Loading...
HomeMy WebLinkAbout2012.09.14 CentralPark_Drainage ReportCENTRAL PARK i CARMEL, INDIANA DEVELOPER: Carmel Clay Parks and Recreation 1055 3Ta Avenue SW Carmel, IN 46032 317-848-7275 DESIGNER: The Schneider Corporation THE SCHNEIDER CORPORATION Historic Fort Harrison 8901 Otis Avenue Schneider Indianapolis, IN 46216-1037 317-826-7100 317-826-7300 Fax April 25, 2012 Revised September 14, 2012 T:\2k\2722\011\drainage\drainreport-04-23-12.doc TABLE OF CONTENTS DRAINAGE NARRATIVE SITE MAPS VICINITY MAP SOILS MAP FEMA FIRM MAP ORIGINAL DRAINAGE REPORT DEVELOPED CONDITIONS DEVELOPED DRAINAGE BASIN MAP ' DEVELOPED CN VALUE TABLE CN SELECTION ! POND ROUTING SCHEMATIC NODE COMPARISONS LINK COMPARISON j BASIN SUMMARY INPUTS FOR DEVELOPED BASIN MODEL 1 2-8 Appendix A Appendix B Appendix C CULVERT 169-170 & EAST PARKING UNDERDRAIN Appendix D STORM SEWER BASIN MAPS (Culvert and Underdrain) RUNOFF COEFFICIENT CALCULATIONS TIME OF CONCENTRATION CALCULATIONS (Culvert Only) RATIONAL METHOD CALCULATIONS (Underdrain and Culvert) CULVERT INLET/OUTLET DESIGN CALCULATIONS POST CONSTRUCTION BMP CALCULATIONS Appendix E BMP FILTER STRIP BASIN MAP BMP HUDRAULIC RESIDENCE TIME BMP LENGTH CALCULATION LEVEL SPREADER FLOW DEPTH CALCULATION WATER QUALITY DISCHARGE CALCULATIOS EMERGENCY SPILLWAY Appendix F LAKE 2 AND DET 3 EMERGENCY SPILLWAY CALLS. TRENCH DRAIN CALCULATIONS Appendix G CENTRAL PARK DRIVE WEST TRENCH DRAIN -1- DRAINAGE NARRATIVE Carmel Clay Parks and Recreation developed plans for Central Park during 2004 and 2005. Several park expansions have occurred since then, and recently the Parks Department has decided an additional overflow parking area near the aquatics center is necessary to accommodate summer patrons. They also identified a couple areas with drainage problems they want to fix. The following report describes how the proposed additions and changes affect the original drainage calculations. A copy of the drainage report submitted in November of 2004 has been included in Appendix B. DESIGN CRITERIA The following drainage calculations are based on given data and design criteria to install a 124-space parking lot with a grass filter strip, a trench drain on Central Park Drive West just east of the Lake 2 bridge, and a subsurface under -drain system in the parking lot just east of the Monon Trail. Site location: Central Park is a proposed 165-acre recreation/park facility located in Carmel Indiana. The site is a part of the North'/2 of Section 1, Township 17N, Range 3E in Carmel, IN. Specifically, the site is bounded by 111th Street and 116th Street on the south and north and by College Ave. and Westfield/Rangeline on the west and east. Terrain and existing ground condition: The previously developed park is divided by the Monon trail which passes through the site from north to south such that two thirds of the park is west of the trail and one third is east of the trail. The western two-thirds is a mixture of developed lawns, buildings, parking lots, outdoor aquatics, and lakes/detention ponds. The eastern third of the park is mostly woods, but also has a community center and parking lot adjacent to the Monon Trail. Adjoining land conditions: The park is surrounded by residential uses in all directions except for the far northeast 2- corner which is adjacent to a commercial lot. Soil types: Soils maps from the United States Department of Agriculture, Soil Conservation Service identify Brookston, Miami, Crosby, and Whitaker soils on the subject site. Miami (MmB2, MmA) soils are a part of hydrologic group B, while Crosby (CrA), Brookston (Br) and Whitaker (Wh) soils are a part of hydrologic group C. Existing Drainage Conditions: The proposed parking lot will be placed in a watershed basin identified as Lake 2-13 in the original drainage calculations (See page D-1 in the Developed Conditions Section of original report found in Appendix B). In the revised current drainage calculations, this watershed basin is still identified as Lake 2-13 (See page C-1 in current report Appendix C). Per the original drainage calculations (See page D-1 in Appendix B, Lake 2-B Watershed Basin is 66.01, Lake 2-B Watershed drains to Lake 2. Lake 2 discharges at the northeast end of the pond through an 8-inch orifice to a 12-inch RCP outlet under the Monon Trail. This will not change with the proposed work. The trench drain is proposed for a low spot in Central Park Drive West, just east of the bridge. There is an existing high pressure gas line and associated easement that crosses the park at this location. Very little work is allowed in this easement. Original designers planned to sheet drain runoff from this crowned drive to the north and south sides of the pavement. However, sometime after original drainage calculations were approved, a path was installed on the north side of the drive and it was set too high for sheet flow from the drive to reach Lake 2. Thus, ground between the path and the drive (north side only) does not drain until it ponds high enough to flow south over Central Park West Drive. The drainage problem in the parking lot east of the Monon Trail is also located adjacent to the high pressure gas line that travels from west to east across the site. The parking lot is graded to sheet drain from west to the east into the adjacent woods. Although surface runoff during rain events appears to be draining appropriately, there is a crack in the face of the westernmost curb where water continuously seeps through and flows across the pavement surface to the woods. Historic pre -development topographic mapping shows a watershed that originally drained to a 15-inch culvert under the Monon at this location (Basin PRE-E5. See original calculations Page C-1). During original park development, this culvert was grouted and runoff on the west side of the culvert was re -directed north to Lake 2. Surface runoff east of the original culvert sheet drains across the parking lot to the adjacent woods. However, it seems that sub- surface water may still be seeping along the outside of the grouted culvert than day - lighting at the crack in the curb face as described above. -3- PROPOSED DESIGN Subsurface Drain This project proposes to install an under -drain system near the former 15-inch culvert at the east parking lot to pick up the subsurface seep that is day -lighting at this location. Although we have specified open castings for the two upstream structures, the surrounding ground and parking lot are not graded to drain to these inlets. We have left the castings open just to pick up incidental flow that happens to pass over the casting. In order to pick up subsurface flow in this location, the two upstream pipe sections are perforated. The downstream two pipe sections in this system are not perforated since we anticipate seepage from the former culvert will already be intercepted and we don't want to encourage additional water to pool under the pavement. Simple rational method pipe capacity calculations for this under -drain are included in Appendix D. Trench Drain and DET 3 In order to eliminate the ponding water on the north side of Central Park Drive West, this project proposes to install a trench drain across the road at a low spot east of the gas line easement. Upon installing this trench drain, the original watershed basin Lake 2-B will be reduced from 66.01 acres to 65.27 acres and DET3-B1 Basin will be increased from 2.04 acres 2.77 acres. (See page D-34 in Developed Conditions Section of original calculations — Located in Appendix B of current report). The runoff curve number for Basin DET3-B1 will be increased from 69 to 78. The detention basin for watershed DET3-B1 is identified as DET 3. Since we are increasing the contributing watershed basin size for DET 3 (Watershed Basin DET3-131), we re -calculated peak DET 3 storm event elevations. Although peak discharge rates from this DET 3 are shown in the ICPR reports they are not listed here since the discharge is directly connected to Lake 2. DET 3 Proposed Peak Elevations Undeveloped 2-Year 10-year 100-year DET-3 Elevations 838.55 839.01 839.63 (See page D-31 in original report located in Appendix B) Post -Developed 2-Year 10-year 100-year DET-3Elevations 838.58 839.12 839.79 (See page C-6 in current report Located in Appendix C) Rational Method runoff calculations for water flowing to the new proposed trench drain (See Appendix G) indicate that the 2-year runoff to the low spot on the north side of -4- the road is 1.7 cfs and the 10-year runoff is 2.5 cfs. Mannings formula cannot be used to size trench drains because flow is not uniform. However, Neenah Foundry has done studies indicating that a 12-inch wide by 10-inch drain at 1% will carry the 2-year event runoff from this watershed. The Park Department goal was to drain the water ponding at the low spot after rain stopped and not necessarily to put all surface runoff in a pipe, so the 2-year event capacity is considered acceptable for this private drive. Additional runoff from larger events may flow south over the road. Lagoon/Lake 2 The proposed parking lot will be placed southeast of existing Lake 2 or, as it is more commonly referred to, the Lagoon and Wetland area. This 10.5-acre detention basin does not receive any offsite runoff, and early designers were concerned (before the lake was built) that the on -site 74 acres (includes watershed basins Lake 2-B, Det3-B1 and DET3-B2) draining to Lake 2 would not be large enough to regularly supply the pond with water. The additional runoff from this proposed parking lot will help improve the hydrology of the existing lagoon. As stated above, the Lake 2-B watershed basin will be reduced from 66.01 acres to 65.27 acres as a result of the proposed trench drain. However, this area will be added to Watershed Basin DET3-B1 as shown on page C-11 in Appendix C of this current report. This reduction in basin size along with the addition of 1 acre of pavement will also increase the Runoff Curve number for Basin Lake 2-B from 77 to 78 (See page D- 7 in original report located in Appendix B and page C-4 in Appendix C of current report). The following text and chart describes the affect additional runoff will have on Lake 2 or the "Lagoon" as it is commonly referred to. Lake 2-B Basin runoff to Lake 2 after new parking lot prolect (Appendix C) Compared to Pre -Developed Existing runoff (Appendix B) Existing 2-Year 10-year 100-year Basin Lake 2 0.69 cfs 1.38 cfs 1.91 cfs Peak Elevations 838.55 839.01 839.63 (See page D-33, Appendix B)) Post -Developed 2-Year 10-year 100-year Basin Lake 2 0,75 cfs 1.42 cfs OK 1.95 cfs Peak Elevations 838.58 839.05 839.68 (See page C-7, Appendix C) Original park plans identified the Lake 2 Emergency Spillway location as the south side of Detention Basin DET 3. As shown above in the DET 3 and Lake 2 charts, the peak 100-year elevation in these two basins is 839.79 (DET 3). Since the original emergency spillway elevation was originally set at 839.63, this project will specify raising the spillway elevation to accommodate the new proposed 100-year elevations. Although 5- the proposed peak 100-year elevation in DIET 3 is 839.79, we are raising the spillway to 840.0 to accommodate future plans for expansion. This still provides 2 feet of freeboard above peak 100-year elevations at DIET 3. We did not find emergency spillway calculations in the original report so we have provided them in Appendix F of this report. In addition to the ICPR model, we have also provided culvert calculations for the Culvert (Identified as Pipe 169-170) that carries flow from the new parking area to Lake 2. The Culvert Calculations in Appendix D give the following results. 1) 24-inch RCP from Basin 169-170 to Lake 2 10-year 100-year Flow (cfs) 11.4 16.6 Headwater 1.8' 2.4 Elevation 838.52 839.14 The peak 100-year elevation at this culvert is not above the 100-year elevation for Lake 2 and will not back onto Central Park Drive West. Therefore the proposed parking lot will not have adverse effects on the overall park drainage. Original Central Park calculations also considered downstream capacity. Per Page A-3 in the original calculations (Appendix B) Lake 2 discharges to a 12-inch culvert that flows to the east side of the Monon Trail to a Basin identified as PRE-E. This 54.1-acre basin drains to a 36" clay pipe under an old Inter -Urban railroad embankment and ultimately into the W.C. Van Arsdell Drain. Per the original calculations the original pre - developed discharge rates from this 36-inch culvert were: Existing 2-Year Basin PRE-E 17.1 cfs (See page A-5 in Appendix B) 10- ear 33.4 cfs 100-year 55.4 cfs Original Report Developed Discharge Rates for the 36-inch culvert were (See page A5 in the Appendix B of the original report: Original Proposed 2=Yr 10-yr 100-yr Basin DEV-E 5.8 cfs 10.2 cfs 13.85 cfs (See page A-5 in Appendix B) Per the ordinance in affect in 2004, the above described development met the Hamilton County Surveyor's Office 2-10-100 detention requirements. However, in 2005 the ordinance was revised to limit post -development discharge to 0.1 cfs per acre in a 10- 6- year event and 0.3 cfs per acre in a 100-year event. Since the downstream 36-inch watershed originally had a 54.1-acre watershed, allowable discharge rates are calculated from that. (See Sheet C-6 in Appendix C). Basin Acreage Basin 10-year 10-year 100-year 100-year 36-inch CMP Outlet Allowed Proposed allowed Proposed Name 54.1 acres DEV 5.4 cfs 10.2 cfs 16.2 cfs 13.85 cfs E1 As seen above the new final discharge rates to the 36-inch culvert are basically unchanged. Due to the change in the ordinance since original park development the 10-year current discharge rate is over current limits. However, since we have not made a change we consider this to be acceptable. POST CONSTRUCTION FILTER STRIP BMP (Appendix E) Most of the water quality requirements for the Central Park project are provided by the Lake 2 Lagoon. However, during the time that has passed since the lake was constructed; the City of Carmel has revised their water quality regulations to require all storm runoff to flow through two post construction Best Management Practices (BMP's). Thus, we have designed the proposed parking lot to drain via sheet flow to a grass filter strip along the west side of the new parking lot (See Appendix E). A concrete level spreader will ensure water flows to the filter strip in sheet flow formation with depths less than 0.04 feet during a 1" storm event. See Sheet E-3 in current report. The slopes on the filter strip will be less than 5 percent and velocities coming from the filter strip will be less than 0.9 ft./sec. (See page E-2 in Appendix E) This filter strip was designed to meet the requirements listed in BMP PC-108 in the Technical Standards Manual. Design Procedure 1. Filter strip slopes must be no greater than 15 percent: The Central Park filter strip slope is 0.5 percent. 