O O CO O O O O O O O O O O O O O O O O O O O O 00o OOo 0 00o Pp o0 O 000 000 000 000 0 0 000 000 000 000 0 0 000 0 0 0 0 11 I 1 1 tl 1 0 0' o I o o' o oop o00 00 oopo 000 000 000 000 000 000 000 000 00 O O O O O O O 00 OO O O O O O O O O O O O O O O O 00 00 O O O p0 O O O O O O O O O O O O O O O O O O O O NNo mM!n i O1 C� (n MM(n err ON NN N.4N lOma mla M W W W m m m m m m m W W W W W m m m W W m m m m m m m m W m W m m m m W W W m W m m W W M{N iam om M Nrm o0o n.. a+ oNti o.-Irn M�m N W ,y� mrOm a+ Nam mom m o,�a No rN rMnl MC MM M v'M� mm MMM 0:00 W O O1 ONN NNM Nul uIM O1p0 000 MM!a vMul MN min Ni o00o mo!�n - NOo mNa m c Mla NON r0 Ma NNN N MMa 00 N NNIN �I M OryM .MM 0 i N .Mi ,y .N-1 n a5a aaa aaP'r aaa CZas 0.' aaa aaa aao' K6a Caa aiC a' d'aa aaa a T 2.21 XS SS2 2F2 TSX S22 YXX S2S 529 222 XX Y222 TX2 SX5 2 N cl N N N N N N N N N N N a N N N N N N N N N N N N N N N N N N N N N N N N N N N N N I I I 1 1 I I I I I 11 11 I I I I I I I I I I I I I I I I I I I I I I I 1 aaa xaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa z 000 O`i pO NO OO .iO N 'i ONO O`i0 NO OO rIO p0 •~O 00 00.-i 00'+ O ON 00`i 00� OON 00`i O 00.1 00 O'i O'i wwW www WmW www mww kIWW www www wmw www www www Www www W Ww mmvl mmm m mmm mm mvim v.Wm w !nmm mWm mmm m Wma m WW W m m© m wmW m am wW W m W aaa -1 NN NNN MmM --1 NN`.� N Nr'N mWm NNN I,- as a' N M ... WW LL�� Wa' a W W W W W W ((�� W W W [� !!�� {a�' W ul ul I'm � WWW hC� I I I I I I eS� I I I Ffi 11l� WWw qqq [r] qqq qqP PPP ..14 qqq 22Z r]rl r] ZZZ W W q 222 W W W W W W ZZZ W W W ZZZ '�'J 'J 1]qq 00o 000 PPq ,Opp PPP Pqq pbp qqq 00m wWW 000 a a[i 000 000 000 000 Pqq Mmm P 222 W W W wwCJ QIOw W W W O U O .1p r m W (/ W m w 4] W W W W W W W W W GI O q q 1 1 WWW WW41 WWW WWW Mmm qqq qqq PPP Pqq _(a x I m ow £ m w omN o00o N �o oOoo mNu1 mo WNm C (�10�10 OOUI r4 N0 rn�a 00 mr40� 000 ml�c WN �I 'i NNN �Mc MNb NNC fiNc riNc 000 O�N 000 OrYN 0.4 r4 Orl r-i NNm mMt9 NN NO l�NM lO C1M 000 OMt� O O c00 OO pO WNrP Mv� Nm� NN mNm 00 0100 O00 NNN 000 �OOt� 00 rf1 Y]u1 ma ll om 1 i � .1 aO wN, m.m m m .Nm e llrn N- Nry c O O u �(I , a 6 , �(1 .y O1 T o OM lil1W rm N NvO NbrP m"I�N I OmC aYrf1 rvM o,y .1 rio mmv ,yNa .1�� r1Na .yNa ori oN mN r�ic o`er �1NN o00 000 .=1ti.N1 N,y �mi� oM^ .ioo vINN NNN m0l� N .-iW �JMv 100 1-Oi Nm0 Mmm ri ry .-I �O Ma1M r1 v' Wrl1 �P T W MNN ObW N 0Y1 t0 ryu1 NMM NVN .1 u1N N vl rfl NNN COIN ar[I r[I OIOv N m MN r` moo Omc- o000 om o00 I- llN 000 000 NNN 00 �O p!- r!)VI u) N N N N N N 1I O O O O O O O O O C II- I,� I-- .y NI1 --1 .1 .1 .1 .1-- .N-1Me MMM NwN as aaa aaa �xa aaa aaa aaa xxa aaa aac aax caa aaa r.x xxx xxx Wxx xxx xxx xxx xxx xxx mxm xxx xxx xxx N 1 I I� N I I I I I N� I 1 I 1 I N I 11 I 1 I I I I II I I I N N N 11 I clr.a aaa xca aaa zaa aaa xrrra caa aaa aax aaa aaa area oN NOo NON NNN ryoo N>rN NON J+oN NNN NON NON >+o >NNTr O N N O Oo N O Oo 0 0 o N O`i 00� 00� 00`i OOb 00-1 ONO ONOO O�o 0O0 Or-10 OO NOO O�O OON 00� OO rI 00.4 --- WW WWW WWW WWW WWW t+]WW iilWW WWW WWW WWW WWW WWW WWW N lya NaNyN N NNN .i rr-I .y Y+NN NNN NNN NNN - .-1 NNN rWi� C� � ZZZ Q4Q YZZ HE rvwW w(�'Kl[�(Ya a v w m v v v I I z z 2 >>> W o W >> b p> p ca o o '>'J WW WWW ZZZ WWW ZZZ wWW ZZ2 WWW nHy WW 000 F]OW p.70 oOla '0 qqp coo 00n .']`,�O ,'�">,^� L1 Ll mmr9 000 000 000 000 000 mmm mmm mmm mmm mmm N N N WWW 222 222 mWm irlyv� Glq� W W W w W w W ww r ww www .aaa O W n G100 Qmq n,m ppo ri Q N 9 j3 -7 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2314 _=== Basins Name: DET1-B Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 2.010 Curve Number: 77.00 DCTA(8): 0.00 Node: DET1 Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 15.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Basin to dry detention area west of Moron Trail. Name: DET2-B Node: DET2 Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh4B4 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 28.00 Asea (ac): 5.020 Time Shift(hrs): 0.00 Curve Number: 86.00 Max Allowable Q(cfs): 999999.000 DCIA(%) : 0.00 Basin to dry detention area west of Moron Trail. Name: DET3-Hl Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amouut(in): 0.000 Area(..): 2.770 Curve Number: 7B.00 DC1'A(F): 0.00 Basin to bio- swale. Name: DET3-B2 Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 6.270 Curve Number: 87.00 DCIA($): 0.00 Basin to bio-swale. Name: DEV-El Group: HPS:E Unit Hydrograph: Uh484 Rainfall File: Eairfall Amount(in): 0.000 Area(ac): 6.140 Curve Number: 64.00 DCIA(%): 0.00 .Name: DEV-E2 Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(ia): 0.000 Area(ac): 5.860 Curve Number: 71.00 DCIA(%): 0.00 Name: DEV-E7 Node: PETS Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 35.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: DET3 Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(mia): 33.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: DEV-21 Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 464.0 Storm Duration(hrs): 0.00 Time of Conc(min): 30.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: DEV-E2 Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 15.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: DEV-E7 Status: Onsite Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 1 of 16 I c7 'cJ Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Ameunt(in): 0.000 Time of Conc(min): 34.00 Area(ac): 8.700 Time Shift(hrs): 0.00 Curve Number: 72.00 Max Allowable Q(cfs): 999999.000 DCIA(8): 0.00 Name: DEV-E8 Node: DEV-EB Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 20.00 Area(ac): 2.540 Time Shift(hrs): 0.00 Curve Number: 66.00 Max Allowable Q(cfs): 999999.000 DCIA(8): 0.00 ----------------------------------------- Name: DEV-ESI ---------------- -------------------- Node: DEV-ES1 Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 24.00 Area(ac): 0.880 Time Shift(hrs): 0.00 Curve Number: 80.00 Max Allowable Q(cfs): 999999.000 DCIA(8): 0.00 --------------------------------------- Name: DEV-ES2 ---------------- --------------------- Node: DEV-ES2 Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh4B4 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 28.00 Area(ac): 1.060 Time Shift(hrs): 0.00 Curve Number: 80.00 Max Allowable Q(cfs): 999999.000 DCIA(o): 0.00 ---------------------------------------------------------------------- Name: DEV-N Node: 1 Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 93.00 Area(ac): 3.390 Time Shift(hrs): 0.00 Curve Number: 61.00 Max Allowable Q(cfs): 999999.000 DCIA(a): 0.00 Undisturbed area - Runoff to Guilford Park Subdivision. Napa: DEV-N1 Node: DEV-N1 Status: Desire Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amonat(in): 0.000 Time of Conc(min): 12.00 Area(ac): 1.410 Time Shift(hrs): 0.00 Curve Number: 78.00 Max Allowable Q(cfs): 999999.000 DCIA(B): 0.00 ------------------------ Name: DEV-N2 -- ----- ------------- Node: ------------------------- DEV-N2 Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh4B4 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 7.00 Area(ac): 0.900 Time Shift(hrs): 0.00 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 2 of 16 3-9 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Curve Number: 75.00 Max Allowable Q(cfs): 999999.000 DCIA(%); 0.00 Name: DEV-Sl -------------------------------------------- Node: DEV-S1 ------------- Status: Qnsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): D.000 Time of Conc(min): 23.00 Area(ac): 1.490 Time Shift(hrs): 0.00 Curve Number: 75.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 Direct runoff to 18" CMP under lllth Street. --------------------------------------------- Name: DEV-S2 Node: DEV-S2 __------------------ Status: Qnsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 454.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0,000 Time of Conc(minl: 22.00 Area(ac): 1.340 Time Shift(hrs): 0.00 Curve Number: 70.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 Direct runoff to 12" CMP under illth Street. ---------------------------____-----------_--__---------------------------------------------__-_------ Name: LAKE1-B Node: Lakel Status: Onsite Group: RASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): D.000 Time of Conc(min): 23.00 Area(ac): 3.940 Time Shift(hrs): 0.00 Curve Number: 76.00 Max Allowable Q(cfs): 999999.000 ➢CIA($): 0.00 Basin to Lake $1 --------------------------- Name: LAKE2-B Group: RASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 65.270 Curve Number: 77.00 DCIA M : D.DO Basin to Lake 92 ---------------------------'------------ Node: Lake2 Status; Onsite Type: SCS Unit Hydrograph ON Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 48.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 —= Nodes ===___=_«<----------- -------- __________________ ----------- Name: 36" CONTROL STR Group: RASE Type: Manhole, Flat Floor Stage(ft) Area(ac) ------------------------ Rase Flow(cfs); 0.000 Plunge Factor: 1.00 ----------------------------------------------------- Base Flow(cfs): Q.000 Gra der.-. Type: Stage/Area Small detention area east of the Monon Trail Stage(ft) Area(ac) ------------------------------ 8.9.000 0.0100 V86.000 0.17c0 $'I.000 0.3800 832.000 0.5800 Init Stage(ft): 817.570 Warn Stage(ft): 8.22,000 --------------------------- Init Stage(ft): 829.000 Warn Stage(ft): 833.000 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 3 of 16 po-lo Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Base Flow(cfs): 0.000 Init Stage(ft): 827.500 oupi BASE Warn Stage(ft): 831.400 Type: Stage/Area Small detention area east of the Monon Trail Stage(ft) - ------------------ Area(ac) 827.500 0.0100 B28.000 0.1900 529.000 0.2600 830.000 0.3300 B31.000 0.4100 ----------------------------------------------------_--_--_-_-------------------------------- Name: DET2 BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 827.000 Group: BASE Warn Stage(ft): 829.000 Type: Stage/Area Detention outfall point Stage(ft) ------------------------------ Area(ac) -------_-_---------------------------------------------------- Base Flow(cfs)- MOO -------------- Init Stage(ftl: ---- 838.000 Warn Stage(ft): 840.030 Type: Stage/Area Small detention area to the west of the Monon Trail Stage(ft) --------------- -----_---------- Area(ac) 838.000 0.1200 839.000 0.3300 840.000 0.6800 --- ------------------------------------------------------------------------- Base Flcw(cfs): 0.000 Init Stage(ft): 817.570 Warn Stage(ft): 823,000 Type: Stage/Area Stage(ft) Area(ac) ------------------------------- 817.570 0.0000 919.000 0.0070 820.000 0.0750 821,000 0.2300 822.000 0.5600 823.060 1.3000 -------------- ----------------------------------------------------- Name: DEV-71 BOUN➢a.RY Base Flow(cfs): 0.00D Init Stage{ft): B17.460 Group: BASE Warn Stage(ft): 623.000 Tyne: Time/Stage Time(hrs) Stage(ft) --------------- ---------------- 0.00 B17.450 999.00 817.460 ------------ ----------------------------------- Name: QSV-E2 Base Flow(cfs): 0.000 Init Stage(ft): 824.400 Group: BASE Warn Stage(ft): 827.000 Type: Stage/Area Stage(ft) Asea(ac) Nam . Base F'low(cfs): 0.000 Grau Type: Stage/Area Stage(ft) Area(ac) --------------------------- Init Stage(ft): 824.730 Warn Stage(ft): 826.000 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 4 of 16 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 ------------------------------ 824.730 0.0000 825.000 0.0400 825.150 0.0700 326.000 0.3700 ------------------------------- Name: DEV-E7 BOUNDARY Group; BASE Type: Stage/Area ------------------------------------------------- Base Flow(cfs): 0.000 Init Stage(ft): 825.150 Warn Stage(ft): 826.000 Stage(ft) Area(ac) ----- ---------------------'-----------:--------------- -' ------------------------- Base Flow(cfs)• 0.000 Init Stage(ft): 029.090 G Warn Stage(ft): 831.000 Type: Stage/Area Stage(ft) Area(ac) ------------------------------ 829.090 0.0000 830.0.00 0.2600 830.300 0.4600 830.500 0.5000 Name: DEV-E8 BOUNDARY Base Flow(cfs): 0.000 Group: BASE Type: Stage/Area --------------------------- Init Stage(ft): 830,300 Warr Stage(ft): 83i.000 Stage(ft) Area(ac) ---------- --------------- ------------- --------------- -------------------------------- Base Flow(c-_s): 0.000 Init Sta-(ft): 834.500 r Warn Stage(ft): 836.000 Type: Stage/Area Stage(ft) Area(ac) --------------------------- 934.500 0.0000 835.000 0.0050 836.000 0.1000 ---------------------------g--- ---- Name: DEV-ES1 30UNDA4 Base Flow(cfs): 0.000 Init Sta e(ft): 034,510 Group: BASE Warn Stage(ft): 836.000 Type: Stage/Area Stage(ft) Area(ac) --------------- --------------- ----------------------------------------------------- Base Flow(cfs) 0.000 Type: Stage/Area Stage(ft) Area(.ac) 833.570 0.0000 834.000 0.0050 835.000 0.1500 B35.600 0.2000 Name: DEV-ES2 BOUNDPR Group: BASE Type: Staqe/Area Base Flow(cfs) 0.000 --------------------------- init Stage(ft): 833.570 Warn Stage(ft): 835.600 ------------------------------ Init Stage(ft); 832.590 Warn Stage(ft): 835,000 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 5 of 16 f3-1Z Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Stage(ft) Area(ac) --------------- -------------- ------------------------------------------------------- Base Flow(cfs): 0,000 Init Stage(ft): 633.000 Warn Stage(ft): 836,000 Type: Stage/Area Upstream end of proposed culvert at east entrance off 111th St. Stage(ft) Area(ac) ------------------------------- 833.000 0.0100 835.000 0.0582 836.000 0.1300 --_-------------------_--------------------------------------------------------------------- Name; DEV-NI BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 833.460 Group: BASE Warn Stage(ft): 846.000 Type: Stage/Area Stage(ft) Area(ac) ---------------------------------------------- Base Flow(cfs): 0.000 Snit Stage(ft): 837.250 Warn Stage(ft): 840,600 Type: Stage/Area Stage(ft) Area(ac) ------------------------------ 837.250 0.0000 836.000 0.0020 839.000 0.0030 840.000 0.0050 841.000 0.0400 --_- ------------------------------------------------------- Name: DEV-N2 BOUNDARY Base Flow(cfs) 0.000 Init Stage(ft). 