2. Filter strip must have a minimum hydraulic residence time no less than 5 minutes. The Central Park filter strip has a minimum residence time of 5 minutes. (See Sheet E-2 ) 3. The filter strip must have an average velocity no greater than 0.9 feet/second: This 40-foot filter strip has a velocity of 0.13 feet per second (40 feet divided by 300 seconds — 5 minutes which is the sheet flow travel time.) 4. Per the Carmel standards Mannings Friction factor should be 0.024 for infrequently mowed: However, we believe the code mistakenly refers to Mannings n for Channel flow. We have included another source with our calculations that states that Mannings n for sheet flow over dense grass is 0.24 -7- and that is what we used. We then used TR55 formula and method for determining travel time and velocity in Sheet flow conditions, 5. The width of the filter strip should be no greater than that where a uniform flow distribution can be assured. We have used a weir width of 144 feet and a filter strip length of 40 feet. 6. The average flow depth should be no more than 0.5 inches. The max depth of flow over the level spreader during a 1-inch storm event is 0.42 inches (0.035 feet). 7. The hydraulic radius is taken to equal the flow depth: Acknowledged. 8. Filter strips should be a minimum of 8 feet wide. This filter strip is 144 feet wide. CONCLUSION In summary, as shown above the peak discharge rates from Lake 2 only increase between 0.04 and 0.06 cfs depending on the storm event. The peak 100-year lake elevations (Lake 2 and Det-3) only increase between 0.03' and 0.16'. The emergency spillway elevation, which services both ponds, will be adjusted to elevation 840 to accommodate the 0.16' elevation change in Det-3 as well as future runoff from park expansion projects. Finally the proposed discharge rates at the downstream 36-inch CMP are unchanged as a result of this project. REFERENCES Design and data methods are based on the following references: 1. HERPICC County Storm Drainage Manual 2, Hamilton County Soils Survey 3. ICPR Computer pond routing program 4. 210-VI-TR-55, Second Ed., June 1986 5. Hamilton County IDS 2' Contour Mapping OVERALL WATERSHED: Carmel Creek - Appendix A - AREA MAP NOT TO SCALE ki Et 5ry 81 -_ anduelsle2f ,+� V _ _ S 1 B o y:{ .° 0 a w.xolRM� W �ulzmejruouayy g i si t U e. o-'u' nOrki E% Bc�6eel Ln a ` ° J '� lexin9to s� a w_It-n U �p 6No,d vie+ E . ope- x 331 . ,OIsIM a P M Kn. IT s� i /// Va6alloJ." Bbssom Nlay :-, S � <- 3'-' Soil Map—Hamllton County, Indiana Map Unit Legend Central Park Hamilton County, Indiana (IN057) . Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI Br Brookston silty clay loam 109.9 38.4% CrA Crosby silt loam, 0 to 3 percent slopes 106.0 37.1% MmB2 Miami sill loam, 2 to 6 percent slopes, eroded 47.0 16.4% MmC2 Miami silt loam, 6 to 12 percent slopes, eroded 1.4 0.5% Sh Shoals silt loam 1.6 0,6°% W Water 9.2 g 2% Wh _ Whitaker loam 11.0 3.8% Totals for Area of Interest _ 286.2 100.0% Natural Resources Web Soil Survey 4/26/2012 Conservation Service National Cooperative Soil Survey Page 3 of 3 k5 Design Procedure 1. Filter strip slopes must be no greater than 15 percent: The Central Park filter strip slope is 0.5 percent. 2. Filter strip must have a minimum hydraulic residence time no less than 5 minutes. The Central Park filter strip has a minimum residence time of 5 minutes. (See Sheet E-1 ) 3. The filter strip must have an average velocity no greater than 0.9 feef/second: This 40-foot filter strip has a velocity of 0.13 feet per second (40 feet divided by 300 seconds — 5 minutes which is the sheet flow travel time.) 4. Per the Carmel standards Mannings Friction factor should be 0, 024 for infrequently mowed: However, we believe the code mistakenly refers to Mannings n for Channel flow. We have included another source with our calculations that states that Mannings n for sheet flow over dense grass is 0.24 and that is what we used. We then used TR55 formula and method for determining travel time and velocity in Sheet flow conditions. 5. The width of the filter strip should be no greater than that where a uniform flow distribution can be assured. We have used a weir width of 144 feet and a filter strip length of 40 feet. 6. The average flow depth should be no more than 0.5 inches. The max depth of flow over the level spreader during a 1-inch storm event is 0.42 inches (0.035 feet). 7. The hydraulic radius is taken to equal the flow depth: Acknowledged. 8. Filter strips should be a minimum of 8 feet wide. This filter strip is 144 feet wide. CONCLUSION Based on the discussion above we feel the proposed parking lot and drainage improvements will not have any detrimental effects on the park or downstream property owners. REFERENCES Design and data methods are based on the following references: HERPICC County Storm Drainage Manual Hamilton County Soils Survey ICPR Computer pond routing program 210-VI-TR-55, Second Ed., June 1986 Hamilton County IDS 2' Contour Mapping OVERALL WATERSHED: Carmel Creek -6- - Appendix B - CENTRAL PARK CARMEL, INDIANA DEVELOPER: Carmel Clay Parks and Recreation 1055 3rd. Avenue SW Carmel, IN 46032 317-848-7275 DESIGNER: The Schneider Corporation �q THE SCHNEIDER CORPORATION Historic Fort Harrison 8901 Otis Avenue Schneider Indianapolis, IN 46216-1037 317-826-7100 317-826-7300 Fax November 22, 2004 S:\2k\2722\002\drainage\drainreport 11-22-04.doc I 1 ' TABLE OF CONTENTS I ' A. Drainage Narrative Ai-A6 B. Site Maps ' USGS Quadrangle Map B1 Soils Map B2 FEMA Firm Map B3. Wetlands Map B4 Richard Moffitt Drain Exhibit B5 I I W.C. Van Arsdell Drain Exhibit B6 , W.R. Fertig Drain Exhibit B7 C. Existing Conditions ' Existing Drainage Basins Map C1 Existing Drainage Routing Schematic C2 j Existing CN Value table C3-C6 ' CN Selection C7-C10 Existing Time of Concentrations C11 ' Rainfall Depths Inputs for Pre -developed Basins Model C12-C14 C15-C28 Basin Comparisons C29-C31 l Basin Summaries C32-C36 D. Developed Conditions Developed Drainage Basins Map D1 ' Pond Routing Schematic D2 Developed CN Value Table D3-D5 ' CN Selection Developed Time of Concentrations D6-D9 D10 Rainfall Depths D11-D13 Inputs for Developed Basins Model D14-D30 ' Node Comparisons D31-D33 Basin Summaries D34-D39 E. Storm Sewer Design Storm Sewer Basin Maps El Runoff Coefficient E2 ' Rational Method Calculations E3-E4 Time of Concentration Calculations E5 Pipe Design E6-E7 S:\2k\2722\002\drainage\drainreport 11-22-04.doe I 1 DRAINAGE NARRATIVE 1 DESIGN CRITERIA These drainage calculations are based on given data and design criteria as follows: ' Site location: ' Central Park is a proposed 165-acre recreation/park facility located in Carmel Indiana. The site is a part of the North'/2 of Section 1, Township 17N, Range 3E in Carmel, IN. Specifically, the site is bounded by 111t" Street and 116'" Street ' on the south and north, and by College Ave. and Westfield/Rangeline on the west and east. ' Terrain and existing ground condition: ' The existing site is a mixture of agricultural fields and woods. To the west of the Monon Trail (which runs north and south about %2 mile east of College Ave.), the majority of the ground is covered with row crops (corn), with a few patches of ' trees. To the east of the Monon Trail, the park ground is essentially all wooded. The overall site has 39' of relief, with elevations ranging from 849 M.S.L. at the northwest corner to 810 M.S.L. where Carmel Creek crosses under the old ' railroad bed. ' Adjoining land conditions: North: Existing Residential Subdivisions South: Existing Residential Subdivisions ' East: Commercial Developments West: Existing Residential Subdivisions ' Soil types: Soils maps from the United States Department of Agriculture, Soil Conservation ' Service identify Brookston, Miami, Crosby, and Whitaker soils on the subject site. Miami (MmB2, MmA) soils are a part of hydrologic group B, while Crosby (CrA), Brookston (Br) and Whitaker (Wh) soils are a part of hydrologic group C. ' S:\2k\2722\002\drainage\drainreport-t]-22-04.doc I 1 Existing Drainage Conditions: ' The existing park site is divided into five separate basins depending on direction of storm runoff flow. Each existing basin has been delineated on attached maps ' (see pages C1-C4) taken from an onsite topographic survey. The runoff flow paths for each basin have also been included on the attached maps. Descriptions of the five basins are as follows: A) PRE —N This is a 4.59-acre basin which sheet flows north into the back yards of ' adjacent lots in the Guilford Park subdivision (which lies north of the subject site). Drainage from this basin is currently routed to the detention facility in the northeast corner of Guilford Park. Based on a field investigation, it appears that the Guilford Park detention pond discharges north to a large detention pond on the north side of 116`h Street, which in turn discharges to Carmel Creek. The Guilford Park detention system is not critical for the park because the only area ' that will be draining to Guilford Park after development is a small patch of woods that will not be disturbed. ' B) PRE-S2 This is a 7.19-acre basin which sheet flows south to a 12" CMP running underneath 111d' street. This pipe discharges to a detention pond in the eastern ' portion of Lexington Farms subdivision (south of 111th street). ' C) PRE-S1 This is a 39.23-acre basin which sheet flows south to an existing ditch along the north side of 111ih street and eventually discharges to the westerly ' detention pond in the Lexington Farms subdivision. There is an existing 24" CMP which carries the surface flow underneath 111th street and into the Lexington Farms detention pond. In addition to the 24" CMP, there is also a 10" ' subsurface clay field tile (part of the Richard Moffitt Drain, please see page 65) which daylights in an existing manhole just south of 111d' street, and just upstream of the westerly pond in Lexington Farms. As the exhibit on page B5 ' demonstrates, this field tile extends all the way back up to the far northwest corner of the site. ' D) PRE-SW1 AND PRESW2 (WETLAND AREA) The far westerly 13.25 acres of the site, which lies just east of College Avenue, does not appear to have a positive drainage outlet for surface flow. ' During a field investigation on September 2"d, 2003 (just after a very large storm event the previous day), a large amount of standing water was found lying in this area. In addition, the 36" x 22" CMP running under College Avenue was not flowing at all, despite having a decent amount of head built up on the upstream ' end (west side of College Ave.). According to the map on page B5, there is a 6" drain tile (part of the Richard Moffitt drain), which extends into this wetland area. ' S:\2k\2722\002\drainage\drainreport-11-22-04.doc X2 ' However based on the heavy ponding, it is clear that this the is not sufficient to drain this area in a timely fashion. D) PRE- E(PRE-El through PRE-E8) ' This is a 54.1-acre basin located in the eastern portion of the site, with 18.6 acres lying west of the Monon Trail (mainly an agricultural field), and 35.5 acres lying east of the Monon Trail (mainly woods). Included in this basin is a ' 1.35-acre area of offsite drainage from south of 111th street, which flows onto the site via a 12"CMP. The ultimate discharge point for this basin is a 36" clay pipe, which passes under the old Inter -Urban Railroad embankment and discharges ' water to a channel running through the subdivision east of the railroad embankment. This channel, along with the subsurface drain tiles east of the Monon Trail (please see exhibit on page 136), make up the W.C. Van Arsdell ' Drain. There is a 12" CMP and a 15" CMP culvert which currently run under the Monon Trail, passing water from the west of the trail to the east. Due to the ' multiple discharges under the Monon, and the make up of the terrain east of the trail, there are several meandering channels stretching through the woods prior to reaching the 36" clay pipe. For aesthetic and environmental purposes, park designers should attempt to maintain the hydrology to the east of the Monon trail as much as possible during development. ' E) PRE-ES1 & ES2 These basins are located on the south side of 111th Street. PRE-ES1 is comprised of 0.88 acres which flows under 111th St, through a 12" culvert to ' basin PRE-E2 PRE-ES2 is comprised of 1.06 acres which flows north to PRE - El through a 12" culvert under 111th St. ' F) UNDEVELOPED FLOW RATES Only the overall basin flows are listed here. For sub -basin flows see the drainage calculation details. ' Basin 2-year 10-year 100-year PRE-N 0.86 cfs 2.3 cfs 6.1 cfs ' PRE-E 17.1 cfs 33.4 cfs 55.4 cfs PRE-S1 11.8 cfs 24.2 cfs 41.8 cfs PRE-S2 2.9 cfs 3.7 cfs 4.4 cfs 1 ' S:\2k\2722\002\drainage\drainreport-11-22-04.doc 1 143 I 1 1 1 1 1 n 1 1 1 L 1 F Developed Drainage Conditions: Conceptual plans indicate storm water runoff from the site and offsite areas will be collected in storm sewers and routed to a combination of four detention areas on the site. At this time, two of these areas are proposed as dry detention basins, one is a customary wet pond, and the other is a large lagoon/wetland area. Storm water detention criteria is based on the Hamilton County Surveyor's 2-10-100 standards (stormwater in the 10-year developed condition must be released at the 2-year pre -developed, and stormwater in the 100-year developed condition must be released at the 10-year pre -developed rate), The proposed release rates will be compared to the allowable release rates for each storm event at the points where storm runoff currently leaves the site. Park designers intend to address the flow rate requirements, and maintain, as nearly as possible, the existing hydrology on the east of the Monon Trail. There will be some fill required on the east side of the Monon Trail for proposed parking lots and buildings, but otherwise the existing grade will be maintained. To mitigate existing flooding problems south of the site along the Van Arsdell drain, a control structure is proposed at the upstream end of the 36" clay pipe leaving the site along the southeast boundary of the property. The water is proposed to pond in the existing channel and low-lying area directly upstream of the 36" culvert. Of the four existing discharge points, all four will be used in some capacity for the developed site. The explanation of use is as follows: 1) The 36" clay pipe under the old railroad embankment will serve as the main outlet for the four proposed detention areas. 2) The 12" CMP under 111t" street which discharges to the easterly pond in Lexington Farms will pick up a small area of direct discharge from the proposed rec-center �arking lot embankment. 3) The 24" CMP under 111t street which discharges to the westerly Lexington Farm pond will pick up a small area of direct discharge from a basin west of the main entrance. It will also serve as an emergency outlet for the large lagoon/wetland. 4) As mentioned previously, the rear yards of the adjacent lots in the Guilford Park subdivision will only be used to pick up drainage from the onsite woods which currently drain north in that direction and will not be disturbed with the proposed development. The only change is a reduction of undeveloped area discharging in this direction. S:\2k\2722\002\drainage\drainreport-11-22-04.doe M d A) Comparison of Developed and Undeveloped Flow rates ' 1) 12" CMP Under 111 Street (BASIN S2) Undeveloped 2-Year 10- ear 100-year PRE-S2 2.9 cfs 3.7 cfs 4.4 cfs Post -Developed 2-Year 10- ear 100-year DEV-S2 0,8 cfs 1.6 cfs OK 2.6 cfs OK ' 2) 36" RCP Under Old Railroad Bed (BASIN E) ' Undeveloped 2-Year 10-year PRE-E 17.1 33.4 100-year cfs cfs 55.4 cfs Post -Developed 2-Year 10- ear 100-year DEV-E 5.8 cfs 10.2 cfs OK 13.8 cfs OK (see page D31) ' 3) 24" CMP Under 111th Street (BASIN S1) Undeveloped 2-Year 10- ear 100-year ' PRE-S1 11.8 cfs 24.2 cfs 41.8 cfs ' Post -Developed 2-Year 10-year DEV-S1 1.3 cfs 2.6 cfs OK 100-year 4.5 cfs OK (see pg. D32) ' 4) Guilford Park Subdivision (BASIN N) Undeveloped 2-Year 10-year 100-year ' PRE-N 0.86 cfs 2.3 cfs 6.1 cfs Post -Developed 2-Year 10-year 100-year ' DEV-N 0.3 cfs OK 1.1 cfs OK 3.5 cfs OK (see pg. D35, 36, 38) "All the discharge points meet the requirements. The discharge to Guilford Park does not have to meet the 2-10-100 requirements because it will not ' be comprised of runoff from any developed areas. The change in flow represents a reduction in undeveloped area only ' B) La-goon/Wetland Area The large detention pond west of the Monon, which park designers have named ' S:\2k\2722\0021drainage\drainreport-11-22-04.doe "Central Lagoon" is about 10.5 acres in size and may be a problem keeping wet. There are no offsite watersheds to regularly supply the pond with water, and the onsite watershed for the pond is only 72 acres. During the 2-year event the pond is expected 1 to rise only 0.55 feet, and for the 100-year event it will rise only 1.6 feet (using an 8" ' orifice outlet). J ' REFERENCES, Design and data methods are based on the following references: 1 1. HERPICC County Storm Drainage Manual 2. Hamilton County Soils Survey ' 3. ICPR Computer pond routing program 4. 210-VI-TR-55, Second Ed., June 1986 5. Hamilton County IDS 2' Contour Mapping OVERALL WATERSHED ' Carmel Creek 1 1 ' S:\2k\2722\002\drainage\drainreport-11-22-04.doc 1 1 1 1 1 1 1 1 1 1 1 S:\2k\2722\002\dra inage\drainreport-11-22-04 Aoc ju NUNN 04. IM, :4' 0: : Z41 1 0 1 :� I _ .••.• .J.; vr... V rv�CVII.ML Vn ROSEMEADE ZONE X Dill g5 gt ' 5� m� BR � m E MTN ST s � m e z RM 209-2 CREEKSME t m` LN DDNNYBROOK DR LIMB OF FLOODWAY m BF o w a A WOOD VALLEY DR BE _- Z O z eD ABANDONED 808 ZONE X ' ZON fWMAD Bc BB 807 RM 209--4 Foetbddge g —CARMEL BA CREEK PINE VALLEY DR ' O AZ eos ZONE AE n= O AY zONE x Oa RM 209-5 AV 8� NATE DR DR J. a 799 BROOK WNDINDR ZONE X \ AT CARMEL � o CREEK � � I FEMA FIRM MAP -rt- w , CENTRAL PARK: TSC�t2722.002 I V�.►►, A�G71 I•� CARMEL, IN SCALE; 1" 500' 57, T. X NATIONAL WETLANDS INVENTORY MAP CENTRAL PARK: TSC#2722.002 SchrwiWw CARMEL, IN SCALE: 2000' 10 I ' 16671 2 6o4ae I 003 36.7 ac MORRIS, DONALD P. VALLEY DEVELOPMENT INC, STA 6 4.6cc 022 /00 %l ZR.C. 4B3oc COR,A y)dpp' ES 8D.\ s Ec.a UU STA 35450 TO STA 48 OF ORIGINAL DRAIN RELOCATED seo. to seen _ AS PART OF LEXINGTON FARMS 1� DRAINAGE FACILITIES: SEE EC,6 DRAINAGE FACILITIES FOR LEXINGTON FARMS SECTIONS 1-9 FOR FURTHER DETAIL. LEXf GTON FARMS SE SEC. SEC, 2 5TA 48' OWN 0 .� 8 ` DRAINRD'MOFFITT alc 0 0 row 6 so 8 0 SEC. SEC. I a�a 90 row � see .. oseu ata 22 - row Ib' f7e a 3 w co Q SEC. 7 a. RICHARD MOFFITT LEGAL DRAIN EXHIBIT -i�- x n h. , CENTRAL PARK : #2722,002 j(a@j' CARMEL, IN SCALE: t" = 660' I 116th 5( a I 26 27 12 0 •C... GSa ORP• 13010 '4.2� a 4 3 HE 8.741Ac RNER 3 DONALD P. VALLEY DEVELOPMENT INC. ; n a ti U) ICF1Jl.S 6 26.4Ac f x ;ro o z o f• 3s o o mo p cLtr 14 3.IAc 7 003 .e 8 18 f 36.7 Ac o m " 8 3 015 a o 4 3 0 w 15 14 12 32 0`• ui > o c N 19 17 1- 31 yW 4.8Ac STA 0 41 W.C. 42 VAN. AR$DELI, [RAIN 58 STA OfoIIt50=8 file 018 S7 56 43 c 11450 fo23f00'=10" file 64 44 23t00 fo41t35=12" Ti 3 3Ac __ JW BETTY 019 zKoff OEM . ARSDELL LEGALDRAIN .... _ . _.. .., 1 1 1 1 1 1 i W.R. FERTIG LEGAL DRAIN EXHIBIT �t- n CENTRAL PARK : TSC2722.002 x CARMEL, IN SCALE: i" 500' 1 Lki 1 1 1 1 1 1 1 4�-� � Y 2 p l�aj w Crir"L` r_ S;\2k\2922\002\drainage\drainreport-11-22-04.do LJ I !it I� s „ ' 5 5 5 � I a a a i .. j? a a � o g < Y I � ' Ilr J ' ' m on ✓u.�� 9mrn F£ Z 4r� F£ o ov"N C .��y IAaO'JN u 7 w g u m�uom"am" I. V mA Y'.S 1 MAAION CO., INDIANA Soil and water features [Absence of an entry indicates the feature is not a concern. The symbol < means less than; > means vreater th.,.i Soil name and Hydro. Flooding With water table map symbol logic Frequency Months Depth Kind Months potential group frost 'actiod Brookston. Ft a ............._._..,__..._.... _.... B/D Frequent.....,Dec-May.... I 0-1.0 Apparent .... Dec -Slay Hi h. g Crosby: CIA. .__......_--__.-_.. C None...._........... ............... 1.0-3.0 ADParent...... Jin-Apr...... Hi h. g 492' Crosby Part._.__._ ..... C None ......_._ -_._........_..._ _............... 1.0-3.0 Apparent....... Jan -Apr........ High Miami part._..._...... H None ... .-...-.. ........... .... _... M............ >6.0 Eel: .. ................_ ......_........ .. Moderate. Ee..____..:.-_: _.. ....... ...... C Frequent.. Brief_ ... Oct -run..._.. 3.0-6.0 Apparent....... Jan -Ayr... High. g Fox: FeA. Feat. `F.t.2.__:.._.. _._. B None ..._....... ... Moderate. Genesee: ...._ B Frequent_- Brief.... Oct --Jun..__ >6.0 _.......... ... Moderate. Hennepin: - J -_ H.F-.. H None.._..__...... _. ._.-.. >6.0 .. Moderate. Martinsville: MpA. M4e2_... ..-_-- -._. B None _...-... _......... >6.0 ....__ ......_..._ .....- Moderate. Miami: _ MMA-'Mna2 MmC2, M:E2 B None.....__.._....._...._......__...._.. ......... >6.0 ..........._,........ ....._...._ ... Modente. Ockley: OrA. Oce2-...._--- H None_ ...._.. ..------- ...... ..:._ > 6.0 ._ ..._ ........ ._. _� ... , Moderate. asselaer: 'a•--__-._- ...--... B/D None_........ ..._..__. ...... 0-1.0 Apparent__._ Dec -May High.Shoals: sh— C Frequent_... Brief_._... Oct -Jun -..__ 1.0-3.0 Apparent-.. Jan -Apr....... High, i„-. Sleeth: Sk_.-�.—.___.._. C None .__..-.._...._..._.: _—_..._.,_.. 1.0-3.0 Apparent-.. Jan -Apr _.. High. $loan: Frequent,_ Long-,_ _ Oct -Jun _-, 0-0.5 Apparent.__. Nov -Jolt ...-.. High. Urban land: Ub: Brookston part-_._-. B/D Frequent __.. Brief._.... Deo-May__ 0-1-0 Apparent_... Dec -May,. High. r� Crosby part..-._...._. C None._._ _ .. ..._-__ .__ ._..._»- 1.0-3.0 Apparent-_ Jan -Apr._._ . High. aUfl Fox part_ B None._ .'- _ --,-- >6.0 .--_-._...- _ ._--.._.__ Moderate. `tl Fox part ._.... B None__.___. : >6.0 ...-- '_.__'._......._. Moderate. -.- • llge Genesee part—.... ..._.. B Frequent_.._ Brief..._... Ol >6.0 -.-'---.. .. _... --- _._.------. _. Moderate. ` Vol% Miami Part_...___.._...... B None._.._r >6.0 ._.__- ........... ......_.— ...... _. Moderate. ` V.tCs - Miami part__._, B None__ ___ >6.0 _._.....-_ _�___ _,._ Moderate. .- Westland part-__„ B/D Fregcent_. Brief.._-.- Dec -May.._._ 0-1.0 Apparent. Dec -May ..... .-. High. Westland: w•------------� B/D -Frequent_ Brief.-_- Dec-MaT_. 0-1.0 Apparent__.. Dec -May._.._. High, Whitaker: �'-------------- C one_.__-.._-__ . _ 1.0--3.0 Apparent-_ Jao-Apr__..... High. This mapping unit is made op of two or more dominant kinds of soil. See mapping unit description for the composition and caviar of the whole mapping unit ' TABLE 205.1: Soil and Water Features for Marion County, Indiana City of Indianapolis Appendix page A2-11 l Stonnwater Specifications Manual (�J? Mav 10. 1995 Runoff curve numbers for urban areas, Curse numbers for Cover description hydrologic soil group— - Average percent Cover type and hydrologic condition impervious areas A B C D r 7' y devel4Vd urban areas fregetation established) 1�■tt space (lawns, parks, golf courses, cemeteries, etc.)3: oor condition (grass cover < 50%) .............. arc• condition (grass cover 50% to 75%)........... condition (grass cover > 75%) .............. rvrous areas: ed parking lots, roofs, driveways, etc. xcluding right-of-way) ........ .................. f .. ssw wuu awtu: rayed; curbs and storm sewers (excluding . .!K right-of-way) .................................. Waved; open ditches (including right -of -Way) ....... Gravel (including right-of-way) ................... (including right-of-way) .... . ............... . 'llern desert urban areas: Mural desert landscaping (pervious areas onlyN... i Artificial desert landscaping (impervious weed "er, desert shrub with 1• to 2-inch sand gravel mulch and basin borders). ......... districts: Commercial and business .......................... I '4Men ............................... tial districts by average.lot size: IM acre or less (town houses) ...................... (! U.......................................... 1tacre ........................................... Trig ... ......................................... ` urban areas graded areas (pervious areas only, tation........................:.......... le ds (CN's are determined using cover types draUar to those in table 2.2c)_ 68 79 86 89 49 69 79 84 39 F6-1----7fl 80 98 98 98 98 98 83 89 92 93 76 85 89 91 72 82 87 89 63 77 85 88 96 96 96 96 85 89 92 94 95 72 81 88 91 93 65 77 85 90 92 38 61 760 83� 87 30 57 72 81 86 25 54 70 80 85 20 51 68 79 84 12 46 65 77 82 77 86 91 94 vedike runoff condition, and 1, = OYS. re average percent impervious area shown was used to develop the composite CN's. Other assumptions are as foilow-s: impervious areas d&Wy connectetl'to the drainage system, impervious arras have a CN of 98, and pervious areas are considered equivalent to open Mgood hydrologic condition. CN's for other combinations of conditions may be computed using figure 23 or 2d. Y ' wn are equivalent to those of pasture. Composite CN's my be computed for other combinations of open "ce cover type. 'te CN's for natural desert landscaping should be computed using figures 23 or 24 based on the impervious area percentage (CN )M and the pervious area CN. The pervious am CN's are assumed equivalent to desert shrub in poor hydrologic condition. to CN's to use for the design of temporary measures during grading and construction should be computed using figure 23 or 24, the degree of development (impervious area percentage) and the CN's for the nearly graded pervious areas. TABLE 205-2: Runoff Curve Numbers for Urban Areas ' (SOURCE: 21 O-VI-TR-55, Second Ed., June 1986) 61 of Indianapolis w+ Appendix page A2.12 a Stormwater Specifications Manual G May 10, 1995 I ' Runoff curve numbers for cultivated agricultural lands' Curve numbers for Cover description hydrologic soil group— Hydrologic Cover qTe Treatment' condition' A B C D Fallow Bare soil — 77 86 91 94 ' Crop residue cover (CR) Poor 76 85 90 93 Good 74 83 88 90 Row crops Straight ioty (SR) Poor 72 81 88 91 Cool 67 r8 85 89 SR + CR Poor 71 80 87 90 Contoured (C) Good Poor 64 70 75 79 82 84 85 88 Good 65 76 82 86 C + CR Poor 69 78 83 87 Good 64 74 81 85 ' Contoured & terraced (C&T) Poor 66 74 80 82 Good 62 71 78 81 C&T + CR Poor 65 73 79 81 1 Good 61 70 77 80 �I i Small grain SR Poor 65 76 84 88 Good '63 75 83 87 SR + CR Poor 64 75 83 86 Goal 60 72 80 84 C Poor 63 74 82 85 ' Good 61 73 '81 84 C + CR Poor 62 73 81 84 I Good 60 72 80 83 C&T Poor 61 72 79 82 ' Good 59 70 78 81 C&T + CR Poor 60 71 78 81 { ILose-seeded Good 68 69 77 80 SR Poor 66 77 85 89 I or broadcast Good 58 72 81' 85 legumes or C Poor 64 75 83 85 rotation Good 55 69 78 83 meadow; C&T Poor 63 73 80 83 ' L Good 51 67 76 80 verage runoff condition, and 1, O.S. . aCmp mridne nnrr applies only if rvsidue is on at lea-* 5% of the surface throughout the year. . 3HydrWo0c condition Lc based on combination of factory that affect infiltration and runoff, including (a) density and canopy of vegetative eas. (b) amount of yrar-rorass und cover. (c) amount of gor close :seeded legumes in rotations, (d) pergenl of residue cover on the land sur. f ee (Kaai 3 ''An: and (e) degree of surface roughness. kPan: Factay impair infiltratknn anal tend to increase runoff. (Kxxt Factor, eravurage average and better than average infii4 atior and tend to dectea�se runoff. f I: TABLE 205.3: Runoff Curve Ntunbers for Cultivated Agricultural Lands (SOURCE: 210-VI-TR-55, Second Ed., June 1986) ' of Indianapolis G Appendix page A2-13 water Specifications Manual May 10, 1995 { Itunoff curve numbers for other agricultural lands' Cover description ' Cover type Hydrologic condition A IlIstu", grassland, or r•arrge--continuous orage for grazing.