83.7.000 Group: EASE Warn Stage(ft): 838.000 Type: Stage/Area Stage(ft) Area(ac) ------------------------------ ---- -------------------------------------------------------- Base Flow(cfs): 0.000 Init Stage(ft): 835.700 Warn Stage(ft): 540.000 Type: Stage/Area Stage(ft) A-rea(ac) ------------------------------ 835.700 0.0000 836.000 0.0020 837.000 0.0050 838.000 0.0100 B39.000 0.0200 840.000 0.1000 --------------------------------------------- Name: DEV-Sl BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 835.480 Group: BASE Warn Stage(ft): 840.000 Type: Time/Stage Time(hrs) Stage(ft) 0.00 835.400 999.00 835.480 ---- =-------------------------------------------------------L ---- Base Flow(cfs): 0.000 Init Stage(ft): 837.520 Group: EAS Warn Stage(ft): B39.500 Type: Stage/Area Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 6 of 16 D-f3 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Stage(ft) Area(ac) 837.520 0.0000 838.000 0.0040 B39.000 0.0300 939.650 0.1000 Name: DEV-S2 BOUNDARY Group: BASE Type: Time/Stage Time(hrs) Stage(ft) 0.00 837.560 999.00 837.5E0 TT Name: Ll-DI BOUNDARY Grouo: BASE Type: Stage/Area Stage(ft) Area(ac) -------------------------- --------- _--------------------------------------------------- Base Flow(cfs): 0.000 Init Stage(ft): 837.560 Warn Stage(ft): 840.000 ---------------------------------------------------------- Base Flow(cfs): 0.000 Init Stage(ft): 828.000 Warn Stage(ft): 830.000 --------------- W. - --- -- Base Flow(cfs): 0.000 --------------------�---- Init Stage(ft): 035.000 Warn Staq ft): 837.000 Type: Stage/Area Detention pond west of the Monon Trail. Stage(ft) ------------------------------ Area(so) 835.000 1.5600 836.000 1.7500 837.000 1.9500 -----__-__------------------------------- ------------- Base Flow(cfs): 0.000 ---------------------- Init Stage(ft): 838.000 Warn Stage(ft): 840.000 Type: Stage/Area Large Lagoon area to the west of the Monon Trail Stage(ft) ------------------------------ Area(ac) 838.000 10.4500 839.000 11.4600 840.000 13.7900 ___= Pipes =======---=====-=-= ---------- ------------------------------------ ----- ---- Name: From Node: Length(ft): 0,00 Group: BASE To Node: Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 0.00 0.00 Entrance Loss Coef: 0.00 Rise(in): 0.00 0.00 Exit Loss Coef: 0.00 Invert(ft): 0.000 0.000 Bend Loss Ceef: 0.00 manning's N: Q.000000 0.000000 Outlet Ctrl Spec: Use do or tw Top Ciip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Rot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream SHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall ------------------------------------------------------------------------------------------------ Interconnected Channel and Pond Routing Model (ICPR) e02002 Streamline Technologies, Inc. Page 7 of 16 T3 -Iq Complete Input Lake 2 Pond Routing with Final Nest Commons Design 04/30/2014 Name: 18" CONTROL From Node Group: BASE To Node UPSTREAM DOWNSTREAM Geometry: Circular Circular Span(in): 18.00 18.00 Rise(in): 18.00 18.D0 Invert(ft): 818.800 818.000 Manninq's N: 0.013000 0.013000 Top Clip(in): 0.000 0.000 Bot Clip(in): 0.000 0.000 Upstream FHWA Inlet Edge Description: Circular CMP: Mitered to slope Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall DEV-El Length(ftl: 10.0D 36" CONTROL STR Count: 1 Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.50 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use do Stabilizer Option: None Name: -------------------------------------------------- 36" CULVERT From Node: 36" CONTROL SIR Leng h(ft): --------------------- 43.80 Group: BASE To Node: DEV--El BOUNDARY Count: I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 36.00 36.00 Entrance Loss Coef: 0.50 Rise(in): 36.00 36.00 Exit Loss Coef: 0.00 Invert(ft): B17.570 817.460 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Name: DET2-P From Node: DET2 - Length(ft): 157.00 Group: BASE To Node: DET2 BOIJNDARY� Count: I Friction Equation: Average Conveyance UPSTRRkN1 DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 827.500 B27.000 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do sot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Detention area outfall line. _---------------------------------------------------------------------------------------------------- Name: DET3-P From Node: DET3 Length(ftl: 159.00 Group: BASE To Node: Lake2 Count: 1 Friction Equation: Average Conveyance TJPSTREAS'd DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 24.00 24.00 Entrance Loss Coef: 0.50 Rise(in): 24.00 24.00 Exit Loss Coef: 1.00 Invert(ft). 837.000 536.500 Bend Loss Ccef: C_00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Dot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page & of 16 5-15 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Circular Concrete: Square edge w/ headwall Downstream FHWA_ Inlet Edge Description: Circular Concrete: Square edge w/ headwall Detention area outlet. ------------------------------------------------------_-------------------------------_--------------- Name: DEV-S2 PIPE From Node: DEV-S2 Length(ft): 36.50 Group: BASE To Node: DEV-S2 BOUNDARY Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Tnvert(ft): 337.520 837.360 Bend Loss Coef: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Rot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Name: __-------------------------------------- ESl-Nl CULVdi2T From Node: ---{--�------------------------- DEV-ES1 Len th ft 30.00 Group: BASE To Node: DEV-ESI SOUNT)AR Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.D0 Exit Loss Coef: 0.00 Invert(ft): 834.500 834.510 Bend Loss Coef: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: use do Sot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove and projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove and projecting -------------------------------------------- Name: ES2-El CULVERT From Node Group: BASE To Node UPSTREAM DOWNSTREAM Geometry: Circular Circular Span(in): 12.00 12.00 Rise(in): 12.00 12.00 Invert{ft): 833.570 832.590 Manning's N: 0.024000 0.024000 Top Clip(in): 0.000 0.000 Bot Clip(in): 0.000 0.000 Upstream FHWA Inlet Edge Description: .Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall -------------'------------------------------------ DEV-ES2 Length(ft): 105.00 DEV-ES2 20UNDAR Count: I Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.50 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use do Stabilizer Option: None Name: Nl-E2 From Node: ------------------------ DEV-N1 .{ Len th(ft)104.00 ---------------------- Group: BASE To Node: DEV-Nl BCF7`11,'ARY Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 9 of 16 (; -[ 6 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Invert(ft): 833.80D 833.460 Manning's N: 0.013000 0.013000 Top Clip(in). 0.000 0.000 Bot Clip(in): 0.000 0.000 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Culvert under the east entrance off 111th St. Bend Loss Coef: 0,00 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use do Stabilizer Option: None Length(ft): ---------------- 48,00 G Count: I ra.ction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 837.250 837.000 Bend Loss Coef: O.CO Manning's N: 0,013000 C.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bat Clip(in): 0.000 0,000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end w/ headwall Name: ------------------------------------------------------------------ S1 CULVERT From Node: DEV-Sl Len--gth(ft): 41.00 Group: BASE To Node: DEV-S1 BOUNDARY Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm; Automatic Geometry: Circular Circular Flow: Both Span(in): 36.00 36.00 Entrance Loss Coef: 0.50 Rise(in): 36.00 36.00 Exit Lass Coef: 0.00 Invert(ft): 835.700 835.480 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tvr Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bet C1ip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular CMP: Headwall Channels=-----__�_____________W= ------ _-------_--_--_____------- Name: DET2-E2 CHANNEL From Node: DE72 BOUNDARY Length(ft): 335.00 Group: BASE To Node: DEV-E2 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 827.000 924.400 Flow: Both TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0,000 Manning's N: 0.060000 D.060000 Expansion Coef: 0.000 Top Clip(ft): 0,000 0.000 Entrance Loss Coef: 0.000 Bet Clip(ft): 0,000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width{tt): Depth(ft); Bat Width(ft): 5.000 5.000 LtSdSlp(h/v): 3.00 3.00 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 10 of 16 11 —P Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 RtSdS1p(h/v): 3.00 3.00 Name: E2-El CHANNEL From Node: DEV-E2 Length(ft): 458.00 Group: BASE To Node: DEV-El Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 324.400 819.110 Flow: Bath TCipinitZ(£t): 9999.000 999.9.000 Contraction Coef: 0.000 Manning's N: 0.060000 0.060000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bot C1ip(ft): 0.000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Girl Spec: Use do Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): But Width(ft): 5.000 5.000 LtSdSlp(h/v): 3.00 3.00 RtSdSlp(h/v): 3.00 3.00 -------------------------- Name: ---- E7-El -------------- From Node: ------------ DEV-E7 ------------------------------ BOUNDARY Length(ft): - . 400.00 Group: BASE To Node: DEV-E1 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 825.150 619.500 Flow: Both TC1pInitZ(ft): 9999.0DO 9999.000 Contraction Coef: 0.000 Manning's N: 0.070000 0.070000 Expansion Coef: 0.000 Top Clip(tt): 0.D00 0.000 Entrance Lass Coef: 0.000 But C1ip(ft): 0.000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctri Spec: Use on Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Ton Width(ft): Depth(ft): act Width(ft): 10.000 5.000 LtSdSlp(h/v): 12.00 3.00 RtSdSlp(h/v): 12.00 3.00 --------------- Name: ----------------------- E8-E1 ----------- From Node: DEV-E8 --------------------------- BOUNDARY Length(ft): - ----------. 170.00 Group: BASE To Node: DEV-El Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 830.300 819.500 Flow: Both TC].pinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0.100000 0.100000 Expansion Cost: 0.000 Top Clip(tt): 0.000 0.000 Entrance Loss Coef: 0.000 But Clip($): 0.000 0.000 Exit Loss Coef: 0.000 Main XBec: Outlet Ctrl Spec: Use do or tw AuxElevi(it): Inlet Ctrl Spec: Use on Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Sot Width(ft): 20.000 20.000 LtSdSlp(h/v): 50.00 50.00 RtSdSlp(n/v): 50.00 50.00 ------------------ Name: --------------------- ES1-N2 CRANNEL ---------- From Node: DEV-ES1 ---------- --------------- BOUNDAR Length(ft): ---- --------- 40.OD Group: BASE To Node: DEV-N1 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 834.510 633.800 Flow: Both TClplaitZ(ft): 9999.000 9999,000 Contraction Coef: 0.000 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 11 of 16 (j -ti3 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Manning's N: 0.030000 Top Clip(ft): 0.000 Sot Clip(ft): 0.000 Main XSec: AuxElevl(ft): Aux XSecl: AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Sot Width(ft): 5.000 LtSdSlp(h/v): 3.00 RtSdSlp(h/v): 3.00 Name: ES2-El CHANNEL Group: BASE UPSTREAM Geometry: Trapezoidal Invert(ft): 832.590 TC1pInitZ(ft): 9999.000 Manning's N: 0.080000 Top Clip(ft): 0.000 Sot Clip(ft): 0.000 Main XSec: AuxElevl(ft): Aux XSecl: AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Sot Width(ft): 5.000 LtSdSlp(h/v): 20.00 RtSdSlp(0/v): 20.00 Name: LAKE1-E7 CHANNE Group: BASE UPSTREAM Geometry: Trapezoidal Invert(ft): 826.000 TCIDInitZ(ft): 9999.000 Manning's N: 0.060000 Top Clip(ft): 0.000 Sot Clip(ft): 0.000 Main XSec: AuxElevl(tt): Aux XSecl: AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): got Width(ft): 10.000 LtSc 1p(h/v): 40.00 RtSdSlp(h/v): 40.00 Name: NI-E2 CHANNEL Croup: BASE UPSTREAM Geometry: Trapezoidal Invert(ft): 833.460 TClpInitZ(ft): 9999.000 Manning's N: 0.080000 Top Clip(ft): 0.000 Lot Clip(ft): 0.000 Main XSec: AuaElevl(ft): Aux XSecl: AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 5.000 LtSdSlp(h/v): 3.00 0.030000 Expansion Coef: 0.000 0.000 Entrance Loss Coef: 0.000 0.000 Exit Loss Coal: 0.000 Cutlet Ctni Spec: Use do or tw Inlet err] Spec: Use on Stabilizer Option: None 5.000 3.00 3.00 ----------------------------------------------------------- Fro. Node: DEV-ES2 BOUNDAR Length(ft): 503.00 To Node: NEV-El Count: I DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic 819.110 Flow: Both 9999.000 Contraction Cost: 0.000 0.080000 Expansion Coef: 0.000 0.000 Entrance Loss Coef: 0.000 D.000 Exit Loss Cost: 0.000 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use on Stabilizer Option: None 5.000 3.00 3.00 --- ---------------------------- From Node: ---------------- L1-D1 BOUNDARY Length(ft): --------------- 470.00 To Node: 0EV-E7 Count: 1 DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic 824.730 Flow: Both 9999.000 Contraction Coef: 0.000 0.060000 Expansion Cost: 0.000 0.000 Entrance Loss Cost: 0.000 0.000 Exit Loss Cost: 0.000 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use on Stabilizer Option: None 10.000 20.00 20.00 From Node: DEV-Nl BOUNakRY Length(ft): 390.00 To Node: DEV-E2 Count. 1 DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic 824.400 Flow: Both 9999.000 Contraction Coef: 0.000 0.080000 Expansion Coef: 0.000 0.000 Entrance Loss Coef: 0.000 0.000 Exit Loss Coef: 0.000 Outlet Ctrl Spec: Use do or to Inlet Ctrl Spec: Use on Stabilizer Option: None 5.000 3.00 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 12 of 16 =I Complete Input Lake 2 Pond Routing with Final West Cosiness Design 04/30/2014 RtSdS1p(h/v): 3.00 Name: N2-N1 CHANNEL Group: BASE UPSTREAM Geometry: Trapezoidal lnvert(ft): B37.000 TC1pInitZ(ft): 9999.000 Manning's N: 0.030000 Top C1ip(ft): 0.000 Bot C1ip(ft): 0.000 Main XSec: AuxElevl(ft): Are XSeci: AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 1.500 LtSdSlp(h/v): 2.00 RtSdSlp(h/v): 2.00 __-- Drop Structures Name: ➢ET1-D Group: BASE 3.00 From Node: DEV-N2 BOUNDARY Length(ft): 240.00 To Node: DEV-NI Count: 1 DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic 833.600 Flow: Both 9999.000 Contraction Coef: 0.000 0.030000 Expansion Coef: 0.000 0.000 Entrance Loss Cost: 0.500 0.000 Exit Loss Coef: 0.000 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use on Stabilizer Option: None 1.50D 2.00 2.00 From Node: DETI Leagth(ft): 169.00 To Node: L1-DI BOUNDARY Count: 1 UPSTREAM DOWNSTREAM Geometry: Circular Circular Span(in): 12.00 12.00 Rlse(in): 12.CO 12.00 Invert(ft): 829.000 828.000 Manning's N: 0.013000 0.013000 Top Clip(in): 0.000 0.000 But Clip(in): 0.000 0.000 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Dry detention area outlet line. *** Weir ]. of 1 for Drop Structure DET1-D *** Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.500 Exit Loss C.ef: 0.000 Outlet Geri Spec: Use do or tw Inlet Ctrl Spec: Use do Solution Inc.: 10 TABLE Count: 1 Bottom Clip(in): 0.300 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Circular Orifice Disc Coef: 0.600 Span(in): 6.00 Invert(ft): 829.000 Rise(in): 6.00 Control Elev(ft): 829.000 ----------------- -- -------------__- ---_-----_----_-- -_ - _--------- -- - Name: L1-D From Node: Lakel Length(ft): 117.00 Group: BASE To Node: L1-DI BOUNDARY Count: 1 UPSTREAM DOWNSTRFAM Geometry: Circular Circular Span(in): 12.00 12.00 Rise(ia): 12.00 12.00 Imiert(£t): 829.000 828.000 Mannisg's N: 0.013000 0.013000 Top Clip(in): 0.000 0.000 Bet Clip(ia): 0.000 0.000 Upstream FHWA inlet Edge Description: Circular Concrete: Square edge w/ headwall Dow -stream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Lake kl o,tfa7.l line. Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.500 Exit Loss Coef: 0.000 Outlet Ctrl Spec: Use de or tw Inlet Ctri Spec: Use on Solution Inca: 10 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 13 of 16 lb -20 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 *** Weir 1 of 2 for Drop Structure L1-D *** Count: 1 Type: Vertical: Mavis Flow: Both Geometry: Circular Span(in): 8.00 Rise(in): 8.00 *** Weir 2 of 2 for Drop Structure LI-D *** Count: 1 Type: Horizontal Flow: Both Geometry: Rectangular Span(in): 24.00 Rise(in): 24.00 TABLE Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Disc Coef: 3.200 Orifice Disc Coef: 0.600 Invert(£t): 835.000 Control Elev(ft): 835.000 TABLE Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Disc Coef: 3.200 Orifice Disc Coef: 0.600 Invert(ft): 837.000 Control Elev(ft): B37.000 Name: Lake2-D From Node: Lake2 Group: BASS To Node: Lakel UPSTREAM DOWNSTREAM Geometry: Circular Circular Span(in): 12.00 12.00 Rise(in): 12.00 12.00 Invert(ft): 835.500 835.000 Manning's N: 0.013000 0.013000 Top Clip(in): 0.000 0.000 Bar Clip(in): 0.000 0.000 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Lake 52 outfall line. *** Weir 1 of 2 for. Drop Structure Lake2-0 *** Count: 1 Type: Vertical: Mavis Flow: Both Geometry: Circular Span(in): 8.00 Rise(in): 8.00 *•* Weir 2 of 2 for Drop Structure Lake2-0 *** Count: 1 Type: Horizontal Flow: Both Geometry: Rectangular Span(in): 24.00 Rise(iu): 24.00 Weirs Length(ft): 68.00 Count: 1 Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.500 Exit Loss Coef: 1.000 Outlet Ctrl Spec: Use or or tw Inlet Girl Spec: Use on Solution Inca: 10 Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Disc Coef: 3.200 Orifice Disc Coef: 0.600 Invert ( f t ) : 838.000 Control Elev(ft): 838.000 Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Disc Coef: 3.200 Orifice Disc Coef: 0.600 Tnvevt(ft): 840.000 Control Elev(ft): 840.000 Name: CB CONTROL WEIR From Node: DEV-E1 Group: BASE To Node: 36" CONTROL SIR Flow: Both Count: 1 Type: Horizontal Geometry: Circular Span(in): 24.00 Rise(in): 24.00 Invert(ft): 622.500 Control Elevation(ft): 822.500 TABLE Bottom Clip(in): 0.000 Too Clip(in): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 TABLE TABLE Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 14 of 16 -16-2i Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Name: E7 WEIR From Node: DEV-E7 Group: BASE To Node: DEV-E7 BOUNDARY Flom: Both Count: 1 Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 15.00 Left Side Slope(h/v): 20.00 Right Side Slope(h/v): 20.00 Invert(ft) : 825.150 Control Elevation(ft): 625.150 Struct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0.000 Top Clip(ft): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 Name: ES WEIR From Node: DEV-E8 Group: BASE To Node: EEV-E8 BOUNDARY Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 100.00 Left Side Slope(h/v): 100.00 Right Side Slope(h/v): 50.00 Invent(ft): 830.300 Control Elevatioa(ft): 830.300 Struct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0.000 Top Clip(ft): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 - Hydrology Simulations Name: 002YR-24HR Filename: T:\2k\2722\011\drainage\OD2YR-24HR,R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amouct(ia): 2.93 Time(hrs) Print Inc(min) 30.000 1.00 Name: 010YR-24HR Filename: T:\2k\2722\011\drainage\010YR-24HR.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 4.20 Time(hrs) Print Inc(min) 30.000 1.00 Name: 100YR-24HR Filename: T:\2k\2722\011\drainage\100YR-24RR.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(ia): 5.82 Time(hre) Print Inc(min) 30.000 1.00 ==-= Routing Simulations Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. - Page 15 of 16 Complete Input Lake 2 Pond Routing with Final West Commons Design 04/30/2014 Name: 002YR-244R Hydrology Sim: 002YR-24HR Filename: T:\2k\2722\011\drainage\002YR-24HR.132 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10,000 Start Time(hrs): 0.000 End Time(hrs): 30.00 Min Cale Time(sec): 0.5000 Max Calc Time(sec): 60.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) 30.000 5.000 Group Run BASE Yes -------- ------------------------- ------------------- ------------------ Name: OIOYR-24HR Hydrology Sim: DIOM-24HR Filename: T:\2k\2722\011\drainage\010YR-24HR.132 Execute: Yee Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 30.00 Min Cale Tims(sec): 0.5000 Max Cale Tims(sec): 60.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) 30.D00 5.000 Group Run BASE Yes -------------------- - ----------------- -------------------------------- Name: IOOYR-24HR Hydrology Sim: 100YR-24HR Filename: T:\2k\2722\011\drainage\IOOYR-24HR.I32 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 _ Start Time(hrs): 0.000 End Time(hrs): 30.00 Min Cato Time(sec): 0.5000 Max Cale Time(sec): 60.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) 30.000 5.000 Group Run BASE Yes Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 16 of 16 13 _Z3 - Appendix C - Ll- / N 7 N U C YN m , v m W 3 u c4 N ry'\YN C.i Z.I h' N✓ N H .i "J vvNO ropUpU CW PC,UOvf: 4 H m N ro E C C v [n '.7 v1 '.7 m d'.i m o .i ✓ W U N W C +� 9v� W E'£ m0U W W U C W 3UG1 ¢Iaro W L-WW C`..3 2R7E-£ (AO r'`VIN c� .]a3UC]WCxWWX 0— Z I ` �- (\ o : §\\ m I } � - § 6 i )= <� :y 2-3 Table 2-2a.—Runoff curve numbers for urban areasi Curve numbers for Cover description hydrologic soil group — Average percent Cover type and hydrologic condition impervious areas Fully developed urban areas (Vegetation established) Open space (lawns, parks, golf courses, cemeteries, etc.)a: Poor condition (grass cover < 50%) .............. Fair condition (grass cover 50% to 75%)........... Good condition (grass cover > 75%).............. Impervious areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way) ......................... . Streets and roads: Paved; curbs and storm sewers (excluding right-of-way) .................................. Paved; open ditches (including right-of-way) ....... Gravel (including right-of-way) .................. . Dirt (including right-of-way) ..................... Western desert urban areas: Natural desert landscaping (pervious areas only)"... Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) ............... Urban districts: Commercial and business .......................... Industrial ........................................ Residential districts by average lot size: 1/8 acre or less (town houses) ...................... 1/4 acre ......................................... 1/3 acre ......................................... 1/2 acre ......................................... 1 acre ........................................... 2 acres .......................................... Developing urban areas Newly graded areas (pervious areas only, no vegetation)' ................................... Idle lands (CN's are determined using cover types similar to those in table 2-2c). A B C D 68 79 86 89 49 69 79 84 39 61 80 98 98 98 98 98 98 98 98 83 89 92 93 76 85 89 91 72 82 87 89 63 77 85 88 96 96 96 96 85 89 92 94 95 72 81 88 91 93 65 77 85 90 92 38 61 75 83 87 30 57 72 81 86 25 54 70 80 85 20 51 68 79 84 12 46 655 77 82 77 86 91 94 'Average runoff condition, and IA = MS. 2The average percent impervious area shown was used to develop the composite CN's- Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4. °CN's shown are equivalent to those of pasture, Composite CN's may be computed for other combinations of open space cover type. ^Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2.4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. sComposite CN's to use for the design of temporary measures during grading and construction should he computed using figure 2-3 or 2.4, based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. (210-VI-TR-55, Second Ed., June 1986) 2--5 (2 Table 2 2c.—Runoff curve numbers for other agricultural lands' Curve numbers for Cover description hydrologic soil group — Hydrologic Cover type condition A B C D Pasture, grassland, or range —continuous Poor 68 79 86 89 forage for grazing.z Fair 49 69 79 84 Good 39 61 74 80 Meadow —continuous grass, protected from — 30 58 71 78 grazing and generally mowed for hay. Brush —brush -weed -grass mixture with brush Poor 48 67 77 83 - the major element.3 Fair 35 56 70 77 Good 430 48 65 73 Woods —grass combination (orchard Poor 57 73 82 86 or tree farm).s Fair 43 65 76 82 Good 32 58 72 79 Woods s Poor 45 66 77 83 Fair 36 60 73 79 Good 430 55 70 77 Farmsteads —buildings, lanes, driveways, — 59 74 82 86 and surrounding lots. 'Average runoff condition, and I, = 0.2S. _ 2Poor: <50% ground cover or heavily grazed with no mulch. Fair: 50 to 75'Y ground cover and not heavily grazed. Gonda >759r ground cover and lightly mr Only occasionally grazed 3 Poor: <50% ground cover. Fair: 50 to 757, ground cover. Good: > 75% ground cover. ^Actual curve number is less than 30; use CN = 30 for runoff computations. sCN's shown were computed for areas with 500/- woods and 5N grass (pasture) cover. Other combinations of conditions- may be computed from the CN's for woods and pasture. sl'oor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair. Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil. (210-VI-TR-55, Second Ed., June 1986) 2-7 c-s Vi 2 �\y a � . / 6 ; .\'is' g g » a + > e Cb 06/28/07 0 i N Z4 Exhibit 701-1: Curve Number Calculation for Water Quality Storm Eveht kT . r1 PROJECTNAME: ................................... ..................... ...................... ........................... PROJECT NO:........................................... SHEET................... OF ..............., PROJECTPHASE: .......................... ............ ............................. .. .............................. DESIGNED BY:.......................................... DATE:............................................ DESCRIPTION: ........... .... I. ......... ................. ............ ................................... ................ CHECKED BY:........................................... DATE:............................................ Schneider ............. -............... ..... .... ....... -... ........................ .................................. .......................................... -................. ................ ..................... ... ASSUMPTIONS /REFERENCES The Schneider Corporation �_v.:3 i + f y 1% I to I Iccs(A-MA)S � u3iZ i� JA Qc.3A611 Vot,,Ae = �= I 'I NCI,EA IN�Aii o�s9 f(_l(3Ac- �<l 2T75 153 to ° -- 927 i�2JVi C3�'� Q z 7o74L VoL. C-� PROJECT NAME: ........... C- ... e ... r,-1 ........ & .... .... I V2,3...'z ...... L ... .. -- W.E 5T.( 171/'L7JAfSPROJECT NO:-Z7.ZZ,..()1Z ...... SHEET ................... OF ................ PROJECTPHASE: .......................................................................................................... DESIGNED BY: .......................................... DATE:............................................ DESCRIPTION: ............................. ........... ...................................................................... CHECKED BY: .................................... ..... DATE:............................................ Schneider ...................... I ....... -.1-1.1". ................... ................... ........................ I ....... I .................. .. .. . ...................... ASSUMPTIONS I REFERENCES The Schneider Corporation of L' Flow is -T�ujl- Chcz1.,j)4,*j dep,th oc A//'/V 'Eeh d IkI fj 3u6 tve all Ai o AVkV.Aje Ijk r,- Iq G, YZ 's i k Lz E /(D) +25 NWT tj - mr C-1 F G Rip 'Qv �,S ZC 25 -2 1.0 0, Cs GABION GENERAL Gabions are rock -filled, multi -celled, PVC coated wire baskets that are placed in ponds (as an outlet structure), swales, and vegetated channels to dissipate the water's energy. Gabions absorb a great deal of the water's energy by forcing water to pass through the voids in the structure, which reduces its velocity, promoting sedimentation and reducing channel erosion. Gabions may be used in swales and vegetated channels that outlet to sediment traps and basins. They are very versatile structures that may conform to a wide variety of situations and sites and may be constructed on site or purchased commercially. As a result, materials should be selected carefully to ensure proper function and stability. DESIGN The size of the structure will depend upon the site, but should have a height of at least 1 foot; have a minimum bottom width of 3 feet; and should extend across the entire conveyance structure with slopes no steeper than 2:1. In addition, gabions must be underlain with geotextile filter fabric to protect the structure from undercutting, which may cause the failure of the device. The stone selected for use in gabions will vary depending upon the individual needs of the site, but should be 1 to 8 inches in diameter and be clear of fines and other sediment. Gabions may be filled by mechanical methods, but it is generally recommended that they be filled by hand. Hand filling ensures that the entire volume of the gabion is occupied, increasing the strength and durability of the practice. Baskets are constructed of PVC coated wire mesh that is resistant to corrosion. After they have been filled, the gate should be closed tightly and securely weed shut. APPENDIX 1 - GABION 01/02/07 Additional structures, if necessary, may be used and should be securely wired to existing gabions. CONSTRUCTION ® To maintain its shape, the basket shall be braced with wire supports in both directions 111* Gabions are anchored into the walls of the channel laterally and to the ground vertically by weight - buried portions must be wrapped with 12 ounce, non -woven filter fabric 1� To prevent the erosion of downstream materials, stone should be placed at the toe of the structure 10' Gabions should be underlain by geotextile filter fabric Id' To encourage passing of floatable debris and prevent clogging, stone should be placed in front of the gabion at a 3:1 slope An Example of a Gabion I.G4.1 `Ip DANE COUNTY EROSION CONTROL AND STORMWATER MANAGEMENT MANUAL MAINTENANCE ► Gabions should be inspected periodically and after all storm events for evidence of undercutting and the erosion of adjacent materials P Gabions may require additional stone to offset settlement and loss Ei D METHOD TO DETERMINE PRACTICE EFFICIENCY Gabions reduce the amount of suspended sediment in stormwater by reducing the flow velocity of water, The efficiency for this practice is determined by calculating the settling efficiency for the device from the equation below. CALCULATING FLOW THROUGH A GABION hYW Q/D+2.5+L2]liz I.G-1.2 Cross -Section Q = Total flow through dam (cfs) h = Ponding depth in basin (ft) W = Total length of dam(ft) L = Horizontal flow path length (ft) D = Average rock diameter (ft) APPENDIX I - GASION 01/02/07 DANE COUNTY EROSION CONTROL AND STORMWATER MANAGEMENT MANUAL A Typical Gabion Structure SOURCES 1. Georgia StormwaterNlanagementManual. Volume 2: Technical Handbook. Atlanta Regional Commission. Adanta, Ga. 2001. 