= dow- continuous grass, Protected from and generally mowed for hay. ' —brush-weed-grass mixture with brush he major element? combination (o rc}rard r tree farm).$ Poor Fair Good Poor Fair Good Poor Fair Good Curve numbers for hydrologic soil group— B C O 68 79 49 69 39 61 30 68 48 67 35 56 430 48 57 73 43 65 32 58 86 89 79 84 74 80 71 78 77 83 70 77 65 73 82 86 76 82 72 79 Poor 45 66 77 83 Fair 36 60 73 79 Good 430 156 70 77 leads —buildings, lanes, driveways, d surrounding lots. — 59 74 82 86 r emp runoff mndition, and 1. IT <50% ground mver or heathy gra" with nu mulch urn 50 to 75% ground cover and not hearer. g d QKW: >75% grtnmd cover and lightly In, only occasionally grazed. r. <60% ground cover. r. 50 to 75% ground rover. . Coed: >7W ground mver. ual Curve number 6 lecc than 30; use CN x 30 for runoff mmputationd. 's se i%mCN wfor mmputetl for area,• with i � uraKt. and 50'F gray (pasture) mver. Other mmbinationr of conditiorrc nwy be tour uted from the CN's for r�ootl• anti pa.•tmr, p •�e Pored[ litter : nwl) urns, and burned: h ar•e demrt�m demoted by heavy grazing or ular t+ning. ■■rr: Wwxld are Kr�rznl but not burned, and some fun-[ litter mteta the vwil. GCard: Woods are protected from grazing, and litter and brush adequately cover the soil. - ' TABLE "5.4, Runoff Crave Numbers for Other Agricultural Lands (SOURCE: 21 O I TR-55, Second Ed., June 1986) ' City of Indianapolis C APPent6x page A2-14 Stwmwater Specifications Man.._, Mav in. 7995 I I I I I PROJECT NAME: ...... e(.,,.k . ............................. - ......... ...... PROJECT NO: ..' Z-ZZ.Z,0,a,2,. SHEET...,.,.....,,...... OF ......... ... ... PROJECTPHASE:- ................ ......................................................................... ... .., DESIGNED BY: ......... ............... DATE: - ..... - ............ ........ DESCRJPTIOW-, ........ ... ................... .............. .................... ........................... .... .. ..., CHECKED BY:............ ........... .................. DATE:,.......,.,.. ...... ...... .......... ......:.ASSUMPTIONS/REFERENCES The Schneider Corporation 14dyl -- G'14 4'r Tie4' A,ih f lGo Vo L-uuv-� 6v to so,/ C-Itl �� -1,(70) -5 64 C'// , -/-, <(70) � 6 S 4r,ea 6, w TtIre C . 7L i 1 7L - 3A. ✓ -- -------- —/Q ---L7 ie-es_ J --- ------ - C7 PRCICT NAME: .... I ... ...... e.4.Ak- .... . ........................... PROJErT NO: ... Z7-Z2--,00.Z,SHEET .............. OF................ PROJECT PHASE: ........... ....... ........... ...................... .............................................DESIGNED BY: ................DATE:--........ ..... —.- ........... .... DESCRIPTION: .... .................... CHECMDBY:,,, ..... .... ... ............ .... .. DATE:............. ............ Schneider ..................... Y.5,rx­ ... :�'­"2'ek' .....aP.... e' 2 ......... ............... *e* ....... 25............................. .. .......... ....... ASSUMPTIONS J REFERENCE: The Schneider Corporation Gar = , / C7 ('?) -/-, q (ge, ) = g� Ar,;7 Z 0 � �-I/ - . 3 00) 1-- , -7 ( 9 5) � 8 / wo ,d-qg& PROJECT NAME: . ..... Ced-,.-We .. / ..... -Aarg .................................... PROJECT NO:SHEET ................... OF 1110b V PROJECT PHASE: ......................................... ................................ ............................... DESIGNED BY: ........ 4.-X� ................ DATE:............. ...... Ar DESCRIPTIOW ...................... ......................................................................I.. ....... CHECKED BY:........................................... DATE:................................,...........-krmiraw /---d a ,- . - I I /REFERENCES The Schneider Corporation k-e-,o, = OrggA, ro k7,_,5 'ale Gltl = I (a (7 0) �-, 4 (,Po) -:;- 74 V-71 X4 -'L IV-/-- -s 1 �7� zal 40 OZO so,'/ 1/0 54 6111 6 ('20 C70) ke Si CTNAME' .1.50,.Vk . ................ ............... ........ PROJECT NO:.Z.72.2.,..0.0Z, SHEET. ................. OF ....... R CT PHASE:......., ... ....... . .. . .. .. ............................... ..... .... . ......... DESIGNED BY:........... ..................... I ......... DATE: ...... ................................. OJE HASE . ... DESCRIPTIONp'.... ........ .............. CHECKED BY: ....... ...................... .... ....... DATE:_ ................. - ............... Schneider ............... ....... z,�'ct ... 2 . ..... ............ .. ..... .. . ............ . . .......... ..................... .... . ....... ASSUMPTIONS REFERENCE! The Schneider Corporation 141 z -Z 7 0 ex I I" z Ze�,Al ekalk 3 0 "z 0 C"2 9" 0 r III a4 7 jaz' 4f F-' E � Mmm�m � NfmV N tMl NMNNN v fi E W NrNaOo. V E �� N[V O ^m '" �.j m rm mm((pp 000 000 C 0 0 0 0 0 0 on F d t •.0 m mm mom y y E U G 66 660 U O C M N N N �p N U W O 8 0 N m o m J LL C _ � � C C > a o v a .� 31 p f A N M �- W t t.. N ��� 0 0 mHIE o000000000000000 N Y LL e ; C O C O C 0 Et o < e A n C O m v 0 $ OJ C N � no a V fO O OmMmmN---NN-MN"N O n F O Y O V O V V Y Y O O V N N �€ 6000000000000000 LL O ain t�l- co N f/t Z W N W W Li W W LiW W W W q� W W W � W W W IL W IL lG W W W W N c K C W W C It K K K w aaanaaaaaaE(L am a Cf- / / RAINFALL- 2 YEAR FREQUENCY- 24 HOUR DURATION 2.7" . 2.6It 3. m 7It 6" 2.9'0 3" I 6 REFERENCE STATE OFINOIANA TECHNICAL PAPER NO. 40 DEPARTMENT OF NATURAL RESOURCES NATIONAL WEATHER SERVICE DIVISION OF WATER APRIL 1979 6.2 G �� RAINFALL - 10 YEAR FREQUENCY - 24 HOUR DURATION 3.9" 3.811 3.9" Elm 4.1 4.2" REFERENCE STATE OF INDIANA TECHNICAL PAPER NO. 40 DEPARTMENT OF NATURAL RESOURCES NATIONAL WEATHER SERVICE DIVISION OF WATER - 6..4 - (2/3 AYRLL 19lF RAINFALL— loo YEAR FREQUENCY— 24 HOUR DURATION i.2 L3 i.5n i;6 11 5.7 i e" i.9 REFERENCE STATE OF INDIANA TECHNICAL PAPER NO, 40 DEPARTMENT OF NATURAL RESOURCES NATIONAL WEATHER SERVICE DIVISION OF WATER APRII 1979 -6.7- �i�� INPUTS FOR PRE -DEVELOPED BASINS MODEL Nodes Name: E6-WEIR BOUNDAR Base Flow(cfs): 0,000 Init Stage(ft): 833.500 Group: BASE Wam Stage(ft): 837.000 Type: Stage/Area Stage(ft) Area(ac) Name: PRE -El Base Flow(cfs): 0.000 Init Stage(ft): 817.570 Group: BASE Warn Stage(ft): 823.000 Type: Stage/Area Stage(ft) Area(ac) --------------- ------- 817.570 0.0000 819.000 0.0070 820A00 0.0750 821.000 0,2300 822,000 0,5600 823.000 1.3000 Name: PRE-EI BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 817.460 Group: BASE Wam Stage(ft): 820.500 Type: Time/Stage Time(hrs) Stage(ft) 0.00 — 817.460 999.00 817.460 Name: PRE-E2 Base Flow(cfs): 0.000 Init Stage(ft): 824.400 Group: BASE Wam Stage(ft): 826.500 Type: Stage/Area Stage(ft) Area(ac) Name: PRE-E3 Base Flow(cfs): 0,000 Init Stage(ft): 827.830 Group: BASE Wam Stage(ft): 830.000 Type: Stage/Area Stage(ft) Area(ac) Name: PRE-E4 Base Flow(cfs): 0.000 Init Stage(ft): 839.900 Group: BASE Wam Stage(ft): 842.000 Type: Stage/Area Stage(ft) Area(ac) 839.900 _ 0.0000 12 /S 840.000 0,0100 ' 841MO 0.6100 841.300 0.9500 -------------------------- ----- --------------------------------- --Sta----- Name: PRE-E4-BOUNDARRY Base Flow(cfs): 0.000 Init ge(ft): 841.300 Group: BASE Warn Stage(ft): 842.000 Type: Stage/Area Stage(ft) Area(ac) 1 ----- -------- -------------- j ----------------------------------------- 0.000 Init Sta ------------------ gft : 835.250 Name: PRE-E5 Base Flow(cfs): e ' Group: BASE Warn Stage(ft): 839.000 Type: Stage/Area ' Stage(ft) Area(ac) ............. -- 835.250 0.0000 836.000 0.0220 837.000 0.0600 837.500 0.0900 838.000 0.9400 839.000 1.5000 ' - - --- - ---------- - ------- Name: PRE-E5 BOUNDARY Group: BASE - - -- ------ ---------- ------- Base Flow(cfs): 0.000 Init Stage(ft): 833,910 Warn Stage(ft): 835.000 Type: Stage/Area Stage(ft) Area(ac) ' - --- - - - - - - - - - - - ------------- ---- Name: PRE-E6 Base Flow(cfs): 0.000 Init Stage(ft): 832.610 Group: BASE Wam Stage(ft): 839.000 Type: Stage/Area ' Stage(ft) Area(ac) ------------- ' -------------- 832.610 0.0000 836.000 0.0100 837.000 0.2300 837.500 0.4000 838.000 0.8400. 839.000 1.5000 '- - - -- - Name: PRE-E6 BOUNDARY ------- ---- -------------- ----------- Base Flow(cfs): 0.000 Init Stage(ft): 830.960 Group:BASE Warn Stage(ft): 834,000 Type: Stage/Area ` Stage(ft) Area(ac) ---------- ------- ------- 830.960 0.0000 ' 832.000 0.0200 833.000 0.0400 833.500 0.0600 ' 834.000 0.0800 C !� Name: PRE-E7 Base Flow(cfs): 0.000 Init Stage(ft): 824,730 Group: BASE Wam Stage(ft): 826.000 Type: Stage/Area Stage(ft) Area(ac) ------- ----------------- 824.730 0.0000 825.000 0.0400 825.150 0.0700 , 826.000 0.3700 Name: PRE-E7 BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 825.150 Group: BASE Warn Stage(ft): 826.000 Type: Stage/Area Stage(ft) Area(ac) Name: PRE -ES Base Flow(cfs): 0.000 Init Stage(ft): 829,090 Group: BASE Warn Stage(ft): 831.000 Type: Stage/Area Stage(ft) Area(ac) ----------- -------------- 829.090 0.0000 830.000 0.2600 830.300 0.4600 830.500 0.5000 Name: PRE-E8 BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 830.300 Group: BASE Warn Stage(ft): 831.000 Type: Stage/Area Stage(ft) Area(ac) Name: PRE-ESI Base Flow(cfs): 0.000 Init Stage(ft): 834.500 Group: BASE Warn Stage(ft): 836,000 Type: Stage/Area Stage(ft) Area(ac) - ----------- 834.500 0.0000 835.000 0.0050 836.000 0.1000 Name: PRE-ES1 BOUNDAR Base Flow(cfs): 0.000 Init Stage(ft): 834.510 Group: BASE Warn Stage(ft): 835.500 Type: Stage/Area Stage(ft) Area(ac) CIF Name: PRE-ES2 Base Flow(cfs): 0.000 Init Stage(ft): 833.570 Group: BASE Warn Stage(ft): 835.600 Type: Stage/Area Stage(ft) Area(ac) ...... — ...... 833.570 0.0000 834.000 0.0050 835,000 0.1500 835.600 0.2000 Name: PRE-ES2 BOUNDAR Base Flow(cfs): 0,000 Init Stage(ft): 832,590 Group: BASE Warn Stage(ft): 835.000 Type: Stage/Area Stage(ft) Area(ac) Name: PRE-SI Base Flow(cfs): 0.000 Init Stage(ft): 835.700 Group: BASE Wam Stage(ft): 840.000 Type: Stage/Area Stage(ft) Area(ac) -------- --- 835.700 0.0000 836.000 0,0020 837.000 0.0050 838.000 0.0100 839.000 0.0200 840.000 0.7300 840.400 1,4200 Name: PRE-SI BOUNDAR Base Flow(cfs): 0.000 Init Stage(ft): 835.480 Group: BASE Warn Stage(ft): 940.000 ' Type: Time/Stage Time(hrs) Stage(ft) 0.00 835.480 999.00 835.480 ' I — — — — Name: PRE-S2 --------------------------------------------- Base Flow(cfs): 0.000 Init Stage(ft): 837.520 Group: BASE Warn Stage(ft): 839.500 ' Type: Stage/Area Stage(ft) Area(ac) --•-•-••--- ---------- 837.520 0.0000 ' 838.000 0.0500 839.000 0.1000 ' •---839.650---- 0.4000------ ------- —---- --- — — — -- — — Name: PRE-S2 BOUNDARY Base Flow(cfs): 0,000 Init Stage(ft): 837.560 ' Group: BASE Warn Stage(ft): 840.000 G�g 07 IL Type: Time/Stage Time(hrs) Stage(ft) ---------- --------------- 0.00 837.560 999.00 837.560 Name: PRE-SW1 Group: BASE Type: Stage/Area Stage(ft) Area(ac) - ------- ------------- 846.000 0.1500 847,000 4.6000 847.120 5.3000 Name: PRE-SW2 Group: BASE Type: Stage/Area Stage(ft) Area(ac) 846.000 0.0100 846.300 0.0900 847.000 0.5000 Base Flow(cfs): 0,000 Init Stage(ft): 846.000 Warn Stage(ft): 848.000 Base Flow(cfs): 0.000 Init Stage(ft): 846,000 Warn Stage(ft): 847.000 Name: PRE-SW2 BOUNDAR Base Flow(cfs): 0.000 Init Stage(ft): 846.300 Group: BASE Warn Stage(ft): 847.000 Type: Stage/Area Stage(ft) Area(ac) Pipes Name: 36" CLAY CULVER From Node: PRE-EI Length(ft): 43.80 Group: BASE To Node: PRE-EI BOUNDARY Count: I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 36.00 36.00 Entrance Loss Coef: 0.50 Rise(in): 36.00 36.00 Exit Loss Coef: 0.00 Invert(ft): 817.570 817.460 Bend Loss Coef: 0,00 Manning's N: 0,013000 0,013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 0.000 Inlet Ctrl Spec: Use do Bet Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description Circular Concrete: Groove end projecting ' Name: E5-E3 Pipe From Node: PRE-E5 Length(ft): 30.50 I ' Group: BASE To Node: PRE-E5 BOUNDARY Count: I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 15.00 15.00 Entrance Loss Coef: 0.50 Rise(in): 15.00 15.00 Exit Loss Coef: 0.00 Invert(ft): 835,250 833,910 Bend Loss Coef: 0,00 ' Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0,000 0.000 Stabilizer Option: None ' Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: ' Circular Concrete: Groove end projecting ' -------- •-------- -------------'---------- Name: E6 - E3 Pipe From Node: PRE-E6 Length(ft): 39.00 Group: BASE To Node: PRE-E6 BOUNDARY Count I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic ' Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0,50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 832.610 830.960 Bend Loss Coef. 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do . Bot Clip(in): 0,000 01000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Name: ES - E2 Pipe From Node: PRE-ESI Length(ft): 30.00 Group: BASE To Node: PRE -ES l BOUNDAR Count: 1 ' Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both ' Span(in): 12.00 12.00 Entrance Loss Coef: 0,50 Rise(in): 12.00 12,00 Exit Loss Coef: 0.00 Invert(ft): 834.500 834.510 Bend Loss Coef: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use do or tw ' Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None ' Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: ' Circular Concrete: Groove end projecting --- — ------- — ----- — --------- --_ — — — ---------- — ' Name: ES2 - EI Pipe From Node: PRE-ES2 Length(ft): 105.00 Group: BASE To Node: PRE-ES2 BOUNDAR Count: I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic ' Geometry: Circular Circular Flow: Both C 2i� 1.1 I ' Span(in): 12.00 Rise(in): 12.00 Invert(ft): 833.570 Manning's N: 0,02400 I ' Top Clip(in): 0,000 Bot Clip(in): 0.000 I I 1 1 11 I 12.00 0 Entrance Loss Coef: 0,50 12,00 Exit Loss Coef: 0.00 832.590 Bend Loss Coef:0,00 0,024000 Outlet Ctrl Spec: Use do or tw 0,000 Inlet Ctrl Spec: Use do 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular CMP: Headwall Name: PRE-Sl CULVERT From Node: PRE-SI Length(ft); 41,00 Group: BASE To Node: PRE-Sl BOUNDAR Count: Friction Equation; Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 36.00 36.00 Entrance Loss Coef: 0.50 Rise(in): 36.00 36.00 Exit Loss Coef: 0.00 Invert(ft): 835.700 835.480 Bend Loss Coef. 0.00 Manning's N: 0,013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet CtrI Spec: Use do Bet Clip(in): 0.000 0.000 Stabilizer Option; None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular CMP: Headwall Name: PRE-S2 PIPE From Node: PRE-S2 Length(ft): 36.50 Group: BASE To Node: PRE-S2 BOUNDARY Count: I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 837,520 837.560 Bend Loss Coef: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Channels Name: E2-E1 CHANNEL From Node: PRE-E2 Length(ft): 458.00 Group: BASE To Node: PRE-EI Count: 1 UPSTREAM DOWNSTREAM Geometry: Trapezoidal Trapezoidal Invert(ft):824.400 819.110 TClpInitZ(ft):9999.000 9999,000 Manning's N: 0.060000 0,060000 Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Contraction Coef 0.000 Expansion Coef: 0.000 C2/ Top Clip(ft): 0.000 0.000 Entrance Loss CceC 0.000 Bot Clip(ft): 0.000 0,000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElev1(ft): Inlet Ctrl Spec: Use do ' Aux XSec I: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): ' Depth(ft): Hot Width(ft): 5,000 5,000 LtSdSlp(h/v):3.00 3.00 RtSdSlp(h/v):3.00 3.00 -------------------------------- -------------------------------------- ----------- ---------- Name: E3 - E2 Channel From Node: PRE-E3 Length(ft): 313.00 ' Group: BASE To Node: PRE-E2 Count: 1 UPSTREAM Geometry: Trapezoidal DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic Invert(ft): 827.830 824.400 Flow: Both TClpinitZ(ft): 9999,000 9999.000 Contraction Ccet 0,000 Manning's N: 0.080000 0.080000 Expansion Coef: 0.000 Top Clip(ft): 0,000 0.000 Entrance Loss Coef. 0.000 Hot Clip(ft): 0.000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw ' AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec l: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): But Width(ft): 5.000 5.000 LtSdSip(h/v):40.00 3.00 RtSdSlp(h/v):40.00 3.00 ' ---------- -------------- Name: E4-E5 CHANNEL — ---------- — --------------------------------- --- From Node: PRE-E4 BOUNDARY Length(ft): 385.00 Group: BASE To Node: PRE-E5 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 841.300 835.250 Flow: Both TClpinitZ(ft): 9999,000 9999.000 Contraction Coef: 0.000 ' Manning's N: 0.080000 0,080000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0,000 Entrance Loss Coef. 0.000 Bot Clip(ft): 0.000 0,000 Exit Loss Coef: 0.000 ' Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec 1: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): _ Bot Width(ft):50.000 10.000 LtSdSlp(h/v):40,00 40,00 RtSdSlp(h/v):60.00 40.00 t---------- -------------------------- ---- --- -------- ------- ----- -- — ----- Name: E5-E3 Channel From Node: PRE-E5 BOUNDARY Length(ft): 390.00 Group: BASE To Node: PRE-E3 Count: I _ C�2 I UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance 1 Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 833,910 827.830 Flow: Both i TClpinitZ(ft): 9999,000 Manning's N: 0.070000 9999,000 0.060000 Contraction Coef: 0.000 Expansion Coef: 0.000 Top Clip(ft): 0,000 0.000 Entrance Loss Coef: 0.000 Bot Clip(ft): 0.000 0.000 Exit Loss Coef: 0,000 Main XSec: Outlet Ctrl Spec: Use do or tw ' AuxElevl(ft): Inlet Curl Spec: Use do Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 5.000 5.000 LtSdSlp(h/v):10.00 40.00 RtSdSlp(h/v):10.00 40.00 1 t-------------------------------------- -------- ------- --- ------ Name: E6 - E3 Channel From Node: E6-WEIR BOUNDAR Length(ft): 560.00 Group:BASE To Node: PRE-E3 Count: 1 ' UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 833.500 827.830 Flow: Both 1 TClpInitZ(ft): 9999.000 9999.000 Contraction Coef. 0.000 Manning's N: 0.080000 0.080000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef. 0.000 But Clip(ft): 0.000 0.000 Exit Loss Coef: 0.000 1 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec I: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): ' Depth(ft): Bot Width(ft):20.000 10.000 LtSdSlp(h/v):30.00 20.00 RtSdSIp(h/v):30.00 40.00 1 -------- ------- ------------ ----- --------------------------- ---- ---------- Name: E7-E I CHANNEL From Node: PRE-E7 BOUNDARY Length(ft): 400.00 1 Group: BASE To Node: PRE-E I Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft):825,150 819.500 Flow: Both 1 TClpInitZ(ft): 9999.000 9999.000 Contraction CoeE 0.000 Manning's N: 0.070000 0.070000 Expansion Coef: 0.000 1 Top Clip(ft): 0.000 Bot Clip(ft): 0.000 0.000 0.000 Entrance Loss Coef: 0.000 Exit Loss Coef: 0,000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElcvl(ft): Inlet Curl Spec: Use do Aux XSec I: Stabilizer Option: None 1 AuxElev2(ft): Aux XSec2: ' Top Width(ft): Depth(ft): Bot Width(ft): 10.000 5.000 LtSdSlp(h/v):12.00 3,00 RtSdSlp(h/v): 12.00 3.00 �7 y t: f7 s Name: E8-EI CHANNEL From Node: PRE-E8 BOUNDARY Length(ft); 170,00 Group: BASE To Node: PRE-E I Count: I UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 830,300 819.500 Flow: Both ' TClpinitZ(ft): 9999,000 9999.000 Contraction Coef. 0.000 Manning's N: 0.100000 0.100000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 ' Bot Clip(ft): 0.000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec 1: Stabilizer Option: None t AuxElev2(ft): Aux XSec2: Top Width(ft): ' Depth(ft): Bat Width(ft): 20.000 20.000 LtSdSlp(h/v):50.00 50.00 ' RtSdSlp(h/v):50.00 ----------•----- ----- ---------------- 50.00 ------ ----------------------- ------- ------- Name: ESI-E2 Channel From Node: PRE-ESI BOUNDAR Length(ft): 500.00 ' Group: BASE To Node: PRE-E2 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic ' Invert(ft): 834.510 824.400 Flow: Both TCIpInitZ(ft): 9999.000 9999.000 Contraction Coef 0.000 Manning's N: 0.080000 0.080000 Expansion Coef. 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 ' Bot Clip(ft): 0.000 0.000 Exit Loss Coef. 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw ' AuxElevl(ft): Aux XSecl: Inlet Ctrl Spec: Use do Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): ' Depth(ft): Sot Width(ft): 10.000 5.000 LtSdSlp(h/v):30.00 RtSdSlp(h/v):30.00 3.00 3.00 ----- ------P------- - ------------ ----------- --------------- ----------- ------ Name: ES2-EI CHANNEL From Node: PRE-ES2 BOUNDAR Length(ft): 503.00 ' Group: BASE To Node: PRE-E1 Count: I ' UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft); 832.590 819.110 Flow: Both TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0,080000 0.080000 Expansion Coef 0,000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bot Clip(ft): 0.000 0,000 Exit Loss Coef 0.000 Main XSec: AuxElevl(ft): Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use do Aux XSec1: Stabilizer Option: None AuxElev2(ft): ' Aux XSec2: c2� Top Width(ft): ' Depth(ft): Bot Width(ft): 5.000 5.000 LtSdSlp(h/v):20.00 3.00 ' RtSdSlp(h/v):20.00 3.00 ------- -------•-- - - --------- --- - ------ ---- ------------ - Name: SW2-SICHANNEL From Node: PRE-S W2 BOUNDA R Length(ft):319.00 ' Group: BASE To Node: PRE-SI Count: I +II I UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance ' Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 846.300 846.300 Flow: Both TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0,060000 0.060000 Expansion Coef: 0.000 ' Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bet Clip(ft): 0.000 0.000 Exit Loss Coef 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw ' AuxElevl(ft): Inlet CtrlSpec: Use do Aux XSec I: Stabilizer Option: None AuxElev2(ft): Aux XSec2: ' Top Width(ft): Depth(ft): Bot Width(ft): 20.000 5.000 LtSdSlp(h/v):100,00 3.00 RtSdSlp(h/v):100.00 3.00 ' Weirs Name: E6-E3 WEIR From Node: PRE-E6 BOUNDARY ' Group: BASE To Node: E6-WEIR BOUNDAR Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Trapezoidal { Bottom Width(ft): 20.00 Left Side Slope(h/v): 30.00 Right Side Slope(h/v): 30.00 Invert(ft):833.500 Control Elevation(ft): 833.500 Struct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0.000 Top Clip(ft): 0.000 Weir Discharge Coef 3.200 Orifice Discharge Coef: 0.600 Name: E6-E5 WEIR From Node: PRE-E6 Group: BASE To Node: PRE-E5 Flow: Both Count: I Type: Vertical: Mavis Geometry: Trapezoidal ' Bottom Width(ft): 3.00 Left Side Slope(h/v): 3.00 Right Side Slope(h/v): 3.00 Invert(ft):847.450 ' Control Elevation(ft): 847,450 Struct Opening Dim(ft): 9999.00 TABLE ' Bottom Clip(ft): 0.000 cgs Top Clip(ft): 0,000 ' Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 ' - ------------------------------------ ------------------------- Name: PRE-E4 WEIR From Node: PRE-E4 j Group: BASE To Node: PRE-E4 BOUNDARY Flow: Both Count: I ' Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 100.00 ' Left Side Slope(h/v): 70,00 Right Side Slope(h/v): 70.00 ( Invert(ft):841.300 Control Elevation(ft): 841.300 ' Struct Opening Dim(ft): 9999.00 TABLE 1 ' J Bottom Clip(ft): 0.000 Top Clip(ft): 0.000 Weir Discharge Coef: 3.200 _ Orifice Discharge Coef: 0,600 ' --------------------------------------------------------------- Name: PRE-E7 WEIR From Node: PRE-E7 Group: BASE To Node: PRE-E7 BOUNDARY ' Flow: Both Count: t Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 15.00 ' Left Side Slope(h/v): 20.00 Right Side Slope(h/v): 20.00 Invert(ft):825.150 JJ ' Control Elevation(ft): 825,150 I) Stmct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0.000 ' Top Clip(ft): 0.000 Weir Discharge Coef: 3,200 Orifice Discharge Coef: 0.600 — Name: PRE-E8 WEIR From Node: PRE-E8 Group: BASE To Node: PRE-E8 BOUNDARY Flow: Both Count: t Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 100.00 ' Left Side Slope(h/v): 100.00 Right Side Slope(h/v): 50.00 ' Invert(ft):830.300 Control Elevation(ft): 830.300 Stmct Opening Dim(ft): 9999.00 TABLE ' Bottom Clip(ft): 0.000 Top Clip(ft): 0,000 Weir Discharge Coef: 3,200 ' Orifice Discharge Coef: 0.600 --------------------------------------------------------- Name:SW1-SW2 From Node: PRE-SWI ' Group: BASE To Node: PRE-SW2 6 2 O I Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 5.00 ' Left Side Slope(h/v): 5.00 Right Side Slope(h/v): 90.00 Invert(ft): 847.110 Control Elevation(ft): 847.110 ' Struct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0.000 ' Top Clip(ft): 0,000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 ' -------------------------------------------------------------------------- Name: SW2-SI WEIR From Node: PRE-SW2 1 1 Group: BASE To Node: PRE-SW2 BOUNDAR ' Flow: Both Count: I Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 20.00 ' Left Side Slope(h/v): 100.00 Right Side Slope(h/v): 100.00 ` Invert(ft): 846,300 1, Control Elevation(ft): 846.300 Struct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0.000 ' Top Clip(ft): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 l Hydrology Simulations Name: 002YR-24HR ' Filename: S:\2K\2722\002\drainage\ICPRpre\002YR-24HR.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 2.93 I , Time(hrs) Print Inc(min) — 30.000 1.00 -- -- - --------------- ---- ------------------- Name: 01 OYR-24HR ' Filename: S:\2K\2722\002\drainage\ICPRpre\OIOYR-24HR.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 ' Rainfall Amount(in): 4.20 ' Time(hrs) Print Inc(min) — `— 30.000 1.00 J t:Z7 Name:100YR-24HR ' ' Filename: S:12K\2722\0021drainage\ICPRpre\100YR-24HR.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 5.82 1 ' Time(hrs) Print Inc(min) --------------- -------------- 30.000 1.00 1 1 1 6 7,6' I 1 X 'M Ill T M N 01 M 0 0 0 M1 T h I O m O NO O ON T M1 I, M 'I O O b M. M m T q O W P P N l0 M O O O N m m N l O O O Q .01 ... N O O O W 0 h M N m £W U Nmh OQQ OOO b.0 MOOT OHO CIO mIi III MN. "o rl b m OMb �y pl Y mO rl hMln 000 M P MAIM pOi-{ 00�-I Phm hOIO bhM1 bhP PT1+1 MpI O i"I rl ri !'1 Vl N N P fl N N N N WON Tbb 000 mmb ulmb ONM ONT Mah O1hb P'I Olp OW. TO P.m h.Q 000 -PM IIIMN OON In Y OW mQM MPMI lOO If lQ 10 N N M N ry N O O O N N N N N N o Q M O P M N N N N 10 Q N N N N N N IO N N N N . H I f I H H .. fi N ri NH NI H I H I N H H N H H N H .1 COW Ol) 1n TMID rlM pl �-INO oNdl Nmm Olm O1 hOr4 MPP 1p r'im Mm In, HIN m01+1 mPr'1 OhP 000 OOP WNN mm0 IN 0101(1 hmm �yb NPm OMm O C P TTM1 b�yQ Nm10 O O POM mNOI N01M MNm rl�N O(1 lOhr 11. HMO HNI INn Mv)m oo,y HNM arm mRe IDhh o0o Cm N M m �-1 M v) f{ N 1'1 N M r4 N l'1 H N N N m .-IT Nbh Qlpb NN N P�-110 O TT ONM OAm MOIh W MM Qlllh INN Ol N NNN b P N h Nr-. Vl Vl . rl r. .. vl ('. N N vl Q N N N N N N N N N N N N N N N N N N O Q M N N N N N N N N N N N N N N N MN I-1HN NNH NNM r Hl M11 Nrl1 N, NNM HH, III '.I,I NNr HH m.Q OOM MMm P010 Ill01 MPb mNQ OWN QMT -MN OlM1 hhm WN 9�M 10 Mtp NOP �OQ 1.0 01h01 MNO ON. mOQ O1m 0" p, 0 m V1Q MM NNW MIN -IN N., ^1mv1 mm HOO WON ..-1 O O1 r1 IDTh mW WO l .11 01 Ow, PQYI PPQ MM1'1 -N, 1'1Q rl rl rlM NN NNM NPP IrI NO In H . N O11'1 "I CO. NI. 0.. hplm OOA '.O Qbm Whh ONW NrW V1Q IO rJ Oi 1O 1 CO. W.. h1Ob Ow. C., IWO WI ✓1 TTT 01bh MIH 10 OH. NMM CO. HNM CO. 000 CO. NNN "I "I IN, H4 H Nr-1 O O O O O O O O O O O O O O O O O o 99 O 99 O 999 OO O O O 999 OO O O O O O C O O O O O 00. C O O O .0 O O O O O O 00. O O O ... O O O C O O O O 1 1 I I 1 I I 1 I I 1 1 I O O o O .. ... O O O ... ... ... O 0. o O O .00 C O O 000 0 0 O O O C O O O O O O O O O O O O O O CC O ... ... O .. ... ... O O 00o moo 1n In In 1n In In o00 000 000 omo 000 om0 00o moo Oo hhh MMM CO. 10 WW 000 NNN NNN 010101 hOO O mG QQQ lO 1p 1p Iy 1p MTM NNN NNN NNN "1 QQQ QQQ MMM MMI'1 MMM M1+, NNN NN ... ... ... ... ... ... W .. ... m W. ... m m W ... W m .PN OOo 000 11. Illbm ... OhQ 01Nb Owl MMQ ON OWN NI QNH Olh ..W NN Try 01001 OOM CIO ONh WN, mbh rob OP h l�f NNN QPQ Ill mO Qm 01MM MMM bNh NIIM QM01 hhh ulh pr V1h MMM 0Cl hhh OO10 mmm ONN '-I r-IM rDhh QQQ IOPh MM('1 H1111N mlt) MMM INN r-i rl ry NNN NNN QQy POQ MGM MMM RIM, MMM NNN NN W m m m m m m m m m m m m m m m m m m m m m m m m W ... .. W ... m W OWO et010 000 OmN IN. MTh ONA Mal OlM ri NNP 0.N TOW Ol0 NOb hbP 000 bMN QTI() MO I'1 ONM Y11f1b u11Gh MQ V1 NO 10 Q Q N PP N N N N N N O O O N N N N N N h Q M O Q M N N N N N N N N N N N N N N N N N aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa as xxx exx xxs xx Pxx sxx xxx xxx Pxx psx xxs pxx as Q Q Q Q Q Q O Q Q P P P P Q P P P V Q Q P Q P Q p Q Q p P P P N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 1 1 1 I I I 11 1 I I 1 11 I I I 1 1 I I I I 1 I I 1 1 1 1 1 1 I 1 1 I 11 aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa as N N N N C O N o N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N NO O N O O N O O N O O NoO N O O N O O N O O N O O N C O N O O N O O N O O riO OriO OMO ol� OrIO 0 10 O".O 0.0 OMO 0.0 Or o Or-10 Oro OON OOM OOri aa. OON CO. OOM OCH M. 0.1 oor OON p0 W w w w w w w w w w w w w w w , w w w w w w w W W w w w w w W W W w w w w w w aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa as m m W m m m m m m m m m m m m m m m IA m m W m m m m m m m m m m m m m m m m Mammaamwww a ! a wWw�]]w1I.