2. National Catalog of Erosion and Sediment Control and StormwaterManagement. Guidelines for Community Assistance. U.S. Department of Agriculture, Natural Resources Conservation Service. Washington D.C. 1996. 3. Planning and Design Manualfor the Control of Erosion, Sediment, and Stormwater. U.S. Department of Apiculture, Natural Resources Conservation Service and M ssissippi Department of Environmental Quality. Washington, D.C. April 1994. APPENDIX I - GABION 01102/07 I.G-1.3 a-1 ypW N O O o m o m O O O N H Si H N H L L L G F I I I I U u a L L 1 U U H N N N e-13 m O 7 O C-ty Central Park West Campus May 6, 2014 Water Quality Event 1" Water Quality Basin Summary Basin Name: Detention Group Name: BASE Simulation: linch-24hr Node Name: WQ Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fator: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 1.000 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 5.00 Time Shift (hrs): 0.00 Area (so): 1.070 Vol of Unit Hyd (in): 1.001 11 '' Curve Number: 0. 00 W GL CJILUC-10 DCIA (S): Time Max (hrs): 12.01 Flow Max (cfs): 0.540 11 ' Runoff Volume (in): 00 IPEbk WG QpCkEii- e Runoff Volume (ft3): 1242.262 0 Basin Name: Developed Group Name: BASE Simulation: linch-24hr Node Name: WQ Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fator: 484.0 Spec Time Inc (min): 1.87 Comp Time Inc (min): 1.87 Rainfall File: Scsii-24 Rainfall Amount (in): 1.000 Storm Duration (hrs): 24.00 Status: Onsite Time of Gone (min): 14.00 Time Shift (his): 0.00 Area (ac): 2.040 Vol of Unit Hyd Curve Number: t2j._OO,p„f DCIA (o): 0.000 Time Max (hrs): 12.04 Flow Max (cfs): 1.fl77 Peak W YtJ Runoff Volume (in): 0.7 Runoff Volume (ft3): 5848.202 Basin Name: Filter I Group Name: BASE Simulation: linch-24hr Node Name: Filter 1 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Faust: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 1.000 Storm Duration (hrs): 24.00 Status: Onsite Time of Coup (min): 5.00 Time Shift (hrs): 0.00 Area (ac): 0.270 Vol of Unit Hyd (in): 1.000 Curve Number: 99.000 DCIA (8): 0. W G uc 2J�-' iT Time Max (hrs): 12.00 + Flow Max (cfs): 0.305 nk ,k ��(� Evtt-q- ou-) Runoff Volume (in): 0.8fl7 Runoff Volume (ft3): 869.391 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page I of C -I5' Central park West Campus May 6, 2014 Water Quality Event 1" Water Quality Basin Summary Basin Name: Filter 2 Group Name: BASE Simulation: cinch-24hr Node Name: Filter 2 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Eater: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 1.000 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 5.00 Time Shift nas): 0.00 Area (ac): 0.2BO Vol of Unit Hyd (in): 1.000 Curve Number: .000 OCIA (%): 0.000 Time Max (hrs): 12.00 Flow Max (cfs): OTT, Runoff Volume (in): 0. Runoff Volume (ft3): 90i.591 `PL-hV I,Lia F-\/&J T" �1,)" Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 2 of 2 v O� Y N W N VI s L F v m 0 0 H Z 0000000000000000000000000000000000000000000000000000 000000000000 0000000C 0C 0C 000000 C09 C000000 0000000000 0101 0C 00 0000000000 00000 000000 0000000 00000000000000 000000000000000000000000000000000a0000000000000000000000 0000000000000000000000000po00oo0000000000000000000000 00000 000000000000000000000000000000010C 0C 0000010C 0 000000000 0000000 00 000000000000000 000000 0000000 0000000 000000000000000000000000.0110000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000 0000000000000000000000000 000000009C 0 00000 00000000 0000000 000000 00000000000000 00000000000 00 000000000000000000000000000000a0000000000000000000000000 0000000000000000000000000000000000000000000,-1,-1 .-i mrima. a. 0000000 00000 00 C0 C090 C0 10 00000000000000000000000000000 0000000 00000000000000 00000 000000 0000 00000000000000000000000000000000000c00000000000000000000 9 9 m m m W 9 9 9 9 m O m W W `i ry vY N.a ri virymNN`a mmW mNm mmWyvi vi .-I m v-I `i .yN N N N N ry' N N N N N N N N [V N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N ry O O O O O O O O O O O Oo C0 O O O O O O O O O O O O C0 O O O O OO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o O O O O O O O O O O O O mmmmmrnm--- m mmmmmmmwomwmmmmmmmmmmwmmmmmmmmmmmmmmmmWmmmmmmWmWmmwmwmm O O O O O O O O O O O C0 10 O O O O O O O O O O O O O O O o C0 O O O O O O O O C0 O O O O O O O O O p0 O O U O O O O O O O O O O O O O O O O O O O O O O O o O O O O O O O p O .Il �(]rP uINN i+l �fl N tll ul ulm Jl iP .a Ni(]iflN u] Y]7m ulN Nmi(1 tllm N�(]ul Nmu]VI uIN Nm m mmmmmmmmwmmmmmmmmmmmmmWmmmmmmmmmwmmmmmmmwmmmmmmWmmmmWmm a vtwa aoo �nmNo�r�n�N o.miN rmia vNi� rmoryio�fW-I-Iry rmic uNio�r mo�mrv�NUNie O OOOOOOOOOO c; rY-1—I'iNN.y rl rl ri e-I N N N N N N NN N NNNrymmmN N 1v1[ 1; N N(n 4 m Ca. a. a. �mmmm mmmru[�my v]mcCo[�v(i c0 v]V�mm9mm�r�n vaa],ym,y m99�[:1)!a v]�v�[[]maa a]m mryry''m mm�m�((c���((V)ymy''v]mmw�n rvr��]9rn ryWry'' rmr��m[rr��� pi f➢T �� W fAW 6@@NOlm mq a�lm �PIW@O�C60.�1��(A T��mmG�tq� W6I�@C�I�m�N �03��mG�1 R{�Gl NNE.i.i-1-i.iNNNNNNNNNN.i�.-INNNNNN.i SIN NNNNNNN..iNNNNN.i .iNNN . Nil -IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o c o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0. 0 0 o a o 0 0 0 o a O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a 0 a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c o 0 0 0 W W W G W [L G G G G G G G G N C W W W pl G G G y !u W W G G G G G W G G W M Ov Ov G G G W C, W G G Ov G W G G P� G W W G G�G�aa33G3GGa3a a�G�d,G G3��3333GGGG3a3�3333�G�33aGG3GG��G H H H H 4 H H 4 H H 4 H H H H H H H 4 H H H H H H H H H H H H 4 H H Fi 4 Sa Sa H H H H H 4, M H Fa H 4 H H 4 H H L LLLLLz'CK,F....C.CFG.CLL'GGF.'.C.C.CLLLLG'{,GFLLL'LGG4'.CG.CLLLCLCLGFLG,GL GL..LGCi]L.CLF.GC.C.4'G.CLL'GL.CFGLLLLLKGCFLLLLG.0 G,G.CLLLG,C G 0 o Y.FLLFL U V U O D U U U U U U O D U U U U V U U U O O V O U O D U U U U V U U U U U U O U O U O V U U U U U U V V U O U C CCCFIC C.Ci.Gi.Ci.Ci.Ci CiC C.fli i.�i.i.yti.Hi.Hifitiy.-Hi.Hi.�i.Hlti.Hi,-i Hi Hi.-Hi.H-I.UI,ti .Hi .iHtiti.Ha .-UI .U-I .r .i ,VytiCGCC C /7 mmN wow P c 00000000000000000000000000000000000000000000000000o.. .1N 00000000000000000000000000000000000000000000000000000000000000000000 0000000 0000 000o coon o0000 00000 00000000 00000000000000000000000000000000000a00000000000000000000 0ONNNnr........ cc�n o,n u�,n ,oe moo 000000 o o o o oc o 0 oo 000000 00! 00000000000000000 000000 0000 coo 00000000 00000 000000 0000 000 0000000 O 0000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000mmrrrr 00000000 0000001 09C 0 10C 0C 00 00000 000000 00000rl r�M rl c ri O O O o o O O O O O O o O O o O O O o o O O O O O O o O O O O o O o O O O O o 0 o O O o 0 o O O O O O O O O o 0 0000000000000000000000000000000000000000000000000a000000 oNo10 �D t9 lO �Ohrmmm mOl Olo Nl �'11h (117 cmul l[1N �O for r m61m00'iNNarmOo6�O ri 000000000 Op000 ..O N NO r1 NNN NOOOOOM M I✓)C� m11 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 00000000000000000000000000000000000000000000000000000000 M6o�m m1`Ot OITN O�mrn~OOOON�-f IN ONNNNmC1m(�1vcmPJl mtp tp trp�NmNm rNO�00000000 ..Nm NIN NN NINNNNNNNN NNNNNNNNNm NNNMth t'1m n1n N N N N N N N N N N N rn N N N o N N N N N N N N N N N N h N N N N N N N N N N ry N N N N N O OO O C0 10 OO O O O O 00 00 O O O O O O 00 O O O O 00 O O O O O O 00 O O O O 00 00 O O O O 00 OO 00 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O� al Oi 6� O1 Ol Oi Ol Ol O� m of Oi T O� O .... ~ N N N N O N M - P c P O Om M M m m r m m of al O O O O O O O O O O O O O O O O O O O O O O O OO O O O O O O O O O O O O O O O O O O O 11gNNNmNuI �/111-- m---✓1-OmN UIN m --NNVI VImo --N-- YlNu1 u]N V!N vIN m mmmmmmmmmmmmmwwmmmmmmmmmmmmmmmmmmmmmmmmwommm mmmmmmmmmmm �7�N0 rm1+1NO�r (1 NOOmr P ^O OlO mrm rulmNOmrm O r'.i alfl NI`tC �NNIm NIO torm6i a�cc Ch�flgm 7Jlm mut u]It1 J11p 1p 1pb\p to 1p 1p 1p 1p �p iq l�rrrrrrl-rrrrmmmmmmm mm m m. O Pm- W WWWW4.1:+]GIWWWWWWFl 4lWWWWWWWWW WWWWWW....W W.....WWWWWWWWWWWWWW Vl (7 m VIm V]V] [/]f/]V14]mm PVIm Cnmmfn In VlNmmPVI f7 CRmmmm[/N VIm V] UI (7 V1 VIm V]m VI V]m Nfn qqq C1NPP W 4l tt1P R1Pq qLC f➢ qP q P qqP W q NN..N..... 1 1.-i-..1.y...Y`-lH.yll,..... .4 .1.1.. f1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o c o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o. 0 0 0 0 0 0 0 0 .. 0. o 0 0 0 0 0 0 0 o. o 0 0 0 0 0 0 0 0 0 0 wf]�LIPWPNwmawwmmmmmwammmaawwmwmwa�mmmaaa.wmmmawwmmmmwc,wmmwu�m p apppppppc+p pppppapppapaappppaappppaappppaapppppaappppapp 3333333333333333333333333333333`s 333333333333333333333333 H 4 FI N £n H H H H H H H H H 4 H H H 4 H H H H H N N 4 H H H H H H H H SJ H H H H H H 41 H Va H H H H 4 H H H H �FFtFFFFLLL L'FFFF.CLCFFFLLLLFFFLLFFFLLLCFF.KL LLLFFFLF.CFFLS:F N P P c N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I 1 I I I I I I I I F I I I I I I I I I I F F L F L F F L L F U U V U U U U U U O D U O D U O V O D U V U U ,-..i -..1 .-.II .1 .1 .�. -I � .�..Ui .-�I .i ,�. � CI H .�. i .-Ui .�..i. K -..1 .-.II .C♦ .C♦ .Ki .K♦ -�i .-�1 U C .i .�. .i � ,-Ui .�. � .�. r .�..i .i W C C K C K C K K K „ C-/,9 d 1n ®(� u 6 � d ii v � - v 3n -+Yw N a m o000000 0000000000000o��.`Ji ,Ni .Mi `"-i��000�PPooN�� NP ooNNMmmMaa�in �n �nma{o .+mm 00o No Yo 0 ......0 000 0000 000000000 000 000 000000000000 F.+ 00000000000000000000000000000000 0000000000000000000000 Ncw N .+m ---- mmmc�mrn000mmo ar u{Wc :tea.. N rn o00000o mmoNN NOOOOC Y ON 0000 000000 0000 000 O OOOO O o O N� rl N.y N.i r-iN'iN F? O p O O O o 0 0 o O O O O O O O O O C O o 0 o O O O o 0 o .......... o o O O O o o O O o O O O O O O NJN N O W r1-[-1-rmmmOiTOONNm rOlNmaol��p� a C mOW��ONm�N N�Na M M ONm M m c c N NO o N U1 N O w YN U O W o 0 0 0 0 o m � 00 O00 C000 0000 00~N O O O O N N c C v c C NVtm M11MmmA1M NN F L i O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O p O m oa�'J mmmmMmmau�roaro��mW,-I m crno�ommmo.mrom�o rMm r�.y rnmr a Y U 00000 OOOOOOOOOOOO.i Nr-� NNNNaO O1 t+1W MNry NNrY .mitt N E 4 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O �-1 N N N N O O O O O O O O O O O O O O O O O O O O O ❑V NNN ONrnoOmll mo[�l ONfCOWil �ompm r,NmOmNn r�nm'-I maNm6� JN-lI NOmi W wWYYY NoWP mNWNr , o(oOm�-11 -mNW NmtOW'l NOGmONNl rOpoMom moOm Na0Om0 Nm0O0ON� NWM0mN moNW MNNOOmNi mN0MN NOOWOO1 HmZJumaVCVKUUmi N9Nm Nm- MWaci 0nROml om0mr0N 00IoN pNam0m OWaNO pmM0m 0mM-eN^ omNm-N o O OmCNNcN pmmr Fy�OUN�-]I QW0pO O O0oOOOOooO0pOOOOpoobmmry�n 0urmpOml�iOror0ml O OOamm OmmWN O O 99O0O O OOOOOOOOOOOO 0 ------------------------------ GtiM.NNom� ma-N mNmoN m0I0O mm-N m0l0NO WNmNNo mpam0 mOm mNJNN0LO1 ma OcNN0Om� -NN 000mo,m � !U iP ul u]m mmul Vlmmul-✓1----------- N ---- -✓1-- -✓1mm ---- -Yl N ti f/1 61 Ol (�aCNNPcN m v' N mmmN mrmMNOrnrNmN a �Ilma ONN['Im m 1 JC 00i00NNMv'i[lm ONNM ul .E NNmC�V1a�mO� �nOINN oMMMNmMmmNm(�1 �/ E 61 O�Ol O�O�o1 Op000000000N 0NNN N NN FyW .y .iNN�-I .i N.i Nr4NNN NN.yNN �-IN N.yN NNN N U 1-4 W W W W W W W +] 4.l W Iu W W W W W W 41 W W W W W 4.l W W W W 4l W W W W GI W W W W W W W W W W W LI W W W W W W W W 'O a W W W W �1m{n Wyy uyy�rnm mmmvr.�� mmWM mWmm m{¢¢n''{�n(m mmJ�m�" mWmWr�m,y'mJ�mWWfrO� fU ryn {��n[[min vyyi''�m�[[ Wyy H �cn[crcr����{{''rn �`�m mfL LDS W N�N�0.�1��R1�65�m�lp Na�mNID ^.�O��C�1 W 65�m0.l�fAm �P1 to �Oi C9 636�1W m U5 U3 ¢I�01 t9 R{ft16�1 ¢I /y 00 O N U N.i .i .i .i r-INNNNN N.4 Nio N.4 NNN 00 U d 00....iNNN.1.4NNNN�iNNNN o oc000N.i .iNNNNN�-I .-I o 0 0 0 o o o o 0 0 0 0 o o o 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 o o 0 0 0 o o o o 0 0 a o 0 0 o a 0 0 0 0 o 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 wwwwme.wwwwa. a. ��aaa W m wawwawwwaa W awa W c.wwwac.wwwa.a o.wmwwao.wwawaa aaaaaaaaaac+aaaaaaaacl cla aaaaaaaaac+aaaaaa aaaaaac+a acla cJa aaaap ,ti � �+ a N 333333333333333,5333333.'�33333333333333s333333333333333333 ro a e N E U Y U W Z C H H H ti H H H H H H f H H 4 {J H H H H H Fi H H H H H H H H H H H Y H H H SJ H H H H H SJ H H H H H H H H H H 1� H v c c a v c c a c v c a c m a a c a c v P v c c c P a a v a - c m c v v NNN.-I I I I .. I LLGG.K CFLLLFLY.L CGLLLG.C.CLLLLF.LLY�CFILLLGGFGLLGGGFLLG Y.. U O 4J W O N N a a a .CLCFL,C U U U U U U U V U V V U U U U U V U V U U U U V U U V U V U U U V U C N C C C C K C C C C N C G G C C C C G C„ CJ' K K C C C G C K C C G C K C C C C C C C C C C C„ C C G K C C K K G iU N�HH m .-E NN N NNNNNNNNNN.iNNN.i �N.iN NNN-1� NNNN � NNN N NN 0 C TYY U N U£33 —/ / vroN ONY m c�w K a Y]M1m0 olo NO �Or mOi 'i Nlnm N�Or OONN CNNmr mF10 NN N(�1 (�1P cln t(1 \O �r O OOOOON OOOOo NN`i eY 'immN`1 eY rYN NN.i �-INm NNti�m-iiNm'N-IN mIflN mlti O O O O O O O O O O O O O O O O cc O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O �JNNN(�1 NN NNOO-I...N...`i�-I�-I��aNcN?CmcavC-mCCP-r NNNNN NN:i '-I N.4 .1 N.i NNNNfi `i N `i NNrI O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Nm ':D IP Y1 tOrPm Gm ION ...... (:IOM1 I�o1nN af7N �-10 mIO i(1CNN ry NNNNN ON N.i 0'i NP NN-1 H N-IN oarn 0001 00C 0c 0000p000 O G O O O o 0 o O o o O O O O O O O O o 0 0 0 o O O o 0 o 0 0 0 o 0 0 o O O O O o 0 0 0 o O O o o O o o O o o O N m�mmm r,-'�nNNPNIo Io o�nNNPIne�N clneN N mmr-In] In nVm oNo,4oN N 0 0 0 O O O O O O O O O O OooO CO O 1OOP1Onl9NN7mc rv��nP v NN O O O O O O O O O O O 000000000000000000000000000u0000.......... 000000000Goo ✓I iP IOmNPO� M11�1�NNOrV1ry IO I(�InP m�-IPrOO1 lO mc7��r M1 m('1 P(V NOIm IO iPC 'i 00�m �rvtp lO - Pf711 ul f�INO ✓11f1NNNu1 J1NNNN rr ------ N IO N N ry h N N N N h N N N N N N N N N N N N N CJ N N N ry N N N N N N N N N N N N P N N N N N N N ry N N N N N O O O O O O O O O O O O O O O O O 00 00 O O O O OO O O O O 00 00 O O O O O p0 O O O O O O O O 0O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0O O IONmNNOolC to in rrwinPmmNN.:o m IO1 �1V 1m mmNNNN 1l o om If]✓)v' ")1'1 nl ['1 f+l f'1 NNI I`lNN NNn NNNNNN NNN �+11nOWV1 u:N tllNNhvl ul NIP V1NNNvl ul lO NtnNNNY10mNu] NN✓1 �(I NIP u1NN1(1NNIPNmmmN7 m m m m m m W m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 0 m P r�Nm Nm m to a.NN Nm IC P riNm PmNa, m �aP�Nm PMNrn O� (V (�P P IP TOONN(^.0 I[1 6100'i N [�1 NIO O�OONNI�IP IPNmrm mm •m tO lO lO l010 r/WI N �vWC], � CWi� IWi vW] W W W UW W qW qW, rW[ aW W W W W W ¢W �LtPI uW1�, cW[, LI W W W yW' rW(, W W W W �W( W ryW' LI W G] W W W W qW' aW IWy �W[ W W W Wry' W rW�' �W[ �¢aI CJ R�I�n�l��mm�� W P]P][[Y�����OCO f-0T��mgglA�m�N n�l fA f+�`1W �ro�����P1610W mm�t4�lA fA N NNNNN.4 rI .i N.-1 .4 N--IN NNNNN.i .-1 .4NNNNN.1 .-INN.i.i,4.-INNNN.i .4 fV .iNNNNN.I .4NN.i .-I O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 o a o 0 o a a 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GdP'33353a3ddd'd3'd a33d333ddd33d3353333dd3d zd 3d3,33'sd333�33333d3333 LC.