�� wm((.�1.� 'w4]'1.�w 0 �a00 NWa o fIu.� aaaw�lu woaood oc�a c�awww ZaoCyy��ws w oaygo m m mmm EEO mmmmO�a mm wS(14 FI .1 www hP 5 W W 1.1W W1P.l WWI�.1 W W W WW b b b 1 I I 11 1 1 1 1 11 a aaa �a aaa wda wa lamas www aaa aaa aaa aaa as G ZT x % 30 ' O W � W U Y I O q 4 xW 1 ' C O N Y q I �r � N 1 1 m OV1m OV1111 mbm tMN -Pp QJ N0 1.0 OOO CH. CO. ONu)O h Oh m .1-. M.. ry plh NO I W O h m0 000 OpP 000 OOR1M h M1M Vl OOm OOm IONM1 bryh 0Ph h 10 hr-Im 000 mhP 000 0010 NPO b 001'1 000 ONrI ONr1 ONry ONN riPp 000 ryMP 000 000 Me1 �y P OmQ OWN Nbrl 0r11O hNm bbl0 H.1- 000 Pmlp 000 0001 OHM NNM NI'11'1 NlINC INN 000 IOhM 000 OOm O.m N O M N O H N N N NH ry ry ry I I I I N N In, 000 N N N ... 0.1 IN, ft NN rl '{N r4MN NIM H., HN, HHH N HHH I NOW OO1 Omm mbm 0.. tU _ bMm 1.0 I'M CH. 01b I'm m O111 olO .QQ (•l H. Op. ONO 010 hWO MlM 0, tlbm .01 b C 0 0 O O m b P m b N f .1. h m M W h .i m 1w. O1 h P t/1 V1 1p O y1 h 1'1 ti t'1 fO OOM O NN Or-1 r-I Or-1N ONr-I Npfl rIQN bNO N('1P hOI'- r{Np N .-1ryP '1NQ r-1N fiMp W MMH OWb lOO Nb.-1 OOM hNt+l vl tO vl rymh I+1MM pp1 y1 mMW OOO t'1 t-I .-I ri Oh P rlr-I r1 NNn1 NNH NM_ NryN r1NN NNN V h01 000 NNN N NNN Ot+1N ryNry NNry NNN NNN "I t1MM NNN NNI III NNN H H . rl r-1 i-1 ri 'i M . H M l M H H ' m mmN mhh OQN mPM blOO bNO1 MhV1 MMtv1 QpQ SIN'{ Nvb hM1i.{ h t"1 N O Nb p h h Ol N O1 m Nb p1 0 O O h b m N W PI M O ' I 1 mm bbNm'I mP H . .m N N H. fOOp hQt+1 hOm Q COO Np 'iry 1111Q Np NMI NMI M Ob HOC IHM ~ N N N I M tO O M I H r INN h MfiO O'1h 1n 1pN IN(1 ., lOmm llCO. O1 m0 COO MO. .11 N `GMN OOot 1pbm H." MOW NO1h WNI COO mNP 000 00. ON, N 00'-I OON r'i Hl COO ONN 000 HIM C. HH. CO. p00 OMN 0 oCo 000 00o CCo 009 Coo 000 000 99C o00 000 000 0 COO 000 CO. 000 000 000 000 000 000 000 000 000 I I I I 1 1 1 I I 1 I I I o Co. no CCo COO M. CO. CO. COO COO COO OOo CO. 0 000 000 000 CO. C. COC COO COO oCC CO. Coo Ooo O 0 0 0 0 0 0 0 0 0 000 b b b 0 0 0 C O O O 0 0 ... C O O C O O C O O Nm I'M III "I III I'm III g '1 , PPQ I'M ppQ Qpv QPP mmm mmm mmm mmm Wm mmm mmm mmm mmm mmm mmm mmm HIM ON- t HO v1hN mNl 1'l ri r-1 ul ('1M 000 Ohl 000 pOh NMM M b N V 1 O N t O 00. l O P 1 M p W P r t 01 M b ry W m W b N M t O V b O M u 1 1• m m .11 M Ir1 t'1 H m b tO m b O t'1 f0 h m l fl M Q Q P P P O IO tO Y1 tO M1 O '1 P Y1 f0 Y1 MOO 000 0001P1Ppp NNN llm 1O IOto 0100 hhl ltlhh 1p 1p 1p N N M I m m I t+1 F1 I I 1'1 m I'1 1'1 m III 111 m 0 0 o pm Q M 1'1 I"1 P p m m m m m m m m m m m m W m m m m m m m W m m m m m W W W m m W IO mV1m O1 l N.. mM10 lNM -ON "imh C. 1G0 CO. NNm vl rl t-I N O1mQ 0.1 NNM In, IM, LINO MIN 000 IDh G1 000 MMm. N I Nmm N IN ONNryN NNN NNN NNN III COO NNN Coo QQM IN' fl N.i 'i �-1 '-I fi .HH HHH HH, HH. 11H NNN H. a aaa aaa aaa aaa aaa aa e vaaa woo aaa aaa aaa m pmm Q55 ICIIt mmm Ias amm m,mm Na a m a eoa xc Q P Q P Q p p Q Q Q Q P P P Q P P P P P Q Q Q N INN N N N N N N N N N N .. N N N N N ry N N N N N N N N N N N N N N N 1 1 1 1 1 1 11 1 11 I 1 1 11 11 I I I a1 a1 Iaa 1a1 1 1 1 11 1 aa aaa aaa aaa aaa aaa aaa aaa aa aaa aaa o N ON O N o o N O N N N N N N N N N N N N N N N N N N N N N N N N N N N NCO N O O N O O NCO N O O N O O N O O No. N 00 N O O O o.-Io 0,-10 Or1C O.iO ONO o,-10 OfIO arl'o 0.10 0Mo O.ao C.io '-1 O O N O O H O O H 00, O O N 0.1 00, 0.1 o o� 00. 0. 0 O ON W WWW WWW WWW WWW WWW WWW WWW WWW WWW WWW WWW WWW aaaa aaa aaa aaa aaa aaa aaa aaa aaa aaa mama aaa m mmm mmm mmm mmm mm mmm mm mmm mmm mmm mmm mmm yQ WmW [WWG (W� Q y0.' Q WW W WW � 0 0 [.W� WW WW C i O � I.aMN N 0 0 � {WNW N N yQ gS yQ W� WN WN VW1 N Iy�� b uta D D t[a C 000 [G OG m 000 G� W 000 4 It D C>P cGm IG IG (4 m m m m a a a m m m a a a m m m m m m 0 0 0 a a a a a a mmm W W W W m N N N N N III 1 1 W W W mNm N N m a� a�wa NN Maka �a maa a aaa aaa aaa C3� m m O 0 roCn F Y m N Nino rrm N P O r1 N vt .i rl N m r 1 �c om r �cm .+mm �o m N 000 000 000 h r h P ? P m m m m Vl in fl V in N N N McIrI aa�a 0 z 00o mmm G3> 0 a I I W a °a w O 14 a a 5 O � c M N N M W a W C O •fl 0 0 yl O O O O O O N l0 N I - r>)01 W 41N [.[�17 m M M.MM 0OO •-IooON u) Ifl N yp]:. fn d• rn r r � 0 0 0 O C LD a m p W N b vm' M M N N N ONO a1 r-I m 0 ri rl ri � a d c N W aw wo.aoo uo 00000io lnr I W N I m M M..1M O-.{ oolOOOON �o Olr W m N W V) a r>;o aU�m U c Cm o N M W to O 61 (/1 D rn M M m N N O N O M r1 m 0 �-I M ri r1 1 a 1 a a• � I N N r I M I M I N W a W a• O.1 O O y, O O O O O O c O1 rl I I W >+ 1 m M M• 1 M O -. { O O M O O O N M a N I m N W C/] a a• r r N Ol N O V� O O a� li!} m I Q oaU.Gm U a Cm I W m 0 W m O v M M m N N O N O lO rl lrp O rl N O rl a x N N N I N N O W a W a•O ,.1 O O V O 0000.-I 01M I W >. 1 m OO-.1 M O-.I OOMO OON r O N a FC O a U G m�� V� c N O m 0 O iD d• rl x � v N .ti I N O w aw a•o .ioo aJo orloorr'm� I W Y� 1 m 00-.i M O-.i00 a OOON rM o V) N W O a U.0m U a 0 0 V) Ol hCO • O ri O O N c 1p r$w v N r fa :: r. ai r.._ v� r: .. .. .• .. .. E:1 0 '0 04 (L 0 C C C 0 7 i� 0 H 0 >' 0 V 'f -H -rl -H N 1 ''I N ro -M Z P w -H a1 z H✓ Z H l4 U E E w r ro Fw> X U 4-1 o w u u g a c to U N m>> U m c 0 0 b tr+ H H .ro 0-1 H N x H !J m ro i x •.Ci d m a m m vLi U £ 0 m pp 3 7 0 H w W W DC a N 0.ro'. H O °�. 0 va U 0 7 � a a x C Q• � N N N N M W a W C' O.� O O yJ O 0 0 0 0 0 Ol lD I W Y1 I m MM '1 M O•rlO Oro 0 0ON I+)ior W m N fn V V' r r Ol O N rr . 0 0 0 O • m 01 rl rU Cm L) U c Cw p {p 0 'J w M M V) N N O rl rl r 0 rN W M LL N l O O nr'1 x N N 1-4 W IM' W co .loo uo 0000m InMr I W N I m N N -W W m N m c c N N Vl Ol a o U C m U • c C m N W R] O w m� •T M M f!) N N U N O O ri r 0 rl O O N a x m I m I W w a w a o a o o u o 0 0 0 o M a [+I] W N ff++L.]] m r r •.i M O •.1 O O c 0 0 0 •-i Ol ri N (G FC O a. U ,✓ti m U Q. 1 r • . If) . • O O rll .i � O N N a• I W �+ I m M M •.1 M O -.{ O O M O O O M m M� a < O U C M m V e• C a O Ol N M W U] O W m p c c c m N N O M O r1 ri 1p O �-1 v O N a x r w a w c o 0 o u o 0 0 0 o m rn m u I W y+ 1 m r r-rlM O.i O ON000 rl� v) 1p vV�� N W (!7 C c d• a 41 Ol l� . O N O O rl N Ol r�0 a U.Cm V c Cm ,-I N CL W O 4L to a a• M M Vl N N O N O r •-I m 0 rl m .i !N') ai a C: a) d) N4 - a h 7 010 p p, ° C C H C �n 7 c In V C ae u) m C M z H z°zH u u w•� m-fix m-�za u-'�w un ro olro �roro cH y a o L. C c 7 0 E w m N g m m 0 v >•aa° a zoo N xX N •c (D O >>° C 0.a) H H b W ,��{ W H U, 4-4 W 5 v a H o °c o Va U 0 C � a �3Z a x P P pI N N N N m m a P O •.i 00 JJO OOOOON O~ I W i. I m 00.i M O.�O Oto OOONm NP W t4N W m P P o0 N m h 000 •'O Or �l W O W W 5 C c c N N N O M O ry H r 0 H H O u) a x � H N H N H m a m P O •i O O yJ O 0 0 0 0 m P r Q1 W N N W V] P P Ll) Il- UI Ol al O O O P N a ry'OaU�m • U P [: 01 H P •Nr Ol a S o P P r N N m N I N 1 al O 1 a VI P O .i O O yJ O O O O O M m l0 H W >. 1 m rr.iM o.looM000N P01P W N N [[WWWW��jjjjj m P P N N In O y O H O O r H Ol a P x P P m N N H I H I a) O O O 1p O fn a m POMO .100 wO MOOON MM�+I I W i-� 1 m N O.1M O.1 O NOOONIO Nr W V1 N W N P P UI m N P O • O O O ifl a fcc O a U .0 m lD Vt U • P � N • Ql r . M .-I • P a P P p N N m 2 p15Z Porr�ooNo 0000HMm� I W >1 I m 00.11 M O.Hi o mo r oTID rM W VI N W U1 P P Ill 01 VI O tl7 O O m N N a o a U C m U . P C M . r • N ; M /L W 0 (1 V1 O P H H N N N O m O P H IO O rl O O m N O, C al 0 al Iv C O •O �" O C C •-1 C 7 C m U C 7 M N h C M Id O ..i O 10 + - i .� -.1 .1 N Z F4 +l Z H H U E rl W X: ro .0" W" F U �- W C7 Itl IT roW W — ro•O N H—— 0— .-1 O W U U C C C m U" al T D U k x N C H C C .H 7 0 F W x 34 q Ia ro E >1 CU H H 4 OO££ y .0 � W U O H rn S� r 0 w u m C � O , w m .H A I: a al o .H H w •.i N El E •.i q E W W W D a N ID a H O C C N U O a s a x m P P M N N p W a W P O I •H O O O O W O O O O O O O M P W ?-� 1 m M M •W - .I W O H O O O N r1 P m GG]] V1 O fn P P r r UI N VI O O O' O H U4 FC H au .0 m W • U . P G' m P N O • M W O d In O P M M m P N O N O Q1 H m 0 H N N m a x m N N N P I P I a) O W a W P O •.i O O W O OOOOOOPOI I W ?• I m M M .1 O O •rl 0 0 1p O O O N M O r W m O W m P P r r UI N UI 0 0 0 O 01 N P a .-1 Chi U .0 m • U P C W • O • N • • c W GQ LA O W fn g P M M m a x r C' P pI N N N M I M I al O W a W P o •.�oo+!o 00000MrM I W ?� 1 m M M ••1 0 0 •1 O O M O O O N O 10 r a� .� a U lv m U • P C m . r N 01 C4 W O W 111 D P M M f!) P N O N O 1p H l0 O H l0 H N P P m N N � N I N I a) O W a W P O.1 0 0 yJ O O O O O l0 In r �o I W Y• 1 m 0 0 •.1 O O •.1 O O M O O O H ID N r W N O W y P P N N N N t9 O P O O 1p O m a al W fA O W CO D x P P � N N N H 1 H I m o W a W P O •.I O O +� O O H o 0 0 .y Vt .+ I W it I m 00.1 OO "� OO POOO Nmm01 W NO W m P P O O N N N O r-1 O O OIO.-1 a W W O W y D P P P to P N O M O t0 H lD o ff P H N zM 7 0 'O � PI o C C .HI C m C C h U C� m ul ti C M N O+ O .1 .d -H '1 H ll-.i u ro•.�Z�-uw..�w Z u al Z E H N Q U C7 to O ro '-' '-' •-1 o W U U C C C m U t� a1 >. U k% N 7 H 0 ElV-I J x F1 g ro ro •.{ iv b M H H a O 1+1 .0 l U HO vl x i H m C 30> > •�i m H H � ra F W W W b a N a E O 7 C 7 G 33 I 1 1 t a x w N N N N pmj m 1 N I N O m W a W co .100 1�0 0000o mm I W S� I m mm•rloo O�oOOON c mm W U)w O [[..jj N v c r r Ul N U 0 0 Qr m tp' aµ'Ha• W U N N - O N N a WOM rnDcmmmcOo rIHroHr-1Hr a x H N H N 14 I m N O N W a W I W i-� 1 m 0 0 -fl 0 0 •fl O O m 0 0 0 H lP P N W W O W (n D d' M M (n a x H N N � m I m I N O I W 7+ W1Ij m r r •.1 0 0 .1 0 o rn o 0 o H v o .-1 aL W 0 (1 m D c N N m C N 0 N O a x m N N m r I r N O o H W a W C O •.i O O U O M O O O c Ol It) C I W �+ 1 m m m •'I O O .1 O O M O O O N In � N a H a U C m . U • O O N O N LU M W O w m D c C C m V' N O M O H H l0 p H H H ti] a x C P m N N to b b N O N W a W co •.ioo wo 0000Mmr r t w N 1 m rr •.loo-rIO0N000HO�m M a Cd N O W m a c c N N N O N O O N Ol a w U .0 m • • U O -d of O U C H G 13�3 C (n U C ep h y g m Z N+JZ H N U�� W "4 ro �.: FCC U `-'W c� ro rn ro N U G H v rl ow u u {{ a c -.a o o E+ w ttyy x N o ro m �C: aN O -C FC V U � f'HO v> x .Y � N rn -C O > N ro-.a4 C�j C7M HH n N.,�{ W F W O W D a E+ O r C aU O a a a x N N N N ry O I W N m 00-.1 O OfI O O r//000 N v)MOl a O a U C m O O U N V 0 0 0 O m 0.4 W O W W D c I C (n a m H N H N N a mc 0 -.i O O IJ O O O O O m c m [[++1]] W !� m m M -rl 0 0 •.1 O O N 0 0 0 0 �D c V� C4 61 O P. m D c N N m m N O H 0 H a x r N d m N N N m acn co -.goo No 0000M�c.n I W i+ I m r r-r1OO•.{ OOMOOON 1pO T W fn O W N m C N N UI N N O H O O a m H a U� m U • c G N • O • N N N O W W O W co D O m O x 1D N N H I H I N O O O ul H N a V] C O M O -.{ 0 0 yJ O M O O O u1 N H lD a U G m D u U G N O r M M m W M W 0 iL m D V• H VI C N O H O m H r O H N H N x� z a z co r r-:a 00 LU1O 0000 mmN r 1 w Y+ 1 m 00•.100•.� oornor orinHl,; W to O W V1 C C u N O ONO O N m m a WoalnDc,-i.-�mcNomomH�o.aN•�N C O 'U �" o C C H g m 7 c h ro O O ro u •.i M -H N w• N ro '-I Z N w• w Z N 2 El U G. -- ,C ro -- �- a .G U �- w c�ro rro rovwH ro_. H o G. U U C C C to U w aN it p U %% EE aW .a C H H a o� F N U❑ ro ro 7 E 0 a cn m Y (P� rL H y -� Q1 3> o •.�i N •Ci 0 El El41 O•Ow, as ro .,1 w Hw0 D a H O 7 C Va U p a a 7 6 34 a O a c � N N if1 1 an I m o m Ol {WI W i+ WI m • M M •.1 N O -fl O O '-1 O O O N M N If) W m rl W In O c M M (n ul N ONO Ol .i m 0 .-1 M c ti x C V� yi N N N W W W v 0 I W ?+ W m rl /ti m 'J T M M �/l U) N O N O M 'i m 0 •-1 61 M �T P. x r N N p W Ci W O O -rl 0 0 JmJ O O O O O O .-I O O W !7 O W y� cx rZo [4U l.m U a Cm •h NM In W m r1 �+ fn O c M M (/J to N ONO 10 rl � O .i •-i N N x M � C O N N C N I N I m O N W Ri W af' O -d O O +/ O O O O O l0 h Ol N I W ?. I m -OM R' t!: O tL U ,G m U C C '•-1' M N N h d m •-1 w m 'j a� M M U1 ul N O N O lfl '-I t0 O �-i .--I N c as x o � � N rl I 1 m O v W W w W co -.iO O w O O.i0 0 0 mM N I W �+ I m 0 0 -rl N O •.{ O O C O O O N M C O w o r.CoCU.Gm U • Co .c •N •tom a mrla 0p m w am N uloMoio ,-1 ioo rl r1N c M o o n M m a a C m Cm C ro O -4 O ro W •fl .H -N -rl NW -.1 N ro -Hz H W •.1 W ,2, +� $ H H H W U� W � .C: ro� U ro 0ro> U H �• m .) ri w U U C C C m U W m: D U k k E m -b b H H rota O O E.x Wi 7 O ££ H �n mi -li 4) a) (a co G U 0 o > H E. 0 W F W -H a. W w b N o cu H O C ri m U O a x N N N N r W Pi W T O -ri O O ;1 0 0 0 0 0 0 rl Ol lD I W N P4 4 O 14 U 4 m am rla v� b cMM Vl lnN ONorl ,-IrotiMr+i ,N-I P: x 14 W fZ W CY. �O R' U,�G mNN Um c h OmO O �Or Chi x N a a � W K• W C O.{ O O W O O O O O Ol O ifl m I W 7+ I m r r .i N O •.{ O O� O O O O m 0 �T (n O W N l0 \. 41 m VI O N O O O M N C>: O (Y. U .r.c v w m U x v T � N N N N W ?7+ IWMCWM�m • M M N -M m N -W . O M 0 0 0 N M l r M !S O W. U 4 m N U V •• . . . •N . W In .i W (n O v v v' Co i/1 N O M O .i .i W O .y N N O ai x N a a � N N N m O 'fL W mO -r1 } OO �O I OO OO MN vN W ?+ I m r r -rl N O •.{ O O N O O O 'i M rl C O W V1 4 a vdc V] m VI O N O O r M o LL'UL m U a C� •-1 Nw r W m V] d� M M fn ai aC ni vx i,r.r.4) ..r.m::�::�E.•........ o 7 o -U � a o C C r C w a C h U C 7 ca m y g m o 0 -H O ro 4 -i -H -. -H N V -H f4 ro -H 2 N W •j z N 4J z H N U w ro a c U w c7 ro 0 Wm t�_. y _,� rot? mH �_• m�- -I U U C9 L~ vl k k� m >r CHH Pro g it .0 �1!U �£ off U) x X v W N m •C m 3> O O -rH H W E F w W W b w u fY, H O 0 O 7 Li m U p a 5 c35 a x o � � c N N ry 0 4j O 0 o W I m 0 0 -r1 N O •.I O O N O O O N V' �!/ l0 a co co W f-0 rl W W p a v v N N O MM a x � ti N a I W Yl a FC 0 a U N U m m • O O O O M W Q7 rl W N b m N N U) to N O r1 O ri r1 m 0 •N-1 c c� a N N � N I N I N O a• x m � a � N N V1 a N 'C O M O •.i O O yl O M 0 0 0 ul lD ul M I W N I m If) O -fl N O -.i ONO O O N U1 N c a K o r4 U 4 u m c N m r o r1 o M r cnp c.-I,-1 NON orlo m.+ro.-1cMa a x m a m N N M N o 2 az oorr•.ioo No 0000MioMm I W 0 I m • 0 0 •.i N O vi - 0 m O r O. M l w U) O W U1 C: - • U m • O . Ul O O N C m FCo aU.0 m,-1 r-I U c CM r N o a W.-+a m CL C U G1 .0 N m 0 .. .. .. .. .. .. .. E 7 ri T1 O. O C C "i C Vi 7 tl v4 U C er y N C M N O -J O N 1� •.I .i W -rl FI 1� •.i 9 �D •.i 7� " Yi W -.i V Z D fo 2 F N U E E W -� .0 b A "' rS .G U" W C7 N rn14 U U X N rl O W U U C C C m U w >, p U K X Ej w E •U CP H H m 0 -.01 ElW N x N 0 b b C 7 £ £ 0 C to x QI N a N V�1 -iy-I U a)30 � -.i U E+ E i -.HF n N. E- W W P W W W a H O O 7 C U 04 a nU O a a 6 3419� �t 3 tS ti,R. - t t k� n ��Efz r;Ys•-' it S:\2k\2922\002\drainage\drainreport-11-22-04,doc r is Ob/ {o{ff� j ymy ' Hu. �Nm alO Nmpi' O��f N�yy E3O ~I ZR>F,t�' Pi Otm CM + W 6� Nmiupmwm z u U 7 py� r� Runoff curve numbers for urban areas[ ,) Curve numbers for Cover description hydrologic soil group — Average percent Cover type and hydrologic condition impervious attar A B C D Fully developed urban areas (vegetation established) Open space pawns, parks, golf courses, cemeteries, etc.P: Poor condition (grass cover < 50%) .............. 68 79 86 89 Fair condition (grass cover W% to 76%)........... 49 69 79 84 Good condition (grass cover > 75%) .............. 39 61 74 80 Impervious areas: . Paved parking lots, roofs, driveways, etc. r I V Paved; curbs and storm sewers (excluding ' right-of-way) .................................. Paved; open ditches (including right-of-way) ....... Gravel (including right-of-way) ................... ' Dirt (including right-of-way) .................... Western desert urban areas: Natural desert landscaping (pervious areas only)4... Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) ............... Urban districts: Commercial and business .......................... Industrial ........................................ Residential districts by average lot size: 118 acre or less (town houses) ...................... 1/4 acre .................. :......... ............. 113 acre ......................................... U2acre ......................................... 1 acre ........................................... 2 acres .......................................... I ' Levetaping urban aredrs Newly graded areas (pervious areas only, j no vegetation)s................................... ,dle lands (CN's are determined using cover types similar to those in table 2.20. 98 r 98 98 98 98 83 89 92 93 76 85 89 91 72 82 87 89 63 77 85 88 96 96 96 96 85 89 92 94 95 72 81 88 91 93 65 38 77 61 85 75 "1' 90" ge 92 87 30 57 72 81 86 25 64 70 80 85 20 51 68 79 84 12 46 65 77 82 77 86 91 94 l Average runoff condition, and 1, = 02S. _ - - -- -- - MR he average percent impervious area showm was used to develop the composite CN's. Other asnumptlons are as follow-s: imperious area are directly connected to the drainage system, impervious areas have a CN of 98. and pervious areas are considered equivalent to open m good hydrologic condition. CN's fur other combinations of conditions may be computed) using figure 23 or 24. N's shown are equivalent to throe of pceture. Composite CN's may be computed for other combinations of open space cover type. ompoLdte CN's for natural desert landscaping should be computed using figures 23 or 2-4 based on the impervious area percentage (CN 98) and the perviou.< area CN. The pervious area CN's are assurned equivalent to desert shrub in poor hydrologic condition. dComposite CN's to we for the design of temporary measures during grading and construction should be computed using figure 23 or 2-4, on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. TABLE 205-2. Runoff Curve Ntunbers for Urban Areas (SOURCE: 210-VI-TR-55, Second Ed., June 1986) ' City of Indianapolis �3 Appendix page A2-12 Storrnwater Specifications Manual Mav ID- 199.r+ .' Runoff curve numbers for urban areasl ' Cover description Curve numbers for hydrologic soil group- - 1 Cover type and hydrologic condition Average percent impervious area% A B C D I Fully developed urban areas (vegetation established) 'Open space pawns, parks, golf courses, cemeteries, i etcY: Poor condition (grass cover < 50%) .............. Fair condition (grass cover 50% to 75%)........... (food condition (grass cover > 75%,) .............. 68' 49 39 79 69 61 86 79 74 89 r 84 IL 80 Impertnous areas: Paved I'll lots, roofs, driveways, etc. right-of-way). ... 9u -o� out 98 [. '(excluding &treets and roads: Paved; curbs and storm sewers (excluding ' ' right-of-way) .................. Paved; open ditches (including right-of-way) ....... Gravel (including right-of-way) ................... Dirt (including right-of-way) ..................... Western desert urban areas: Natural desert landscaping (pervious areas only)'... Artificial desert landscaping (impervious weed 98 83 76 72 63 98 89 85 82 77 98 92 89 87 85 98 93 �. 91 89 86 . ii barrier, desert shrub with 1- to 2-inch sand ,I ' or gravel mulch and basin borders) ................ Urban districts: 96 96 96 96 L. 'Residential Commercial and business .......................... Industrial ........................................ districts by average lot size: 85 72 89 81 92 88 94 91 95 93 L: ` 118 acre or less (town houses) ...................... 1/4 acre .................. :...................... 65 38 77 61 85 76" 90� 83')` 92 87 'W acre ......................................... M acre ......................................... 30 25 57 64 72 70 81 80 86 85 1 sere ........................................... 20 51 68 79 84 2 acres .......................................... 12 46 65 77 82 'Developing urban areas Newly graded areas (pervious areas only, I no vegetationY ................................... 77 86 91 94 dle lands (CN's are determined using cover types similar to those in table 2.2c). (Average nuwR condition, and 1, - 0.25. F WIbe average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open apace in good hydrologic condition- CN's fur other combinations of conditions may be computed using figure 23 or 24. N's shown are equivalent to those of pasture. Composite CN's may be comforted for other combinations of open space cover type. mpusite CN's for natural desert landscaping should be computed using figures 23 or 24 based on the impervious area percentage (CN 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. 'Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 24, on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. TABLE 205-2: Runoff Curve Numbers for Urban Areas i ' (SOURCE: 21 O-VI-TR-55, Second Ed., June 1986) r City of Indianapolis Appendix page A2-12 Stornawater Specifications Manual Mav 10- 1995 r Runoff curve numbers for other agricultural lands' Curve numbers for Cover description hydrologic so0 group — Hydrologic Cover type condition A B C D Pasture, grassland, or range —continuous Poor 68 79 86 89 forage for grazing.= Fair 49 69 79 84 Good 39 61 74 8o Meadow —continuous grass, protected from — s0 58 71 78 grazing and generally mowed for hay. Brush —brush -weed -grass mixture with brush the major element.3 Woods —grass combination (orchard or tree farm).s Woods! Farmsteads —buildings, lanes, driveways, and surrounding lots. Poor 48 67 77 83 Fair 35 56 70 77 Good 430 48 65 73 Poor 57 73 82 86 Fair 43 65 76 82 Good 32 68 72 .79 Poor 45 66 77 83 Fair 36 60, 73 79 Good 430 55 701 77 59 74 82 86 'Average runoff condition, and 1. = 02S. ' aI'wu: <50% ground cover or heavily grazed adth no mulch, Fair: 50 to 76% ground cover and not heavily greed. Good: > 75% ground cover and lightly or only occasionally gr ued. .' sPoor <50% ground cover. Fair 50 to 75% ground cover. Cord: >75%.. ground cover. 4Actuai curve number is leers than W, use CN = 30 for runoff computations. 4CN's shown were computed for sreiu� with rA 6 tnaaia and W% gr aG' (pwxure) cover. Other combinations, of condition`• may be cumputeil from the CNJ for waals and pasture. ' 4I rw ," Fureat litter, vrall trees, wal brush are destuyeti by heavy grazing tar regular binning. Fair: WootL am gi r l but not burred, and vme fon�t litter severs the soil. (iwxf: Woutls are protected from grazing, and litter and brush adequately cover the sal. TABLE 2054: Runoff Curve Huanbers for Other Agricultural Lands ' (SOURCE: 21O-VI-TR-55, Second Ed., June 1986) l , City of Indianapolis Appendix page A2-14 I Stonnvvater Specifications Manual �;5 May 10, 1995 r� ar a: PROJECTNAME:,' c ' ... ?�MS ....... ....................... ................ ................ PROJECT NO: .............SHEET,.................. OF . ............... PROJECTPHASE: ....... - ... ... - ...... I ............... 1-1.1-1. 1 1 .... I ...... I ........... -- .......... DESIGNEDBY: ... KM.9 .........................�ASSUMPTION61...............,......,. DESCRIPTION: ..... ....... .......... ......................... CHECKED BY:-..................... ......... ATE:......... .. yr r .,....... ... ... ..... ........ ..........................REFEREINCES tII The Schneider Corporation k -Z 64W- j 2 9,4 A-i 4L ---- -- ------------ 7 I L ... 'AA s -T 2.9 C�l x'Ja IF, �/,:Z.;> ,p 6a!5(, 6, -4a (-76) I PROJECT NAA£:..FR.�t?�..,.,,.,. PROJECT PHASE:....................^weK..,.,...,..,..................,,.....,,.,,......,....,,,....,..,,......PROJECTH0:.Z7..u.:.'.�Lc................SHEET.,..............,., E. . OF............. S�+ chneider DESCRIPTION:...................T.....,..........,,.............................,....................:............DESIGNEDBY:,,..�.:'.:.5.........................DATE:......................................-.. .......................................................................�....... ................7,?CY.K.7..:F�..,.D.,.Alrl,.k,4`....�n.!,t.`�..1r.f�.....,.............,,........,.,.....,,.,,...., CHECKED BY:........................................... ................................................................ DATE:....,......,............................... ASSUMPTIONS/REFERENCES The Schneider Corporation i -s - AS. z low It7I i -7417 7 Iret 7 4rD f' TO 2_ �. C. .7 NlY 11 14 a ,6. 1 ♦.O � �. fl3 3o nr C � � M 5 he r rods -- ItI i 1._ I I Alcoa& PROJECT NAME: ............ �-a /. �.. � ..... W.'. 4.."k ............ ................ , PROJECT NO: .... ZZZ.2..,00.....SHEET...................47OF,, PROJECT PHASE: .... ........ ........................................... .......... ...... ............ .......... , DESIGNED BY, ............. .. DATE: ... ............ DESCRIPTION: ........ ............................... ........ CHECKED BY:............ DATE: ...................... ., .................. Schneider ......... ..................... ........... ........... ........,.......ASSUMPTIONS/REFERENCE: The Schneider Corporation ✓ - 4-2 /0% 1,5 % 7-5-% P/--// — Z:- -;Z 41 � 7 7o w"-Wa 4-27,3�- T, -1 PROJECT NAW ........ ,k ..................................... PROJECT NO:22Z2,00Z SHEET ................... OF ............ PROJECTPHASE: ....................................................... ........... F. .................... ............. DESIGNEDBY: .......... df ........ DATE: .......... DESCRIPTION:., ............. . CHECKED BY: ................... .......... DATE: ....... r ........................ ...... a ............ .................. ... .. ..... ... ..... ASSUWTION S RE FEREN CE! The Schneider Corporation ✓ /D /V C" L9 6) l 42e44 ct- dew 7e- �yL = 20Go Z'- F, 2 619) 4— 7 g AS -4'--S2 + -7 T 4 -Al Vf �M w M n N Ln [O 1n m r- O aU 4 It Q m N V 0U N N r N M M r r .- M N N N O O O O O O O O O O O N-- O 0 0 jN O N N N N C. O O C O O O Ir cCoomrn 000 00 2 r � N Iti (O O N O N O co FE' O N r R7 M 0 0 0 (o r r r Cl Q o O N (b co M h M CO (D N r r N M V r 7j 'a ca a �J o � r 0 U! r7 N M^ N O O r r U') L imZ U-)n-,t OOO IO[] N() O CD N M O GI r f`') N OOGO M 0000000OpO00 7 C N G U7 0 L C � cu y M _i M-•IE N'a a3 NM N O� V OOC(O (D r M N N N C O O O O O O O O G O 0 0 0 0 0 0 0 v) Iti N to N O N r N N N O~ r yL O 0 C) 0 0 0 0 O O 000 0 d 0 (D (D �O Mph^N cl-00 rrjOONQO— Q7 .-rr r rrrr J �4) mmZinv�CO��mzzu�wEv�v"7'i YX W W www �j�ju�iwu,.�wwui e�ilu me ggon❑❑ao❑ca❑❑a❑ao❑ �J/o RAINFALL-? YEAR FREQUENCY- 24 HOUR DURATION 2.7" 2.6 .7u 8„ 2 9" 3 1. REFERENCE STATE OFINDIANA TECHNICAL PAPER NO. 40 DEPARTMENT OF NATURAL RESOURCES NATIONAL WEATHER SERVICE I IDIVISION OF WATER APRIL 1979 - 6.2 - p// L I 6 E RAINFALL - l0` 'YEAR FREQUENCY - 24 HOUR DURATION 3.93.8 cm In ®1 31 4.11. 4.2" 0 REFERENCE STATE OF INDIANA TECHNICAL PAPER NO. 40 DEPARTMENT OF NATURAL RESOURCES NATIONAL WEATHER SERVICE DIVISION OF WATER APRIL 1979 6.. 4 - 1) / a RAINFALL-JOO'YEAR FREQUENCY- 24 HOUR DURATION ;.I i.2 S,3 5.4" 5.5" 5',6 5.7,1 5.8 5.9'1 m REFERENCETECHNICAL PAPER NO. 40 DEPARTMENT NATIONAL WEATHERS SERVICE I DIVISION NATURAL RESOURCES ION OF WATER 1 APRIL 1979 -6.7- YJ/3 INPUTS FOR DEVELOPED BASINS MODEL Nodes Name: 36" CONTROL STR Base Flow(cfs): 0.000 ]nit Stage(ft): 917.570 Group: BASE Plunge Factor: 1.00 Warn Stage(ft): 822.000 Type: Manhole, Flat Floor Stage(ft) Area(ac) Name:DETI Group: BASE Type: Stage/Area Stage(ft) - Area(ac) ------------ 829.000 0.0100 830.000 0.1700 831.000 0.3800 832.000 0.5800 Name: DET2 Group: BASE Type: Stage/Area Stage(ft) ------- Area(ac) ------------- 827.500 0.0100 828.000 0.1900 829.000 0.2600 830.000 0.3300 831.000 0.4100 Base Flow(cfs): 0.000 Init Stage(ft): 829.000 Warn Stage(ft):833.000 Base Flow(cfs): 0.000 Init Stage(ft): 827.500 Warn Stage(ft): 831.000 Name: DET2 BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 827.000 Group: BASE Warn Stage(ft): 829.000 Type: Stage/Area Stage(ft) Area(ac) Name: DET3 Group: BASE Type: Stage/Area Stage(ft) Area(ac) 838.000 0.1200 839.000 0.3300 Base Flow(cfs): 0.000 In]t Stage(ft): 838.000 Warn Stage(ft): 840.000 MA 840,000 0.6800 Name: DEV-E1 Base Flow(cfs): 0.000 ]nit Stage(ft): 817.570 Group: BASE Warn Stage(ft): 823.000 Type: Stage/Area Stage(ft) Area(ac) ----------- --------------- 817.570 0.0000 819.000 0,0070 820.000 0.0750 821.000 0,2300 822.000 0.5600 823.000 1.3000 Name: DEV-El BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 817,460 Group: BASE Warn Stage(ft): 823.000 Type: Time/Stage Time(hrs) Stage(ft) 0.00 817.460 999.00 817.460 Name: DEV-E2 Group: BASE Type: Stage/Area Stage(ft) Area(ac) Name: DEV-E7 Group: BASE Type: Stage/Area Stage(ft) Area(ac) 824.730 0.0000 825.000 0.0400 825.150 0.0700 826.000 0.3700 Base Flow(cfs): 0,000 Init Stage(ft): 824,400 Warn Stage(ft): 827.000 Base Flow(cfs): 0.000 Init Stage(ft): 824.730 Warn Stage(ft): 826.000 Name: DEV-E7 BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 825.150 Group: BASE Warn Stage(ft): 826.000 Type: Stage/Area Stage(ft) Area(ac) a Name; DEV-E8 Base Flow(cfs): 0.000 Init Stage(ft): 829.090 V/S Group: BASE Type: Stage/Area Stage(ft) - Area(ac) --------------- 829.090 0.0000 830.000 0.2600 830.300 0.4600 830,500 0.5000 Warn Stage(ft): 