{,G LLLLLLLC 4'4'GG.KF,LLLLGLFLLLL F. a:GLCCLLF.CLL LLLLGL.CCLG{LLG P N N N N C N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 11 I I I I I I I I 1 I I I I I I I I I 1 I I I I I I I I I I 1 I I I I I I I I 1 1 1 I I I I I I 0 u 00GOCLU'LULLD LU L au 00 00uLV LU LU LU 00GLLLLG.0 .CLLLLGCLLLL{L c,',GFLC, .CLGLL.0 V V O D U U U O V O D U U V O U O O D U U U O U O D U U U V U NN r. N N.N N.i rIN `i eyNNN.i rINNNNNN`i .NNNNN �-INNN.i `i rl �-1N `.IN H ^ N.y e -2v N i9N u v +r vHw N� m rnvY Fow .Im c Hm N v a` w m m 6100P.i�NN NPP1D 0�000 NNNNMM(�1PPa -t(1NN r-1 r-r N M m r4 r4 N m r4 r4 .Y .4 m fi r-i N M NN NNr. 'i rrN NN 00000000000000000000000 I.....000000000000000000000a00000 m 6��000ri 'i rYN NINNNM M(�1N PCP PV1N Nut lOMNw�p L�MMmmmmmrnO� Oi0000 NN� 'i Nr4NNNN.I .iNNy� r-1 'iN `ir-�fi ul ul Mr4 r-I .i r-1 .MiM.i .Y '-1.-I .y .i NrY fl �4 u]rO l9b Nl0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O p O O O O O m M�➢v(1 MN'i mmmMtR tRNaMN`io mm-rtO----Mam N'i r1000O�rnmmmm... Mm... to o o C0 NNN ul ul u� u1 V1 MOoaC aMMMMMM000 M"o M c O O O O O O O O O O O O O O O O O O O O O C.,O O O O O O C O O O O O O O O O O O O O O O O o O o o O O O O O o O o O o O O o O o O O o o O O O O O O o O O O O o O O o O O O O O O o O O O O O O o o O o 0 aMNr4 cMP NM r-I......... .iNMmmMN.4 'iNNMN N.yNNMN NNNNIMMaMMN.i M . MOO M M M M M M M ' M MOO O M p M M M M M O O O O O O O O O O O O O O Cl O O O O O O O O O O O O O O O O O O O O O O O O O OO O O O O O O O O O O .......... O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O MMO PNOI b(UN���OMMOMCNOIM NOmto rnMNOWMUIP CINOomM�RoaPMMNN N OOOO�mm M ul MPPPMMMMMNNNNNN .:.y.i .............. 000000000 NMMm MNNMNNNNNNNMNMMMf'1MNNhMMMNNNNNNNNNNNMMM N h N N N N N N N N N N N N N N N N N N N N N N N N N N N N 000000o O000000000 00010100 0000 0 C0 C0900000 9010 0000000000 0000 000 0000 000 0000000009o9C o1 o a rnmm amrn m----------------- mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm N JINNNP MMM('INNN.NIN N.4 r-I r:000000000 000 0000 M Nrn «l ul u1M mtO ul Vl rPNrn rP �'1N u1 N �O rnNNNu)r(1 u1M u1 u)M V1 u1S ulN ul rPmNNu1 rfl rllN uINNNNN W W m m m m m m W W W m m m m m m m m m W W m m m m W W m m m m W W W W m m m m W m W m m m m m W m m W m m m m a �,ym a�� m�nPm.-I Pm.:m m�oam� wm ryrnm�RP ,yrnm�R Morn �R OOm u]N �R Lim u]u1 lR� 6�OO.iNMPr0 ul l9Mm OmN .iCi1Y r4 NNN.i.i.i.;1Y1Y.i ry 14 N O O N O N O O OOONN ONryNryNNNNNNNNNNNNNNNNNryNNNNN w wmwwwwwwwwwmwwwmwwwuimmwwwWwwwwwwwwwwwwwwmwwwwwwmwmwwwww �mmm (nmWra�ry�mv�mmmmW{mw ¢w rr�n m,vy��m[m ea'1,mv(i mom[ mc�rm�v�m �m[m co rm�ca�vy��v��nmmm�rn�m m�rn(m v��gnmm 9m0��l �C]0.1W ���faL��ft3m mat Rl�UIWmW �m�Nm��Rlmm@0.�l R�l C�]P]W [YS��N���P1��0.1�G�1W �� NNE. -IN NNNNNN.iN�.i N.i .iNNNNN-INNNN..i .iNNNN .4 .4NNNN.iNNNNN.iyN.i .-IN.i O O O O O O O O O O O O O O O O O O O O O O O O O O O 6 O .0 O O O O O O O O 0 O O O O O O O O O O O O O O O O o O O O RO o 0 0 0 o O O O O O O O O O o 0 o O O o 0 0 o O O o O o o O O O O O o 0 o O O O o 0 0 o O o o O o O O P+ G W W r G G G G G R. G M W W W W r1 G G G G Rr Ca W G G G. W W 6i G G G G W W fL G G G G G W W (L G G G W G G Rr G G Rr 333333q 3q 3G3aG 3g3aa�3q'g3d3G3qG23Gs 3'a3333333333g33333333G gGgG�dq� H H H H H H H H H H H H H H H H H F H H H H H H H H H H H H H H H H H H H H H 4 H H H 4r H H 4 H H H H H H H H LL- L N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N I I I I I I I I I I I I I I I Y I I I I 1 I I I I I I I I I I 1 I I I I I I I I 1 I I I I I I I I I U V U U U 1 U U U U U U U V U V U U U U U U U U U U U V U U U U U V V U U V U U U U U U U U U U U V U V V U V U --1 .-Hi r-Hi - � - - - r-�1 .-HI .�i � CI .�i .�i r-HI .i .•ii .Ci .Ci Ci L .Fi _.Fi n n .Cis .HI ti r i 'Cu F F G F F .i .i .i .a WNN UNY N FIW K FG m Op00000'i rl -1'-I ri�rl �y N��NN p1�N �JN�b�NN Nbb -ImNNNMNmm.4H MOH OrlH ylO lOb tO IO bVbIO IOb IO tO tO .iNNN N 'iN r. '-I fi fi .i `iNH'i .4 NN'i NN O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O .......... O O ......... O O O O O N bblb tNO tpM NtMObbbblNO tMO bftp Mtl .................................. IO to to blo mlo tpm lo O O o 0 0 0 0 o O O o o O O G O O o 0 o O O O O O O o 0 0 o O O O O O O o 0 0 0 0 o O O O O o 0 o O o o O o 0 0 �I1NMv'amMNOCI lON cl7HOO�m m1�tDNaaMNNN0001T Of �C u1N IPOC cMM M Mtri 1 (11O 000N NOOON N.Y 'i rl -INNNN NOo p0000000 OpO 0o 00o 00000000 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o 0 0 0 o O o o O o O O O o 0 0 0 o O O O O o 0 0 o O O O O O O O o 0 0 0 o O O O O O o O o o O O O o �oNn�o.-l0000c0000000000000000000000000000000000000000 o oM 000 o`V o 000 C 0 10 0000000000 0 09C 0 00C 000000C 01 000 oGoOooG00000 G000000 G0000000 0000o Go 0 0 00000000000000000000000000000000000000000000000000000000 tO u1M I`ml�{�m ✓1 ✓l v� cmIf1N ONN Om CN.4 N N N -- OOOmma-1'-Ip Oim N N NI N N N N N N N N N N N N N N N N N N N N N N N N N N -N -`1 N� m N NNNN N C N N N N N N N N N N N N N N N N N NNNN ON N N N N N N N N N N N N N N N O OO p0 O o 0 0 0 0 0 0 0 00 po 0 0 0 0 0 o p0 p0 o Oo 0 0 0 0 0 0 o po 00 po Oo 0 0 0 o p0 00 0 00 0 0 o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O m mmm I000�� aam a'000t0 mNNNN000h NHHH .-1 rlH 0000000000000000000 0000000 000G000 000000000000000 - - - - - - n - - - - m mmmwmmmmmmmmmmmmmmmmmmmmmmmmrommmmmmmmmmmmmmmmmmmmmmmmmm c' 1l 1(1 lO b m mH OH N MC 1( 1(lr O� 0001MC11 t bm C1C 01 NNM N1 J 1m 0C C11NN[1 cm mNmNC;N��l�aa�e� a�;NNN NN�;NNNN� N N N N N N N N N N N N N N N N N N N NNN CJ N N N N N N N N N N N N N N N N N N N N N N N N ry N N N [0.0.],, qWq Wyy''rWryy W [µil' Wc�' [ti []Wfc G][il 4]lil W W rWrCC Wyy fil []!_]LI C] W rWr�( W lil f=]Cr�]rWr�� W W W rWC rW� Wy �W(aWa Lt 4l lil W W W �W�[[[RRil,, ,G,yyI G]fil qWq fyil [�tWC�, Wqq [yyil G] CIWWCI�mlllmmm�mQ����SIN �N O �m�q�9��mWCC 0.�l RLl�C]W R10 C1�m9R�l�WWWm��03 C3WWm� .4NNNNNN.i.iNN.ii.i.iN.-INNNNN.i .Y .iNNNNN.i N.i N'i f1 .NNN.4 .-I.-Ir-i.-IN.-iN N.y .-I .iN O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 a 0 O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o 0 a ggqaqqaaaaqqaaaqqqqqaaqqqqqaqqaqqqqqqqqqqaqqqqqqqqqaqqq 3's333333333333333333333333333333333333333333333333333333 N H H N N H H H H N H H H H H ti ' H H H H H LI H 4 H H H M H H H N N 4 4 H Va H H N H H 41 H H H N 4 H N Sa H H G CLL L.K.CLLLGL P,LLLL.FFFLLCLGLCFLLLLLLLLLF.CF.CLLGLGCGFLL,GL--- N N N N N N N N N N N N N NN N .............. N N N N N N N N N N N N N N N N N N SIN N N N N N N L LLLLFLLLLLLLLLLLLLFLL�.LLG C,Kt..C...LLL G'L CF.0 CF.L LLLGCGLLLLLCG,4' U U U U U U U U U V U U V U U U U U U U U U U U U U U U U U U U U U U U U U U U V U U U U U U U U U U U U U U U .N. .-I .NNHNNtiH .�i .-�1.-�I .�i .�i .-�Iti.�r .•Ii ..-.I-N .,.,�..1. N N'i C�-22 a f 3 � ............Mm Mm MN ......... NNN FN o0000000000000000000000000000000000000000000000000000000 0 �MMm......m..m MMN���............. E; toa000000000a00000�000000000000000000000a00000000000000000 N 3 ro i N(VNNNNN NO NfV N`i rl �-I'i.-IN,y rl �-1�-I�-1�y.y.yr.l .y 'yoN rI000000000000000000000 ro ow 0 OOOO C 0 C! 100 0000000C 01 0C 00C 01 0 000 0000 000000000000000000000 000 00 ow o 00000 000000000000000 00000000 000000 Fu o000000000000000000000000000000000000000000000000000000 0 -13m 000000000000 mow ✓ U o00000000000000000000000000000000000.......... o 000000 000000000000000000000000000000000000000000000000000 O O O O O O O O O O .i O O O O O O O O O O O O O O O O O O O O O O O O O O O O E C C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O V H ra 1-4 rn m N m W N U NJ m ${ W W W W W D m m m O mN N N N N � .y .i N rl .y N N .y .i N `i N N .-I N rI •-I N .y f-I � W O tl U b�N ✓ O O o o O 00 0 o O O o 0 o O O o 0 0 0 O O O 00 O o o O 00 O O o p0 O O O o p0 p0 p0 00 N C b�W H M c0 o O 00 O o O O O O O O 99 O O O O O O O 99 O O O O O O �-1 um �'•�' mmrn mmmrno�rn q 3 nmmmmmwmmmmmmmw Dmmwmmmmmwmmmmmmmmmmmmmmmmmmmmmmmmmmmm v N °� " 000NNN.-�,-I ,-i o000000 00000000 00000 0000000000000 00000000000000o b ro o 0 0 00 00 o000000 00000 000o Oo 0000 00 00000000000o V] i ] uJWm�fJN I(1 in �aNNN J1NN�P UI ifJmm�PNNmmo✓J N iP N�[J 1JNNh o�aN UJ i[J Y1NmNmu1 UJ V1 �7 N N N 41 C mrl Ohm v'M m �0 af'IN NOi -mOW u; WtO-PT00�-IN oomNmc ©rnooN� avi :n om „ ChWtO�c�oal E mWW mW O� 01000 00000 NN.y rl N.a rl rl .-IN NNN NNNN N(VNNNNNNNNNN NNNNN N(�1MCl�MMMMMmM�MMM(�1 [�1MMM1'l (�1M Mf7mMMmM Fly [L W W W W W W [mil L] Li W W W W C] W L�l W W W W W W W W W W W W W Gl W W W W W L] W W W W W 4] W W W W 4l WWW W W W W W U 'O v W m[n rmr��ummJ',', VJ VaaJ vi �va[J <n mom�^^r� cnLnWN�[ myy''[¢n'm rn rqn c�n[,vyJ VJ UJ rn cgJJ caan vaaJ VJm mcgqn crz VJ rn v�[[J ry aW aR�q aN aW [aan v�vJ �n rn uaaJ VryryJ''mµ'a Lrr�n�Wry' � �v[J ryWry''m rvr��J �u�[[i W¢l�@�0roN0.al Ra1�0LQ�aN L40.1m W4J� W GAO��aW W W Gt aN Gal WN¢IN fD �q¢IWmaW g0]La`I aW COI Wm�P3 /-� bA O c4 'd VI v ru0 0 0 0 0 0 0 0 0 0 0 0 .i 0 .0 0 0 ,0 0 0 .i 0 0 0 0 0 0 0 0 o a o a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 0 00 0 0 0 0 o a o as 0 0 as 0 0 0 00 0 0 0 0 0 00 0 c u P, 0 0 0 py za Laa as L0 mU GU. Ga. m0 w° Gar f0 G0, 60 m0 wU a° f0 as w0 as a0 (0 40 wa ma wa 0.0i d a1 mU m ro q ggqqaqqaaclq ggqaaaqqqqaaqqqaqaqqqqaqqqqqaclqqqclaaqaaqqaqq 333333[�s3333333333333^s3333S3333333333333333333333a333333 a = E m E +� �U m >o N W 2 ^ O 4 SJ M f+ t; H H t+ 4 4 N H 41 4 4 S+ H H N 4 S+ N N H N tJ 41 N 4 H H fi Sa t� 4 H 4 tl Va N 4 Sa N 4' 4 H ti It Sa H t+ 4 N t+ i�acamav��acc U 3 cc- - vcc cccav�vcmnc<ccvaccacccvva�c ma camaca•CL' 'j Y 3�1� Jl - -- N N N N N N N N N N N N N N N N N N N N N N N N N N N N N ry N N N N N N N N N N N N N N N N N N N N [V NNNN N � /J rINN N Gu 0'G.c .0 L' LG,{F,C L L;GGGL W O N N J 0001 1u I 1 0 u'0 01Qu,0111QY.GLLLLL�CF.i C.K U U U U U V U U V V U U U U U U V U U U U U U U U U U U U U U U U U U U U U U U V V U U U U U U U V V U V U U U N N.Ui f' ti`Ni I N.-NI m .qq VI NNNNNNHNrI'Ni �-NIN NI .yN eN{.-UINN rIti rY 'Ni .�i .-i fNi �y y �y ✓ N N q °� vmmro U &33 F7 0 -L3 Central Park West Campus May 6, 2014 Water Quality Event 1" Water Quality Complete Input ___= Basins Name: Detention Group: BASE Unit Bydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 1.070 Curve Number: 90.00 DCIA(%): 0.00 Name: Developed Group: SASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 2.040 Curve Number: 98.00 DCIA(%): 0.00 Name: Filter 1 Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 0.270 Curve Number: 99.00 DCIA(%): 0.00 Name: Filter 2 Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 0.280 Curve Number: 99.00 DCIA(o): 0.00 ___= Nodes Name: Exist Swale Group: BASE Type: Time/Stage Time(hrs) Stage(ft) 0.00 814.000 999.00 814.000 Name: Filter 1 Group: BASE Tyne: Time/Stage Time(hrs) Stage(ft) 0.00 846.500 9999.00 846.500 Node: WQ Pool Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 5.00 Time Shift(hrs): 0.00 Max_ Allowable Q(cfs): 999999.000 Node: WQ Pool Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 14.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: Filter 1 Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Ouration(hrs): 0.00 Time of Conc(min): 5.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: Filter 2 Status: Onsite Type: SCS Unit Hydrograph ON Peaking Factor: 484.0 Storm Ouration(hrs): 0.00 Time of Conc(min): 5.00 Time Shift(hrs): 0.00 Max Allo•,,eble Q(cfs): 999999.000 Base Flow(cfs): 0.000 Base Fiow(cfs): 0.000 Init Stage(ft): 814.000 Warn Stage(ft): 820.000 Tait Stage(ft): 846.500 Warn Stage(ft): 0.000 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 1 of 6 Central Park West Campus May 6, 2014 Water Quality Event 1" Water Quality Complete Input Name: Filter 2 Base F1ow(cfs): 0.000 Init Stage(ft): 646.500 Group: BASE Warn Stage(ft): 0.000 Type: Time/Stage Time(hrs) Stage(ft) - 0.00 846.500 9999.00 846.500 -------------------------------------------------------------------------------------- Name: Outlet Struct Base Flow(cfs): 0.000 Init Stage(ft): 845.000 Group: BASE Warn Stage(ft): 849.000 Type: Stage/A.rea Stage(ft) Area(ac) 845.000 0.0040 849.000 0.0040 --------------------------------------------------------------------------------- Name: We Pool Base Flow(cfs): 0.000 Snit Stage(ft): 845.000 Group: BASE Warn Stage(ft): 849.000 Type: Stage/Area Stage(ft) Area (so) 845.000 0.0500 846.000 0.0800 647.000 0.1700 848.000 0.2100 849.000 0.2700 __________ __ _____________ _ __ _______________ ____________�_____---_=_�___=_-__ ___= Cross Sections ==--------- _____________-__-______- _ - Name: Group: BASE Encroachment: No Station(ft) Elevation(ft) Manning's N ==== Operating Tables =-__ ____________-_____= _=_==------------ ---------- Name: Cation Group: BASE Type: Rating Curve Function: US Stage vs. Discharge US Stage(ft) Discharge(cfs) 845.000 0.00 845.500 0.19 846.000 0.55 846.500 1.00 841.000 1.50 _____ _____ __ `_= Channels __ __-_-_____--=- _- _- _- __-____--=_ -------- -_'____=---"---- __-_ _ _ __ _-____ __-___ _ _ _ _- ________ -------------------------------------------------------- _---------- ____________ ____--------------------------------- Name: From Node: Length(ft): 0.00 Croup: BASE To Node: Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Automatic Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 0.000 0.000 Flow: Both TC1pInitZ(ft): 9999.000 9999.000 Contraction Coef: 0.100 Manning's N: 0.000000 0.000000 Expansion Coal: 0.300 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bat Clip(ft): 0.000 0.000 Exit Loss Cost; 0.000 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 2 of 6 C 25 Central Park West Campus May 6, 2014 Water Quality Event 1" Water Quality Complete Input Main XSe, Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): But Width(ft): 0.000 0.000 LtBdSlp(h/v): 0.00 0.00 RtSdSip(h/v): 0.00 0.00 Drop Structures Name: Drop SIR 602 From Node: Outlet Struct Length(£t): 300.00 Group: BASE To Node: Exist Swale Count: 1 UPSTREP4 DOWNSTREAM Friction Equation: Automatic Geometry: Circular Circular Solution Algorithm: Most Restrictive Span(in): 12.00 12.00 Flow: Both Rise(in): 12.00 12.00 Entrance Loss Coef: 0.500 Invert(ft): 645.000 844.000 Exit Loss Coef: 0.000 Manning's Ni 0.013000 0.013000 outlet Ctrl Spec: Use on or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bet Clip(in): 0.000 0.000 Solution Inca: 10 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall *** Weir 1 of 2 for Drop Structure Drop SIR 602 *** Count: 1 Type: Vertical: Mavis Flow: Both Geometry: Circular S pan (in): 10.00 Rise (in): 10.00 Bottom Clip(ia): 0.000 Top Clip(in): 0,000 Weir Disc Coe£: 3.200 Orifice Disc Cost: 0.600 Invert(ft): 845.000 Control Elev(ft): 845.000 *** Weir 2 of 2 for Drop Structure Drop STR 602 *** Count: 1 Type: Vertical: Mavis Flow: Both Geometry: Rectangular Span(in): 36.00 aise(in): 18.00 Weirs Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Disc Coef: 3.200 Orifice Disc Coef: 0.600 Invert(ft): 847.000 Control Elev(ft): B47.000 Name: gabion weir From Node: WQ Foci Group: BASE To Node: Outlet Struct Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Rectangular Span(in): 36.00 Rise(in): 18.00 Invert(ft): 847.000 Control Elevation(ft): 847.000 TABLE Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Discharge Cost: 3.200 Orifice Discharge Coef: 0.600 Rating Curves TABLE 9"UN I Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 3 of 6 C-Z.G Central Park West Campus May 6, 2014 Water quality Event 1" Water Quality Complete Input Name: Gabion Group: BASE TABLE #1: Gabion 02: #3: #4: From Node: WQ Pool To Node: Outlet Struct ELEV ON(ft) ELEV OFF(ft) B45.100 B45.000 0.000 0.000 0.000 0.000 0.000 0.000 Count: 1 Flow: Roth ==== Exfiltration Trenches =_____________--------------- _______-------------- ______ ----- Name: From Node: Group: BASE To Node: Aquifer ease Elev(ft): 0.000 Water Table Elev(ft): 0.000 Ann Recharge Rate(in/year): 0.000 Noria Conductivity(ft/day): 0.000 Vert Conductivity(ft/day): 0.000 Effective Porosity(dec): 0.000 Suction Head(in): 0.000 Flaw: Both Count 1 Trench not Elev(ft): 0.000 Trench Width(ft): 0.000 Trench Length(ft): 0.000 Trench Heiaht(ft): 0.000 Gravel Porosity(dec): 0.000 Pipe Diameter(in): 0.000 Pipe Invert Elev(ft): 0.000 End Treatment: Exclude Cell Spacing(ft): 0.000 Num Calls: 0 Hydrology Simulations — --------------------->____—--_--____----________-----_____ Name: 002yr-24hr Filename: T:\2k\2722\014\drainage\002yr-24hr.R32 Override Defaults: Yes Storm Duration(hre): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 2.66 Time(hrs) Print Inc(min) --------------- -------------- 48.000 5.00 Name: 010yr-24hr Filename: T:\2k\2722\014\drainage\010yr-24hr.R32 Override Defaults: "es Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 3.83 Time(hrs) Print Inc(min) -------------- -------------- 48.000 5.00 Name: 100yr-24hr Filename: T:\2k\2722\014\drainage\100yr-24hr.R32 Override Defaults: Yes Storm Ouration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 6.46 Time(hrs) Print Inc(min) ------------- - —---------- -- 48.000 5.00 Name: linch-24hr Eilename: T:\2k\2722\014\drainage\linch-24hr.R32 override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 1.00 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 4 of 6 C -27 Central Park West Campus May 6, 2014 Water Quality Event 1" Water Quality Complete Input Time(hrs) Print In,(mie) 48.000 5.00 -__= Routing Simulations Name: 002yr-24hr Hydrology Sim: 002yr-24hr Filename: T:\2k\2722\014\drainage\002yr-24hr.I32 Execute: No Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0,00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 48.00 Min Cale Time(sec): 0.5000 Max Cale Time(sec): 60.0000 Boundary Stages: Boundary Flows: Time(hre) Print Inc(min) 4B.000 5.000 Group Run BASE Yes ------- -- --- ---- -- - ------- ------------------------- ------------- Name: 010yr-24hr Hydrology Sim: 010yr-24hr Filename: T:\2k\2722\014\drainage\010yr-24hr.132 Execute: No Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 4B.00 Min Colo Time(sec): 0.5000 Max Cale Time(sec): 60.0000 Boundary Stages: Boundary Flows: Time(hrs) Print inc(min) 48.000 5.000 Group Run BASE Yes ----------------------------------------------- ------------------ - --- Name: 100yr-24hr Hydrology Sim: 100yr-24hr Eilename: T:\2k\2722\014\drainage\100yr-24hr.I32 Execute: No Restart: No Patch: No Alternative: No Max Delta Z(it): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start 'Pime(hrs): 0.000 End Time(hrs): 60.00 Min Cal, Time(sec): 0.5000 Max Cale Tima(sec): 60.0000 Boundary Stages: Boundary Floes: Time(hrs) Print Ino(mi.n) 60.000 5.000 Group Run --------------- ----- BASE Yes Name: linch-24hr Hydrology Sim: linch-24hr Filename: T:\21.c\2722\014\drainage\linch-24hr.132 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 5 ofy 6 / --2.5 Central Park West Campus May 6, 2014 Water Quality Event 1" Water Quality Complete Input Execute: Yes Restart: No Alternative: No Max Delta Z(£t): 1.00 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 Min Calc Time(sec): 0.5000 Boundary Stages: Time(hrs) Print InC(min) 60.000 5.000 Group Run BASE Yes Patch: No Delta Z Factor: 0.00500 End Time(hrs): 60.00 Max Gals Time(sec): 60.0000 Boundary Flows: Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 6 of 6 C -Z5 w 0 e m U V lJ 0 a 3 X N N W U NCUCU' Y �. NUY.�IN tibUmU6�t C 'O VINN£ hOfn ul ul l7 C-36 C-31 � \ \ § \\ \ \ S\ � [ \- ` \ (w« $: \ ) \ \ @� 18 \ Ll/\ C-37 Xwu 0 d U n mmm_ r V gyp! y W ICI (� 000 000 0 mom h. �ry c U 000 000 000 O O O O O O 00o mm 00o Nrr O O O N N N rrhN rr o.-I N N N � � L�`.9. �B � r � mPo mmm mmm oo �ti m m �.. rl m m O m N 0 m N h o00 00o iwm n Nr� o00 000 mo,N-I-I o00 00 N N n N N N O O O O O O O O O N N N C N W 000 000 000 00 000 .� 00o O yy aaa aaa o aaa aoo I o0o 00 Ooo mmm mmm mmo t0 l0 O GO 0000 000 mw�[1 film 0 0 0 o O o O O O ry N N N H N FI 4a SJ S! I-i H H H H 4 H H c c c c c c C w N N N N c c c I I I I I I I I I I I I I I I N H H N H H H H H 11 to H N H H TOT TTT TTo TOT TTT N N O 00 N 00 N O 00 N O 00.1 00.4 00�1 OON 00'i 4.] W W LJ GI W W Gl W W W W W Gl 41 aWa Wa m w W W rymry'' m w gym( my' W NNN .y .iN NNN YYY . N N N U U V 000 N N N H H H H R H p p p O O O VJ VI V] ✓AJU YYY Y{+Y N rYn N N N N N N N 2 2 2 o.mw www Y.uY bi N .Ni [il Wlc LYY 000 e -33 k3�n £NU W U 3 N E o H iNL NW N F O Y N E in o muiommomo 0000000�� o rwimommonl`��i O N N O N N w O O m R C O OOv�NYl�mw w mmwm r�mmNNmr�'imn O�OmO N �n N1N O O O O O O O O O O O O O N O N O m O p0 �I rn �[100� m tO rtN mommti H H H H H H H H H G GG.G.CFGGG N N N N N N N I I I I I I I I I H H H H H H H H H T T T h T T T T T o oo��,�000 wwwwwwwww m mmmmmp o o.uio ouio oN A 3 A 3 A 3 c ro a m a ro FU' GFU` C'+L9C C7 Ow O41 O N R A R A R A O N O N O N [n H 6 H [n O � O c-34 Central Park. West Campus May 6, 2014 Basin Summary 100-yr, 10-yr, 2-yr Basin Name: Detention Group Name: BASE Simulation: 002yr-24hr Node Name: WQ Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fator: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 2.660 Storm Duration tars): 24.00 Status: Onsite Time of Conc (min): 5.00 Time Shift (hrs): 0.00 Area (so): 1.070 Vol of Unit Hyd (in): 1.001 Curve Number: 85.000 DCIA (%): 0.000 Time Max (hrs): 12.00 Flow Max (cfs): 2.129 Runoff Volume (in): 1.305 Runoff Volume (£t3): 5070.422 Basin Name: Developed Group Name: BASE Simulation: 002yr-24hr Node Name: so Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fator: 484.0 Spec Time Inc (min): 1.37 Comp Time Inc (min): 1.87 Rainfall File: Scsii-24 Rainfall Amount (in): 2.660 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 14.00 Time Shift (hrs): 0.00 Area (do): 2.040 Vol of Unit Hyd (in): 1.000 Curve Number: 94.000 DCIA (%): 0.000 Time Max (hrs): 12.04 Flow Max (cfs): 4.854 Runoff Volume (in): 2.020 Runoff Volume (ft3): 14955,235 Basin Name: Filter 1 Group Name: BASE Simulation: 002yr-24hr Node Name: Filter 1 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fator: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 2.660 Storm Duration (hre): 24.00 Status: Onsite Time of Conc (min): 5.00 Time Shift (hrs): 0.00 Area (ac): 0.270 Vol of Unit Hyd (in): 1.000 Curve Number: 99.000 DCIA (8): 0.000 It. Max (hrs): 12.00 Flow Max (cfs): 0.828 Runoff Volume (in): 2. 539 Runoff Volume (ft3): 2488.591 Interconnected Channel and Pond Rooting Model (ICPR) ©2002 Streamline Technologies, Inc. Page 1 of 5 C-35 Central Park West Campus May 6, 2014 Basin Summary 100-yr, 10-yr, 2-yr Basin Name: Filter 2 Group Name: BASE Simulation: 002yr-24hr Node Name: Filter 2 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fates: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 2.660 Storm Duration (hrs): 24.00 Status: Onsite Time of Cone (min): 5.00 Time Shift (hrs): 0.00 Area (ac): 0.280 Vol of Unit Hyd (in): 1.000 Curve Number: 99.000 DCIA (w): 0.000 Time Max (hrs): 12.00 Flow Max (cfs): 0.859 Runoff Volume (in): 2.539 Runoff Volume (ft3): 2580.761 Basin Name: Detention Group Name: BASE Simulation: 010yr-24hr Node Name: WQ Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fator: 464.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 3.230 Storm Duration (hrs): 24.00 Status: Onsite Time of Cone (min): 5,00 Time Shift (hrs): 0.00 Area (ac): 1.070 Vol of Unit Hyd (in): 1.001 Curve Number: 85.000 DCIA (%): 0.000 Time Max (lira): 12.00 Flow Max (cfs): 3.635 Runoff Volume (in): 2.303 Runoff Volume (ft3): 8946.566 Basin Name: Developed Group Name: BASE Simulation: 010yr-24hr Node Name: FQ Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking rater: 484.0 Spec Time Inc (min): 1.87 Comp Time Inc (min): 1.87 Rainfall File: Scsii-24 Rainfall. Amount (in): 3.830 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 14.00 Time Shift (hrs): 0.00 Area (so): 2.040 Vol of Unit Hyd (in): 1.000 Curve Number: 94.000 DCIA (9): 0.000 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 2 of 5 C _34 Central Park West Campus May 6, 2014 Basin Summary 100-yr, 10-yr, 2-yr Time Max (his): 12.04 Floe Max (cfs): 7.365 Runoff Volume (in): 3.153 Runoff Volume (ft3): 23350.633 Basin Name: Filter 1 Group Name: BASE Simulation: 010yr-24hr Node Name: Filter 1 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Parer: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 3.830 Storm Duration (hre): 24.00 Status: Busied Time of Conc (min): 5.00 Time Shift (hrs): 0.00 Area (ac): 0.270 Vol of Unit Hod (in): 1.000 Curve Number: 99.000 DCIA (5): 0.000 Time Max (hrs): 12.00 Flow Max (cfs): 1.195 Runoff Volume (in): 3.706 Runoff Volume (ft3): 3632.688 Basin Name: Filter 2 Group Name: BASE Simulation: 010yr-24hr Node Name: Filter 2 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Peter: 484.0 Spec Time Inc (min): 0.67 Coup Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 3.830 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 5.00 Time Shift (his): 0.00 Area (ac): 0.280 Vol of Unit Hyd (in): 1.000 Curve Number: 99.000 DCIA (&): 0.000 Time Max (hrs): 12.00 Flow Max (cfs): 1.239 Runoff Volume (in): 3.706 Runoff Volume (ft3): 3767.232 Basin Name: Detention Group Name: BASE Simulation: 100yr-24hr Node Name: WQ Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Facer: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 6.460 Storm Duration (hrs): 24.00 Status: Onsite Time of Cone (min): 5.00 Time Shift (hrs): 0.00 Area (ac): 1.070 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 3 of 5 C - 37 Central Park West Campus May 6, 2014 Basin Summary 100-yr, 10-yr, 2-yr Vol of Unit Hyd (in): 1.001 Curve Number: 85.000 DCIA (R): 0.000 Time Max (hrs): 12.00 Flow Max (cfs): 7.075 Runoff Volume (in): 4.732 Runoff Volume (ft3): 18378.171 Basin Name: Developed Group Name: BASE Simulation: 100yr-24hr Node Name: WQ Pool Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking Fator: 484.D Spec Time Inc (min): 1.B7 Comp Time Inc (min): 1.87 Rainfall File: Scsii-24 Rainfall Amount (in): 6.460 Storm Duration (hrs): 24.00 Status: Onsite Time of Conn (min): 14.00 Time Shift (hrs): 0.00 Area (ac): 2.040 Vol of Unit Hyd (in): 1.000 Curve Number: 94.000 DCIA (%): 0.000 Time Max (hrs): 12.04 Flow Max (cps): 12.983 Runoff Volume (in): 5.744 Runoff Volume (ft3): 42536.250 Basin Name: Filter 1 Group Name: BASE Simulation: 100yr-24hr Node Name: Filter 1 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh4B4 Peaking Fator: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 6.460 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 5.00 Time Shift (hrs): 0.00 Area (at): 0.270 Vol of Unit Hyd (in): 1.000 Curve Numbef: 99.000 DCIA (o): 0.000 Time Max (hrs): 12.00 Ftow Max (cfe): 2.018 Runoff Volume (in): 6.332 Runoff Volume (ft3): 6205.887 Basin Name: Filter 2 Group Name: BASE Simulation: 100yr-24hr Nod=- Name: Filter 2 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh484 Peaking rotor: 484.0 Spec Time Inc (min): 0.67 Comp Time Inc (min): 0.67 Rainfall File: Scsii-24 Rainfall Amount (in): 6.460 Storm Duration (hrs): 24.00 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 4 of 5 e-39 Central Park West Campus May 6, 2014 Basin Summary 100-yr, 10-yr, 2-yr Status: Onsite Time of Conc (min): 5.00 Time Shift (hrs): 0.00 Area (ac): 0.280 Vol of Unit Hyd (in): 1.000 Curve Number: 99.000 DCIA (%): 0.000 Time Max (hrs): 12.00 Flow Max (cis): 2.093 Runoff Volume (in): 6.332 Runoff Volume (ft3): 6435.735 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 5 of 5 C-3g Central Park West Campus May 6, 2014 Complete rnput, 100-yr, 10-yr, 2-yr 100-yr, 10-yr, 2-yr _== Basins Name: Detention Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 1.070 Curve Number: 85.00 DCIA(B): 0.00 Name: Developed Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 2.040 Curve Number: 94.00 DCIA(S): 0.00 Name: Filter 1 Group: BASE Unit Hydrograph: Uh484 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 0.270 Curve Number: 99.00 DCIA(%): 0.00 Name: Filter 2 Group: BASE Unit Hydrograph: Uh4B4 Rainfall File: Rainfall Amount(in): 0.000 Area(ac): 8.280 Curve Number 99.00 DCIA(%): 0.00 ==== Nodes Name: Exist Swale Group: BASE Type: Time/Stage Time(hrs) Stage(ft) -- ------ --------------- 0.00 814.000 999.00 814,000 Name: Filter 1 Group: BASE Type: Time/Stage Time(hrs) Stage(ft) -- ---- --------------- 0.00 846.500 9999.00 846.500 Node: We Pool Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 5.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: We Pool Status: Onsite Type: SCS unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 14.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: Filter 1 Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Conc(min): 5.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Node: Filter 2 Status: Onsite Type: SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Duration(hrs): 0.00 Time of Cpnc(min): 5.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 Base Flow(cfs): 0.000 Base Flow(cfs): 0.000 Init Stage(ft): 814.000 War, Stage(ft): 820.000 Init Stage(ft): 846.500 Warn Stage(ft): 0.000 Interconnected Channel and Pond Routing Model ([CPR) ©2002 Streamline Technologies, Inc. Page 1 of 6 C -/r/v Central Park West Campus May 6, 2014 Complete Input, 100-yr, 10-yr, 2-yr 100-yr, 10-yr, 2-yr Name: Filter 2 Base Flow(cfs): 0.000 Init Stage(ft): B46.500 Group: BASE Warn Stage(ft): 0.000 Type: Time/Stage Time(hrs) Stage(ft) 0.00 846.500 9999.00 646.500 ------------------------------ Name: Outlet Struct Base low cfs ----------------------g 0.000 -----_--------_-- Irdt Sta e ft 845.000 Group: BASE Warn Stage(ft): 849.000 Type: Stage/Area Stage(ft) Area(ac) --- ----------- --------------- 845.000 0.0040 849.000 0.0040 - ----------------------------------------------------------------------------------- Name: WQ Pool Base Flow(cfs): 0.000 Init Stage(ft): 845.000 Group: BASE Warn Stage(ft): 849.000 Type: Stage/Area Stage(ft) Area(ac) -------- ------ ----- - ------- B45.000 0.0500 846.000 0.0800 847.000 0.1700 84B.000 0.2100 849.000 0.2700 ----------- --------------------- ------------------- -___ Crow Sections --------------------- ------------ ----------------------___-- ----_ -----------______- ---->____- -- Name: Group: BASE Encroachment: Do Station(ft) Ele nation(ft) Manning's N ------------ ---------- - ------------ ----- __>_______------------------------- --------__-- ---- Operating Tables ---------- ------------------- -- ----_.__-------_____- -----___- ---- ------------ - -- ------_- Name: Gobion Group: BASE Type: Rating Curve Function: US Stage vs. Discharge US Stage(ft) Discharge(cfe) ---------- ---- --------------- 845.000 0.00 845.500 0.19 846.000 0.55 846.500 1.00 847.000 1.50 ------- ----------------- ------------------------ ___= Channels -_- ------- - --_ __ ---------------- ---------- -------- Nose: From Node: Lenoth(ft): 0.00 Group: BASE To Node: Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Automatic Geometry: Trapezoidal. Trapezoidal Solution Algorithm: Automatic Iavert(ft): 0.000 0.000 Flow: Both TC1pInitZ(ft): 9999.000 9999.000 Contraction Cost: 0.100 Manning's N: 0.000000 0.000000 Expansion Coed: 0.300 Top Clip(ft): 0.000 0.000 Entrance Loss Cost: 0.000 Bot Clip(ft): 0.000 0.000 Exit Loss Cost: 0.000 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 2 of 6 0-4/ Central Park West Campus May 6, 2014 Complete Input, 100-yr, 10-yr, 2-yr 100-yr, 10-yr, 2-yr Main XSec: AuxElevl(ft): Aux XSecl: AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 0.000 0.000 LtSdSlp(h/v): 0.00 0.00 RtSdS1p(h/v): 0.00 0.00 Drop Structures Outlet Ctrl Spec: Use do or tw Inlet Carl Spec: Use do Stabilizer Option: None Name: Drop SIR 602 From Node: Outlet Struct Length(ft): 300.00 Group: BASE To Node: Exist Swale Count: 1 UPSTREAM DOWNSTREAM Geometry: Circular Circular Span(in): 12.00 12.00 Rise(in): 12.00 12.00 Invert(ft): 845.000 844.000 Manning'. N: 0.013000 0.013000 Top Clip(in): 0,000 0.000 Pot Clip(in): 0.000 0.000 Upstream FPWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FddA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Friction Equation: Automatic Solution Algorithm: Most Restrictive Flow: Both Entrance Loss Coef: 0.500 Exit Loss Coef: 0.000 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use do Solution Incs: 10 *** Weir 1 of 2 for Drop Structure Drop STR 602 *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Floe: Bath Weir Disc Veto: 3.200 Geometry: Circular Orifice Disc Coef: D.600 Span(in): 10.00 Invert(ft): 845.000 Rise(in): 10.00 Control Elev(ft): 845.000 *** Weir 2 of 2 for Drop Structure Drop STR 602 *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Rectangular Orifice Disc Coef: 0.600 Span(in): 36.00 Invert(ft): 847.000 Rise(in): 18.00 Control E1ev(ft): 847.000 __== We;.rc Name: gabion. weir From Node: We Pool Group: BASE To Node: Outlet Struct Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Rectangular Span(in): 36.00 Rise(in): 18.00 Invert(ft): 847.000 Control Elevation(ft): 847.000 TABLE Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Discharge Cost: 3.200 Orifice Discharge Coef: 0.600 Rating Curves Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 3 of 6 Central Park West Campus May 6, 2014 Complete Input, 100-yr, 10-yr, 2-yr 100-yr, 10-yr, 2-yr Name: Cation Group: BASE TABLE kl: Gabion 42: R3: B4: Exfiltration Trenches From Node: SO Pool To Node: Outlet Strnct ELEV ON(ft) ELEV OFF(ft) 845.100 845.000 0.000 0.000 0.000 0.000 0.000 0.000 Name: From Node: Group: BASE To Node: Aquifer Base Elev(ft): 0.000 Water Table Elev(ft): 0.000 Ann Recharge Rate(in/year): 0.000 Hcriz Conductivity(ft/day): 0.000 Vert Conductivity(ft/day): 0.000 Effective Porosity(dec): 0.000 Suction Head(in): 0.000 Hydrology Simulations Name: 002yr-24hr Filename: T:\2k\2722\014\drainage\002yr-24hr.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scs4i-24 Rainfall Amount(in): 2.66 Time(hrs) Print Inc(mio) 48.000 5.00 Name: 010yr-24hr Filename: T:\2k\2722\014\drainage\010yr-24hr.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Pmount(in.): 3.83 Time(hrs) Print Inc(min) 48.000 5.00 Name: 100yr-24hr Filename: T:\2k\2722\014\drainage\100yr-24hr.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 6.46 Time(hrs) Print Inc(min) 48.000 5.00 Name: linch-24hr Filename: T:\2k\2722\014\drainage\linch-24hr.R32 Override Defaults: Yes Storm Dura tion(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 1.00 Count: 1 Flaw: Both Flaw: Both Count: 1 Trench Sot Elev(ft): 0.000 Trench Width(ft): 0.000 Trench Length(£t): 0.000 Trench Height(ft): 0.000 Gravel Poros ity(dec): 0.000 Pipe Diameter(in): 0.000 Pipe Invert Elev(ft): 0.000 End Treatment: Exclude Cell Spacing(ft): 0.000 Num Cells: 0 Interconnected. Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 4 of 6 c -z13 Central Park West Campus May 6, 2014 Complete input, 100-yr, 10-yr, 2-yr 100-yr, 10-yr, 2-yr Time(hrs) Print Inc(min) 48.000 5.00 =__= Routing Simulations Name: 002yr-24hr Hydrology Sim: 002yr-24hr Filename: T:\2k\2722\014\drainage\002yr-24hr.I32 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 48.00 Min Cale Time(sec): 0.5000 Max Cale Time(sec): 60.0000 Boundary Stages: Boundary Floes: Time(hrs) Print Inc(min) 48.000 5.000 Group Run BASE Yes -- ----- -- ------------------------------------ ---------- ----------- Name, 010yr-24hr Hydrology Sim: 010yr-24hr Filename: T:\2k\2722\014\drainage\010yr-24hr.I32 Execute: Yes Restart: No Patch: No Alternative: NO Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 43.00 Min Cale Time(sec): 0.5000 Max Calc Time(sec): 60.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) ---- -- --- - —------------- 48.000 5.000 Group Run BASE Yes ---------------------- --------------- - -- ----------------------------- Name: 100yr-24hr Hydrology Sim: 100yr-24hr Filename: T:\2k\2722\014\drainage\100yr-24hr,132 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10,000 Start Time(hrs): 0.000 End Time(hrs): 60.00 Min Calc Time(cec): 0.5000 Max Cale Time(sec): 60.0000 Boundary Stages: Boundary Flows: Tito(hrs) Print Inc(min) 60.000 5.000 Group Run ----------- EASE Yes Name: linch-24hr Hydrology Sim: linch-24hr Filename: T:\2k\2722\014\drainage\linch-24hr.I32 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 5 of 6 C — h` Central Park West Campus May 6, 2014 Complete Input, 100-yr, 10-yr, 2-yr 100-yr, 10-yr, 2-yr Execute: No Restart: No Alternative: No Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 Min. Cale Time(sec): 0.5000 Boundary Stages: Time(hrs) Print inc(min) --------------- 60.000 --------- ---- 5.000 Group Run BASE Yes Patch: No Delta Z Factor: 0.00500 End Time(hrs): 60.00 Max Calc Time(sec): 60.0000 Boundary Flows: Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page�6of ist - 1 S PROJECT NAME Central Park West Campus JOB No.: 2722.012 DESIGNER: JES DATE: 511/14 Purpose: To compute the maximum discharge for a weir section and compare it to the required design discharge. INPUT: Enter Weir Location: Enter Bottom Width, b Enter Side Slopes, s : Enter Allowable Depth Enter Weir Slope Enter Manning's Coef. OUTPUT CALCULATIONS: Area Wetted Perimeter Hydraulic Radius Maximum Velocity Top Width Maximum Discharge: SUMMARY: Design Discharge : Maximum Discharge: �dep�th�s s:1 1 b TRAPEZOIDAL DITCH Emergency Spillikay 2. eet - 10.0`: 1 0.55 feet 14.025 sq ft 31.055 feet 0.452 feet 0.000 fps 31.000 feet r . cfs 24 50„', cfs. (.zs raotoL aPprea) cfs. Q=3.3*b*HA1.5 (Cipoletti Weir Equation) where 3.3 = Spillway Coeff. 100YR INFLOW PER NODE MAX COMPARISON REPORT' 1.25 Design is$ T 12k11=DI 2WrInag MERGE YSPILL`NAY-As Prepared by by The Schneider Corporation Page 1 C--4& DITCH CAPACITY West Outlet Ditch 100-year PROJECT NAME: Central Park North Campus DESIGNER: JES Purpose: To compute the maximum discharge for a ditch section and compare it to the required design discharge. allow . s:1 depth s:1 b TRAPEZOIDAL DITCH INPUT: Enter Ditch Sec. No. : Basin Outlet Swale Enter Bottom Width, b : 5 ft. Enter Side Slopes, s : 3 : 1 Enter Allowable Depth : 0.20 ft. Enter Ditch Slope 3.5 % Enter Manning's Coef.: 0.024 DATE: July 30, 2012 JOB No.: 2722.014 OUTPUT CALCULATIONS: 0A/CU14 _k)12 jlgt +.' Area : Wetted Perimeter : 1.1 6.3 sft. ft. �loZ y) (.03c0,LrlS � e, Hydraulic Radius 0.2 ft. 99 + �tde �` Maximum Velocity 3.7 fps. Maximum Discharge: 4.2 cfs. Ta SUMMARY: 'P£AIC i00Y4 T�15c,�<&&t Design Discharge 3.80 cfs. SATISFACTORY Maximum Discharge: 4.19 cfs. C—`� Table 2. Permissible Shear and Velocitv for Selected Linina Materials' Soils Fine colloidal sand 0.02 - 0.03 1.5 A Sandy loam (noncolloidal) 0.03 - 0.04 1.75 A Alluvial silt (noncolloidal) 0.045 - 0.05 2 ' A Silty loam (noncolloidal) ` 0.045 - 0.05 1.75 - 2.25 A Firm loam 0.075 2.5 A Fine gravels' 0.075 2.5' A Stiff clay 0.26 3 -'4.5 A, F Alluvial silt (colloidal) 0.26 3.75 A Graded loam to cobbles 0.38 3.75 A Graded silts to cobbles 0.43 4 A Shales and hardpan 0.67 6 'A Gravel/Cobble 1-in. 0.33 2.5-5 A 2-in. 0.67 3 6 A 6-in. 2.0 4 - 7.5 A 12-in. 4.0 5.5 -'.12 A Vegetation Class A turf 3.7 6 - 8 E, N Class B turf 2.1 4-7 E, N Class C turf 1.0 3.5 E, N Long native grasses 1.2 -1.7 4-6 G, H, L, N Short native and bunch grass 0.7 - 0.95 3-4 G, H, L, N Reed plantings 0.1-0.6 N/A E, N Hardwood tree plantings 0.41-2.5 " N/A' E, N Temporary Degradable RECPs Jute net 0.45 1 2.5 E H, M Straw with net 1.5 - 1.65 1 3 E, H, M Coconut fiber with net - 2.25 3 '4 E, M Fiberglass roving 2.00 2.5-7 E, H, M Non Degradable RECPs Unvegetated 3.00 5-7 E, G, M Partially established 4.0-6.0 7.5 -15 E. G, M Fully vegetated 8.00 8 - 21 F, L, M Riprap 6 = in. dso 2.5 5 -10 H 9 - in. d5o 3.8 7 - 11 H 12- in. dm 5.1 10 - 13 H 18 in. d5o 7.6 12 -'16 H 24 - in. d5D 10.1 14 18 E Soil Bioengineering Wattles 0.2 -1.0 3 C, 1, J, N Reed fascine' 0.6-1.25 5 E Coir roll 3-5 8 E M N Vegetated coir mat 4-8 9.5 E, M, N s Live brush mattress (initial) 0.4 - 4.1 4 - B; E, I Live brush mattress (grown) 3.90-8.2 12 ` B, C; E, 1, N ; Brush layering (initial/grown) 0.4-6.25 ' 12 E, I, N Live fascine 1.25-3.10 '• 6-8 C, E, 1, J Live willow stakes 2.10 3.10 3 -10 E, N, O Hard Surfacing Gabions 10 14 -19 D Concrete 12.5 >18 H Ranges of values generally reflect multiple sources of data or different testing conditions. A. Chang, H.H. (1988). F. Julien, P.Y. (1995). K Sprague, C.J. (1999). S. Florineth. (1982) G. Kouwen, N.; Li, R. M.; and Simons, D.B., (1980). L. Temple, D.M. (1980). C. Gerstgraser, C. (1998). H. Norman, J. N. (1975). M. TXDOT (1999) D. Goff, K. (1999). 1. Schiechtl, H. M. and R. Stern. (1996). N. Data from Author (2001) E. Gray, D.H., and Sotir, R.B. (1996). J. Schoklisch, A. (1937). O. USACE (1997). ERDC TN-EMRRP SR 29 PROPOSED WATER OUALITY FILTER STRIP WATERSHED BASINS �� W 1 LS (a2S ,5 T = TrWveI '{'.i.Me--J...Mi,Nu '-S. m'f 22 2-4 C1, ) S= ._ tope (9-) i, s4 36.5 [a2s f 13,'Is -& 3 4( zs) 93s I (o t o f LeN � h R,vic�ec� 40 1 3t34 C,Za} 835 39,kil O, m m-t o ?�s T mc C 4-0 i Cu ) � i � 1ac— �I Eh(�ead;cu/a4 io flaw} %7,4Vt p�JCS {\s�3 (s)�Z 00 filf�z 2 { ArnrNya �3r _ . ,Ft � t (- t3llQCW a r le �lep� ��- Floo C 1,S"ftlk. Fop-2" FlowcllMle•01 J13 s 03 Ci rT -PQJV FO (2A ICtiIGl�- �eVCL 3pg--AJ&R- p 3+QIP Widtk 3.3.1 Filter Strip 3.3.1.1 General Description Limited Application Structural Stonnwater Control Description: Filter strips are uniformly graded and densely vegetated sections of land, engineered and designed to treat runoff from and remove pollutants through vegetative filtering and infiltration. Filter strips are uniformly graded and densely vegetated sections of land, engineered and designed to treat runoff and remove pollutants through vegetative filtering and infiltration. Filter strips are best suited to treating runoff from roads and highways, roof downspouts, very small parking lots, and pervious surfaces. They are also ideal components of the "outer zone" of a stream buffer, or as pretreatment for another structural stormwater control. Filter strips can serve as a buffer between incompatible land uses, be landscaped to be aesthetically pleasing, and provide groundwater recharge in areas with pervious soils. Filter strips are often used as a stormwater site design credit (see Section 1.4 for more information). Filter strips rely on the use of vegetation to slow runoff velocities and filter out sediment and other pollutants from urban stormwater. There can also be a significant reduction in runoff volume for smaller flows that infiltrate pervious soils while contained within the filter strip. To be effective, however, sheet flow must be maintained across the entire filter strip. Once runoff flow concentrates, it effectively short-circuits the filter strip and reduces any water quality benefts. Therefore, a flow spreader must normally be included in the filter strip design. Volume 2 (Technical Handbook) Georgia Stormwater Management Manual 3.3-3 There are two different filter strip designs: a simple filter strip and a design that includes a permeable berm at the bottom. The presence of the berm increases the contact time with the runoff, thus reducing the overall width of the filter strip required to treat stormwater runoff. Filter strips are typically an on-line practice, so they must be designed to withstand the full range of storm events without eroding. 3.3.1.2 Pollutant Removal Capabilities Pollutant removal from filter strips is highly variable and depends primarily on density of vegetation and contact time for filtration and infiltration. These, in turn, depend on soil and vegetation type, slope, and presence of sheet flow. The following design pollutant removal rates are conservative average pollutant reduction percentages for design purposes derived from sampling data, modeling and professional judgment. •_ Total uspen ad Solids — 50 0 • Total Phosphorus —20% • Total Nitrogen —20% • Fecal Coliform — insufficient data • Heavy Metals — 40% 3.3.1.3 Design Criteria and Specifications General Criteria ! Filter strips should be used to treat small drainage areas. Flow must enter the filter strip as. sheet flow spread out over the width (long dimension normal to flow) of the strip, generally no deeper than 1 to 2 inches. As a rule, flow concentrates within a maximum of 75 feet for impervious surfaces, and 150 feet for pervious surfaces (CW P, 1996). For longer flow paths, special provision must be made to ensure design flows spread evenly across the filter strip. ! Filter strips should be integrated within site designs. ! Filter strips should be constructed outside the natural stream buffer area whenever possible to maintain a more natural buffer along the streambank. ! Filter strips should be designed for slopes between 2% and 6%. Greater slopes than this would encourage the formation of concentrated flow. Flatter slopes would encourage standing water. ! Filter strips should not be used on soils that cannot sustain a dense grass cover with high retardance. Designers should choose a grass that can withstand relatively high velocity flows at the entrances, and both wet and dry periods. See Appendix F for a list of appropriate grasses for use in Georgia. / The filter strip should be at least 15 feet long to provide filtration and contact time for water quality treatment. 25 feet is preferred (where available), though length will normally be dictated by design method. ! Both the top and toe of the slope should be as flat as possible to encourage sheet flow and prevent erosion. ! An effective flow spreader is to use a pea gravel diaphragm at the top of the slope (ASTM D 448 size no. 6, 1/8" to 3/8"). The pea gravel diaphragm (a small trench running along the top of the filter strip) serves two purposes. First, it acts as a pretreatment device, settling out sediment particles before they reach the practice. Second it acts as a level spreader, maintaining sheet flow as runoff flows over the filter strip. Other types of flow spreaders include a concrete sill, curb stops, or curb and gutter with "sawteeth" cut into it. 3.3-4 Georgia Starmwater Management Manual Volume 2 (Technical Handbook) / Ensure that flows in excess of design flow move across or around the strip without damaging it. Often a bypass channel or overflow spillway with protected channel section is designed to handle higher flows. 1 Pedestrian traffic across the filter strip should be limited through channeling onto sidewalks. 1 Maximum discharge loading per foot of filter strip width (perpendicular to flow path) is found using the Manning's equation: 0.00236 5 q= y3Ss n Where: q = discharge per foot of width of filter strip (cfs/ft) Y = allowable depth of flow (inches) S = slope of filter strip (percent) la nTing's=n"-reughrress coefficient (3.3.1) (use 0.15 for medium grass, 0.25 for dense grass, and 0.35 for very dense Bermuda -type grass) / The minimum length of a filter strip is: Q wfM1N = q (3.3.2) Where: WiMIN = minimum filter strip width perpendicular to flow (feet) Filter without Berm / Size filter strip (parallel to flow path) for a contact time of 5 minutes minimum / Equation for filter length is based on the SCS TR55 travel time equation (SCS, 1986): L (T )1.25 (p2-24 )0.625 (S)0.53.3.3 ` 3.34n Where: Lf = length of filter strip parallel to flow path (fit) Tf = travel time through filter strip (minutes) P2_24 = 2-year, 24-hour rainfall depth (inches) S = slope of filter strip (percent) n = Manning's "n" roughness coefficient (use 0.15 for medium crass. 0.25 for dense m Filter Strips with Berm / Size outlet pipes to ensure that the bermed area drains within 24 hours. / Specify grasses resistant to frequent inundation within the shallow ponding limit. / Berm material should be of sand, gravel and sandy loam to encourage grass cover (Sand: ASTM C-33 fine aggregate concrete sand 0.02"-0.04% Gravel: AASHTO M-43 Yz" to 1"). / Size filter strip to contain the WQ within the wedge of water backed up behind the berm. / Maximum berm height is 12 inches. Volume 2 (Technical Handbook) Georgia Stormwater Management Manual 3.3-5 C`J� S! 41 PROJECT NAME:........... C..CN-J.)2A .. P !��-�.�G.W.A ,.ZPROJECT NO:...... Z.1'ZZ!,91Z .... SHEET ................... OF ................ PROJECTPHASE: ........ ....................................... : , , "" , , - - , , "' DESIGNED BY:.......................................... DATE:............................................ DESCRIPTION: ................................................................................................................ CHECKED BY:..................... ......... ........... DATE: ........... - DATE:......................................... rI ........................................................ ........ ................... ............. .................................................... ................................... ASSUMPTIONS I REFERENCES The Schneider Corporation NT,24 L T, Wet (��l P C4* t Ck, L /-\ li 0 N 5 (iv-ss me ad} n = '24 L 40 P Z, Coto 1 = 1 01 4k,�d vi 13 7 r L 1,93 2 mtN,-TlmC- Atlouej '09 kwc�,= C-S4 - Appendix ® - t��g ROMJ ` w f _ (�AM lull@IIIIIIIIIIIIWIIIII'��� ����, 1 J I ti \ ik-VI A 603 TC PATH Central Park West Campus PROPOSED STORM INLET BASINS Basin 603 Area Cover Type Coefficient (AC) (Ac.) 0.54 0.17 pavement 0.85 0.37 impery soil w/turf 0.45 BASIN 604 Area Cover Type Coefficient Product (AC) (Ac.) 0.78 0.7 pavement 0.85 0.595 0.08 impery soil w/turf 0.45 0.04 BASIN 606 Area Cover Type Coefficient Product (AC) (Ac.) 0.24 0.24 pavement 0.85 0.204 0 impery soil w/turf 0.45 0.00 10] .04 pavement 0 impery soil w/turf BASIN 609 Area Cover Type Coefficient Product (AC) (Ac.) 0.72 0.65 pavement 0.85 0.553 0.07 impery soil w/turf 0.45 0.03 CULVERT Area Cover Type Coefficient Product (AC) (Ac.) 0.44 0.08 pavement 0.85 0.068 0.36 impery soil w/turf 0.45 0.16 �e2 TABLE 201-1: Runoff Coefficients ® for Use in the Rational Method TYPE OF SURFACE RUNOFF COEFFICIENT Non -Urban Areas Bare earth 0.55 Steep grassed areas (slope 2:1) 0.60 Turf meadows 0.25 Forested areas 0.20 Cultivated fields 0.30 Urban Areas All watertight roof surfaces 0.90 Pavement 0.85 Gravel 0.85 Impervious soils (heavy) 0.55 Impervious soils (with turf) 0.45 Slightly pervious soil 0.25 Slightly pervious soil (with turf) 0.20 Moderately pervious soil 0.15 Moderately pervious soil (with turl) 0.10 Business, Commercial & Industrial 0.85 Apartments & Townhouses 0.70 Schools & Churches 0.55 Single Family Lots < 10,000 SF 0.45 Lots < 12,000 SF 0.45 Lots < 17,000 SF 0.40 Lots> %: acre 0.35 Park, Cemetery or Unimproved Area 0.30 200-5 D-3 \ cli \ ) : : \� I � � \ � \ \\\ i§ � \ / pq inEo- D _q 71 N m a 0-5 i z 3 w f a h E r v A 3llflo1311l10FUMH Wtl4 [3l> Q J S F- In L N + Z Q M z O = I 3 3 w I� a = 11 cxh = � J W o U Z al 0 z W w a o 0 f�� to L� p W Y � O = Z 11 o U- I I Z N 2 - _ 3 3 0 o f- I h N Ul 3Io 3 I Z I ^e y Z— O Q r4 ~ J 12 U V U h Z N_ vl W Q W O w n CL h CJ n u z a 0 00 O cr N C 2 a 6 0 0 u G 13 Figure 7 ID —(0 Iowa Stormwater Management Manual Figure 3A: Critical Depth Circular Pipe, Discharge = 0 to 100 cfs 6 5 DISCHARGE-0-CFS Figure 3B: Critical Depth Circular Pipe, Discharge = 0 to 1000 cfs 44. 1. OIA M. IN FEE71. ET ER I # RANGF OF d C -0.4D I !a= TO a9D-- 1.00 1 B 7 F. 0 100 200 300 400 500 500 700 Soo 900 loon u OISCHARGE -0 -CFS Figure 3C: Critical Depth Circular Pipe, Discharge = 0 to 4000 cfs 04 12 10 Version 2; December 5, 2008 too 10,000 16$ 8,000 EXAMPLE (I) (2) (3) 156 6,000 0.42 Ind. (3.3 feet) 6. 6' 144 5.000 0.120 e6 5. 4,000 Itt a NN 6' 5. 132 p NO 3,000 5 4. 4. 120 (2) 2.1 7.4 2,000 (3i 2.Y T.T 4. 3 108 "0 In fnl 3• 96 1,000 3. 800 $4 600 - 2' 2- 500 // / 72 400 2. 300 1.5 1.5 2 N / N Z 60 V 200 / IW- 1.5 Z 0 54 0 / a 100 > 48 80 0 42 60 a 1.0 1.0 o 50 HW ENTRANCE C x 40 Q SCALE TYPE 1.0 LU W 38 30 pl Bgeare edq• .nn W ; 9 .9 33 mm•a/1 0 .9 a a 20 (2) Graare •n4 vitn W 30 hmdwll x .$ 8 (3) Brogn ertd •$ 27 pro)eaHnq 10 - 24 $ 7 7 T 6 Ta ......14 (2) ar (3) prq)eaf I 21 5 harlsanwlf fa •Calf (1),fh•n I W4W 4 ee4 sfolOt Incline! Ilne nnthraagh 0 qnd p ecabq,., ree ae J 3 111.0,atel. 18 2 15 I L t-.5 L.3 1.0 .5 12 HEADWATER DEPTH FOR HEADWATER SCALES 253 CONCRETE PIPE CULVERTS BUREAU Of PUBLIC ROADS JAK 1963 REVISED MAY 1964 WITH INLET CONTROL Figure 4.3-2(a) Headwater Depth for Concrete Pipe Culvert with Inlet Control 4.3-8 Georgia Stormwater Management Manual Volume 2 (Technical Handbook) 2000 .4 i u St.,. So—' AGC4 G� IOOO ? SUBMERGED OUTLET CULVERT FLOWING FULL 5 I- BOo 12Q For oull., .,.. not tuEmFrq.d, wmputy NW by .6 matMop incriMe M tM EFaipA Oroolon 600 {OB .8 500 86 1.0 A00 84 / 300 72 200 66 60 PMe�E� <� f� tiCjy W 4 2 N / U. 54 / /� Z v Z N D.48 / __ L.IIO 200 �y - V 3 — W 48— O too x = j C G w Zo 42 200 w 4 a 2 36 300 a0 5 0 N 60 W 33 J,00 1500 6 50 F W 30 y00 e, 8 40 0 27 O 0 'to 10 30 24 a 20 21 18 20 10 1 8 6 V4 12 5 HEAD FOR CONCRETE PIPE CULVERTS i FLOWING FULL n = 0.012 BUREAU OF PUBLIC ROADS JAN. 1963 Figure 4.3-2(b) Head for Concrete Pipe Culverts Flowing Full Volume 2 (Technical Handbook) Georgia Stormwater Management Manual 4.3-9 0-9 l�> - 10 d R a r- C^^ i^��f` NW Ids E E m^ V! L E L O cn 0 U GI N N N N N c a o 0 0 0 0 0 N N N_ c G 0 W W M W Qj OJZ � N a i� I W O M W N ^ O N O O O O J O N N N (O O O � JU' O m m m m m Z 0^ � 2 N W N O N W y 6 M V M M ^ C Oop O O O O 6 O N � d O M m Cl! Lq r (O o o O CW� t m rn Wv � o J W x N N c m U U U U U J N W N N N W C N C 30 N N V lO0 V O w E N N T V O o � m c 3 a o 9 �- O (O O (D O (O O ID IO T C O O O O O lL O Jz T)` ff v R a c N E U N N F ry T U 3 C O O � O O N R ¢ p O 2 V O O O O p 4 O LL O. J m m O m m Qj LL O r M N N r N U 3 @ NT V M I 0q V O OD7 O d LL ❑ N r v r �M (O m r N �O Q LL -di CO M N O) W Itl 1[] 1P (p M W M N M M N N V N N N J U 6 N M N V M M N M M M U a o e 60 00 00 00 00 N c N O. C m m i N ` NN N m m ., OM rn -_ N V CO r r Cl! M M R x O O O O O O O O O O LL C OMM MQ7 V 2 U c <o oS o> r I� r co o� co co ici `o ` o � vvv vva vvv vvv o o ❑ mmm mmm mmm mwm mmm mmm m m v W W W N (Om R cpm m�-C- Orr V N N OwO O mNN N' (ON r a of 5r roar ron o>Nr ron�ri 7 V' V V' d'vv vvv cv m m m m m m m m m m m m m mm E>o � 0 0 of ai of 3 0 30 O O O(OO .rR. N N V O V O O w QQ FLL � U O V' O O V W C O jp V' O m 'O O M Cl! N LO N a y L v r m m c co co 0 U U m r r S N E H o LL C R U p O V O O O p o E o n 000 o 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000- 0 0 0 Q 0 U o 0 0 0 0 0 0 0 0 0 0 0 0 0 o L R N LO a� Q 11 11 R 00 000 000 000 000 O U U) F 0 0 0 0 0 0 C O O 6 6 0 666 m0 N M @ UUU c �" 000 000 000 000 000 000 000 000 000 aoo 00 c cES 000 000 000 000 000 m M m V V m N C O� m [V O E J � O C2 M M M M C O O O O O R O O O O O r C M O d U N O C- 9 a N O f J W W W H 0 U c 0 N M V U Z J Z D- lz r— O I.L 7E mn0 a^ o 0 0 0 0 po c ._ a a o 0 0 c a o N d O O O O O N N 6^ O O O O O ❑ � c a 3 � m N 0 0 0 0 aK o 0 0 0 0 0 r o 0 0 0 o m n o 0 0 0 0 0 N^ O O O O O L p� N m m m m m m 0 0 0 0 0 m c 0 0 0 0 0 m c 0 0 0 0 0 U j O O O O O 0 O O O O O N N O O O O O E"O N O O O O O � Z O -o m 0 0 0 0 0 0 a 0 c � Y �w ) N m 0 0 0 0 0 o Z a 0 0 0 0 o o 0 0 0 0 m o 0 0 0 0 E2 N II IL 6 O O O O O y O O O O O r J Of C 0 0 0 0 0 °q U W O O C QT T M y N 6 IA V V N V O E CJ co U V O V N C o 00 0 o y, p u V O O O O O N G N V N V O E C N V O U O m I I U 3 m o � pE2 m Z z m = 0 c0 0 c0 0 O (o 066 (O jy, � m w o o z z J Z T) -13 d R a y n o v o m O r o o c co co co m co J V C'l O fD O (O O 0 O (O O fp R O a o 0 of ai ai � � C of W I� W l0 d W J m O M YJ m O t0 O N r lV N r N r I� r r In N c m >Fu j w ro m m m o a a v M m o rNi aNi y e o 0 0 0 0 v r N m N O II O C� II U w U O N N N N d a Q O � N V tOD V O F C V V N V y C r O O T r O O U O II O C E N U n C tC V O m m M N N IV x d M M O m O Q C O O O O O O 0tv p> m m 1n 4 m 0 m m O O C m _ N U M N N N r E E C U U r 1n c' V N N r U N r O N O C p S �n c O N � � o —'4- v a O N O N C UO v o 0 0 0 J Y V m N h N N C N tCl I� N M N Y W O x o O O O O N U � N m N L N (00 dj M r rn r r c 3 w v M o m � N M N o 0 0 0 0 O N V J > N fp O M CO 0 y V W N� m m ro m o t6 N H O N M UO in Ln n N o 0 0 E t (O O] r M N Z 0 N V O] O V J O 10 M N (O O r N L-' 8 T N N r m> r r r r Sri y x m m m m m o m v m o M w a o C O (O CN N r O _I N M N O N < N O O M O N O M O N (O (O O O N O) M N W m� m m m ro ro a A o m O M rn O N N N N N Ot IO M M I:f0 M E, m � > of N �i ri H m K r o m N C M r Y] In 0 Q N O O O c in r o p_ o rn o r rn 0 o r E (D (p O O N 0 0O It n N N V tOD V O N 2 = N II M N N N m N N _ C LL U N - J T�- is r r 0 N M U 0 Q C.� 0 Q L 0 c 0 c m x W N L d E L 0 ++ cn 0 cu >11 TI) - 16 O i I r I � 1 I � � I i r pp i � q d i E I I i 1 i i ' i � IIt pT N N � I t i i pp 1:7 �Op H1 i pp N o 0 E O N M U U 0 4-0 0 N m K W L E L 0 0 cu L 2 n I' MINE Hmm IIL - IN mimilimmm - [[ II MEIIEMM - MIMIREMM mlmllmm�ll e a T I T I I P { I 7 r t r I Q � 11 Q I" r O P II D-2< 6 O O N O N N N � N 0 0 0 o. 0 N m 0 m c N A O o ti a m O N N N O [Np N N ¢ C 3 c� c E w o U LQ o m v � 'O • N y W N p m m U o �o� N ►' A m � m 7 y d V T1 fOp O Cl! C O ry O N_ O 6 O N O D (-3 —Z1 0 0 0 0o O o 0 0 0 0 o c R m In d M N (s�o) /giaede� n 0 0 0 a 0 n m 0 0 m c m r 0 A O 0 0 O O O O 0 0 c' max^ O �n v � m 10 9 8 Discharge vs Depth On Grat " 7 I�- 1,�7 A�—� too I�EENA,� 6 4,21) f, 07 604, (005 dEcc )Ak 2,! � 100 5 90 80 70 10 60 9 e 4 8 LU 50 7 40 u N 6 CL 3 30 � 5 U- ® 41 1-: U- 20 3 aui— Q U ¢ I 1 U a2 2cc� LU u, > O 10 ¢ O LL-\ O 9 8 w � 7 O CL 1 0 Q 6 M 9 \ .8 ui .7 Q 4 \ .63 1 3 Q .9 u .4 .8 2 ® .3n1 .7 � I'2 ue tu2� 6 ��i2u��vae W3 I -!ea I .5 ri --23 45 gi atr.s; 1af:.r .to ..^hoosinr3 tine proper Irriet grate" nn pages I11-1118' ii x coy rtp.cte iihniJr c1, ".'c11><t- OPEN AREAS and t'i::RVOE3EPS O 'W NEEi' AH g,ates, ref r tc p;a;�e, 3rJt'1-3i;. Sl,-: 246-C-L Combination Inlet Fkame, Grate, Curb Box Heavy Duty WEIR SG. PERIMETER CATALOG GRATE Fr. LINEAL NUMBER TYPE OPEN FEET R3246-CL L 16 5.8 R-3245-CL C 2] 50 Standard Grate (shown): Type L. Also available with grate Type C. Type C l,32i' -E Combination Inlet Fiance, Grate, Mountable Curb Box Heavy Duty 2° 6.1 CURB BOX ADJ. 51 TO 101' 35i R-32J46 F �li sl --A--�— 71f ylsr 2 62— _ 33 1 WEIR So. PERIMETER CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEET R3245-E c ,.6 59 Also available with 2" radius curb box, order R-3246-F. Combination Inlet Fk�ame, Grates, Curb BOX Heavy Duty —1 ,sezT,P. „lo-n9. `z,tz WEIR SG, PERIMETER CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEET R324}20 R 30 8.4 R324F2L L 4.6 0.4 R 3247-10 a 1 B 84 Can be furnished without curb box, see R-3572 and R-3573 series. Available with 2-piece Type Q grate, order R-3247-2Q. Available with 2-1 Type L grate, order R-3247-2L. Standard Grate (shown): Type R. Ar A' M111'1341 TYPe L N EEN A/i FOUNaRY Ft-3425-A Single Flange Gutter Inlet FYame, Double Grate T Heavy Duty-Is'—.--i�--19 se. 3 rla IC 71 II i r Standard Grate (shown): Type K. Also available with grate Type L. WEIR G0. PERIMETER CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEETrV y;9 R-342s R3425A L 2.3 94 bao + WSL W'S'ars TYPe L R-34G5-B Double Flange Gutter Inlet Fume, Double Grate Heavy Duty WEIR SQ. PERIMETER CATALOG GRATE FT. LINEAL - NUMBER TYPE OPEN FEET 8-342E 11 2.1 — R-3415-B L 23 94. Standard Grate (shown): Type K. Also available with grate Type L. 'rY�„1Ti.T Type L -3429 to F®3438 Series Square and/or Round Gutter Inlet Frame, Grate Heavy Duty WEIR SQ, PERIMETER CATALOG GRATE FT LINEAL MUMMER TYPE OPEN FEET Rd42`J-A AcrC 1.0 '00 E S P P A433 R-3437 AorC 33 12.M R343M-A AorG ZO 116 I, — C �E OIA. OF FOVN� BTSE FLANGE ME SOUAPE BAiE FLANGE sh, (Qt-)3 Illustrating R-3430 Also available With grates A/C orTjpe L. _TD CC