831.000 Name: DEV-E8 BOUNDARY Base Flow(cfs): 0.000 [nit Stage(ft): 830.300 Group: BASE Warn Stage(ft): 831.000 Type: Stage/Area Stage(ft) Area(ac) Name: DEV-ESI Base Flow(cfs): 0.000 Init Stage(ft): 834.500 Group: BASE Warn Stage(ft); 836.000 Type: Stage/Area Stage(ft) Area(ac) 834.500T 0.0000 835.000 0.0050 836.000 0.1000 Name: DEV-ESJ BOUNDAR Base Flow(cfs): 0.000 Init Stage(ft): 834.510 Group: BASE Wam Stage(ft): 836.000 Type: Stage/Area Stage(ft) Area(ac) Name: DEV-ES2 Base Flow(cfs): 0.000 Init Stage(ft): 833.570 Group: BASE Warn Stage(ft): 835.600 Type: Stage/Area Stage(ft) Area(ac) 833.570� 0.0000 834.000 0.0050 835,000 0.1500 835.600 0.2000 Name: DEV-ES2 BOUNDAR Base Flow(cfs): 0.000 Init Stage(ft): 832.590 Group: BASE Warn Stage(ft): 835.000 Type: Stage/Area v 1-6 Stage(ft) Area(ac) Name: DEV-NI Base Flow(cfs): 0.000 Init Stage(ft): 833.000 Group: BASE Warn Stage(ft): 836.000 Type: Stage/Area Upstream end of proposed culvert at east entrance off I I 1 th St. Stage(ft) Area(ac) ---— ------- - --------------- 833.000 0.0100 835.000 0.0582 836.000 0.1300 Name: DEV-NI BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 833,460 Group: BASE Warn Stage(ft): 846.000 Type: Stage/Area Stage(ft) Area(ac) Name: DEV-N2 Base Flow(cfs): 0.000 Init Stage(ft): 837.250 Group: BASE Warn Stage(ft): 840.600 Type: Stage/Area Stage(ft) Area(ac) — 837.250 0.0000 838.000 0.0020 839.000 0.0030 840,000 0.0050 841,000 0.0400 Name: DEV-N2 BOUNDARY Base Flow(cfs): 0.000 ]nit Stage(ft): 837.000 Group: BASE Warn Stage(ft): 838.000 Type: Stage/Area Stage(ft) Area(ac) Name: DEV-S I Base Flow(cfs): 0.000 Init Stage(ft): 835.700 Group: BASE Warn Stage(ft): 840.000 Type: Stage/Area Stage(ft) Area(ac) -------- ------ — ----- -- 835.700 0.0000 836,000 0.0020 837.000 0.0050 838.000 0.0100 839.000 0.0200 840.000 0.1000 Name: DEV-S l BOUNDARY Base Flow(cfs): 0,000 Init Stage(ft): 835.480 Group: BASE Warn Stage(ft): 840.000 Type: Time/Stage Time(hrs) - ---------- Stage(ft) 0.00 ---- 835,480 999.00 835A80 Name: DEV-S2 Base Flow(cfs): 0,000 Init Stage(ft): 837.520 Group: BASE Warn Stage(ft): 939,500 Type: Stage/Area Stage(ft) Area(ac) 837.520 0.0000 838.000 0.0040 839.000 0,0306 839.650 0,1000 Name: DEV-S2 BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 837.560 Group: BASE Warn Stage(ft): 840.000 Type: Time/Stage Time(hrs) Stage(ft) ---------- ------------- 0.00 837.560 999.00 837.560 Name: Ll-DI BOUNDARY Base Flow(cfs): 0.000 Init Stage(ft): 828.000 Group: BASE Wam Stage(ft): 830.000 Type: Stage/Area Stage(ft) Area(ac) — — — — — -------------------------------------------- Name: Lake Base Flow(cfs): 0.000 Init Stage(ft): 835.000 Group: BASE Warn Stage(ft): 837.000 Type: Stage/Area Detention pond west of the Motion Trail. Stage(ft) Area(ac) 835.000 1.5600 836.000 1.7500 on ' 837.000 1.9500 Name: Lake2 Base Flow(cfs): 0.000 [nit Stage(ft): 838.000 Group: BASE Warn Stage(ft): 840.000 Type: Stage/Area Large Lagoon area to the west of the Monon Trail Stage(ft) Area(ac) ---- 83 8.000 10.4500 ' 139.000 11,4101 840.000 13.7900 Pipes fName: From Node: Length(ft): 0.00 Group: BASE To Node: Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 0.00 0.00 Entrance Loss Coef. 0.00 Rise(in): 0.00 0.00 Exit Loss Coef: 0.00 Invert(ft): 0.000 0.000 Bend Loss Coef: 0.00 Manning's N: 0.000000 0.000000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall ------- ------------------- Name: 18" CONTROL From Node: DEV-EI Length(ft): 10.00 Group: BASE To Node: 36" CONTROL STR Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 18.00 18.00 Entrance Loss Coef: 0.50 Rise(in): 18.00 18.00 Exit Loss Coef: 0.00 Invert(ft): 8 18. 800 818.000 Bend Loss Coef. 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular CMP: Mitered to slope Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall VJf Name: 36" CULVERT From Node: 36" CONTROL STR Length(ft): 43.80 Group: BASE To Node: DEV-El BOUNDARY Count: I. UPSTREAM Geometry: Circular Span(in): 36,00 Rise(in): 36.00 Invert(#f): 817.570 Manning's N: 0.0 13 00 Top Clip(in): 0.000 Hot Clip(in): 0,000 0 Friction Equation: Average Conveyance DOWNSTREAM Solution Algorithm: Automatic Circular Flow: Both 36.00 Entrance Loss Coef: 0.50 36.00 Exit Loss Coef: 0.00 817.460 Bend Loss Coef: 0.00 0.013000 Outlet Ctrl Spec: Use do or tw 0.000 Inlet Ctrl Spec: Use do 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete. Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting ------------------------------------------------------------------------------------------ Name: DET2-P From Node: DET2 Len thtft : 157.00 Group: BASE To Node: DM BOUNDARY Count: I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(#f): 827.500 827.000 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Hot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Detention area outfall line. --------------------------------------------------------------------- -- - ---------- ---- Name: DET3-P From Node: DET3 Len h(ft): 159.00 Group: BASE To Node: Lake2 Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 24.00 24.00 Entrance Loss Coef: 0.50 Rise(in): 24.00 24.00 Exit Loss Coef: 1.00 Invert(ft): 837.000 836.500 Bend Loss Coef: 0.00 Manning's M 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall VZ0 ' Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Detention area outlet. ------- --------------- ---------- -------------- ------------------ ---------------------- -- Name: DEV-S2 PIPE From Node: DEV-S2 Length(ft): 36.50 Group:BASE To Node: DEV-S2 BOUNDARY Count; I Friction Equation: Average Conveyance ' UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12,00 12.00 Exit Loss Coef: 0.00 Invert(ft): 837.520 837.560 Bend Loss Coef. 0,00 Manning's N: 0.02400t) 0.024000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 0.000 Inlet Ctrl Spec: Use do . Bot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: ' Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Name: ESI-NI CULVERT From Node: DEV-ESI Length(ft): 30.00 Group: BASE To Node: DEV-ESI BOUNDAR Count: I Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12,00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 834.500 834.510 Bend Loss Coef: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use do or tw ' Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None ' Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: ' Circular Concrete: Groove end projecting -- ----------------------------------------------------------- Name: ES2-El CULVERT From Node: DEV-ES2 Length(ft): 105.00 Group: BASE To Node: DEV-ES2 BOUNDAR Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef. 0,50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 ' Invert(ft): 833.570 832.590 Bend Loss Coef: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None i I e z1 I Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Name: N1-E2 From Node: DEV-NI Length(ft): 164.00 Group: BASE To Node: DEV-NI BOUNDARY Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12,00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss CceF 0.00 ' Invert(ft): 833.800 833.460 Bend Loss Coef: 0.00 Manning's N: 0,013000 0,013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 01000 Inlet Ctrl Spec: Use do But Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge W headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall ' Culvert under the east entrance off 1 l Ith St. ------'--------------------- ---- ---- ------ — --------- ------'--_--------------- Name:N2-NI CULVERT From Node: DEV-N2 Length(ft):48.00 Group: BASE To Node: DEV-N2 BOUNDARY Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 837.250 837.000 Bend Loss CceF 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0,000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end w/ headwall ■ Name: SI CULVERT From Node: DEV-SI Length(ft): 41.00 Group: BASE To Node: DEV-SI BOUNDARY Count: I Friction Equation: Average Conveyance ' UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 36.00 Rise(in): 36.00 36.00 Entrance Loss Coef: 0.50 36.00 Exit Loss Coef: 0.00 I �922 I ' Invert(ft): 835.700 835.480 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw ' Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(ln): 0.000 0.000 Stabilizer Option: None Upstream FH WA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: ' Circular CMP: Headwall Channels Name: DET2-E2 CHANNEL From Node: DET2 BOUNDARY Length(ft): 335.00 Group: BASE To Node: DEV-E2 Count: 1 ' UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 827.000 824.400 Flow: Both TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0.060000 0.060000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bet Clip(ft): 0.000 0.000 Exit Loss Coef. 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec1: Stabilizer Option: None AuxElevL(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 5.000 5.000 LtSdSlp(h/v):3.00 3.00 RtSdSlp(h/v):3.00 3.00 ' ----------------------------------------------------- ------ DE-E2 Name: E2-E1 CHANNEL From Node: Length(ft): 458.00 Group: BASE To Node: DEV-El Count: I ' UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 824.400 TCIpInitZ(ft): 9999.000 819.110 9999.000 Flow: Both Contraction Coef` 0.000 Manning's N: 0.060000 0,060000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bot Clip(ft): 0.000 0.000 Exit Loss Coef. 0.000 ' Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec 1: AuxElev2(ft): Stabilizer Option: None Aux XSec2: Top Width(ft): Depth(ft). Bot Width(ft): 5.000 5.000 LtSdSlp(h/v):3.00 3.00 RtSdSlp(h/v):3.00 3.00 I V 23 I Name: E7-E I From Node: DEV-E7 BOUNDARY Len th ft : 400.00 Group: BASE To Node: DEV-El Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): $25.150 819,500 Flow: Both TClpinitZ(ft): 9999,000 9999.000 Contraction Coef: 0,000 ' Manning's N: 0,070000 0.070000 Expansion Coef: 0,000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bot Clip(ft): 0.000 0.000 Exit Loss Coef, 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec1: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 10.000 5,000 LtSdSlp(h/v):12.00 3.00 RtSdSlp(h/v):12.00 3.00 ------ --- — — — -------- ---------- ---- -------------- ------------ Name: ES-E 1 From Node: DEV-E8 BOUNDARY Length(ft): 170.00 Group: BASE To Node: DEV-El Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 830.300 819.500 Flow: Both ' TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0.100000 0,100000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 But Clip(ft): 0.000 0.000 Exit Loss Coef, 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec1: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 20,000 20.000 LtSdSlp(h/v):50.00 50.00 RtSdSlp(h/v):50.00 50.00 Name: ESI-N2 CHANNEL From Node: DEV-ESI BOUNDAR Length(ft):40.00 Group: BASE To Node: DEV-N1 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic ' Invert(ft): 834,510 833,800 Flow: Both TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0.030000 0.030000 Expansion Coef: 0.000 ' Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 I i' ' Bot Clip(ft): 0.000 0.000 Exit Loss Coef: 0,000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do ' Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 5.000 5.000 LtSdSlp(h/v):3.00 3.00 ' RtSdSlp(h/v):3.00 3.00 ' -------------------- --- ------------- ------- ---- ---- ------------ ------------------- ---------- Name: ES2-El CHANNEL From Node: DEV-ES2 BOUNDAR Length(ft): 503.00 Group: BASE To Node: DEV-E I Count: UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance ' Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 832.590 819,110 Flow: Both ' TClpinitZ(ft): 9999.000 Manning's N: 0.080000 9999.000 0.080000 Contraction Coef. 0.000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bot Clip(ft): 0.000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw ' AuxElevl(ft): Inlet CtrI Spec: Use do Aux XSec I: Stabilizer Option: None AuxElev2(ft): ' Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft): 5.000 5.000 ' LtSdSlp(h/y):20.00 3.00 RtSdSlp(h/v):20.00 3.00 — ------------------------------------------------------------ Name: LAKEI-E7 CHANNE From Node: Ll-Dl BOUNDARY Length(ft): 470.00 Group: BASE To Node: DEV-E7 Count: I UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 828.000 824.730 Flow: Both ' TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0,060000 0.060000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bot Clip(ft): 0.000 0.000 Exit Loss Coe@ 0.000 ' Main XSec: Outlet Ctrl Spec: Use do or rw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec I: Stabilizer Option: None AuxElev2(ft): ' Aux XSec2: Top Width(ft): Depth(ft): ' Bot Width(ft): 10.000 10,000 LtSdSlp(Wv):40.00 20.00 RtSdSlp(Wv):40.00 20.00 n2s 1 ---------------------------------------------------------------------------------------------- Name: NI-E2 CHANNEL From Node: DEV-NI BOUNDARY Length(ft): 390.00 ' Group: BASE To Node: DEV-E2 Count: I UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic lnvert(ft): 833.460 824.400 Flow: Both TClpinitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0.080000 0.080000 Expansion Coef. 0.000 ' Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Bet Clip(ft): 0.000 0.000 Exit Loss Coef. 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do ' Aux XSec I: Stabilizer Option: None AuxE]cv2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bot Width(ft):5,000 5,000 LtSdSlp(h/v):3,00 3.00 RtSdSlp(h/v):3.00 3.00 ' ---------- - Name: N2-NI CHANNEL From Node: DEV-N2 BOUNDARY Length(ft): 240.00 P,------------------------------------- ---------- ...... ---------- ------ Group: BASE To Node: DEV-NI Count: I ' UPSTREAM Geometry: Trapezoidal DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic Invert(ft): 837.000 833.800 Flow: Both TClpfnitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 Manning's N: 0.030000 0.030000 Expansion Coef. 0.000 Top Clip(ft): 0.000 0,000 Entrance Loss Coef. 0.500 Bot Clip(ft): 0.000 0.000 Exit Loss Coef. 0.000 Main XSec: Outlet Ctrl Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec1: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bet Width(ft): 1.500 1.500 LtSdSlp(h/v):2.00 2.00 1 RtSdSlp(h/v):2.00 2.00 ' Drop Structures Name: DETI-D From Node: DETI Length(ft): 169.00 ' Group: BASE To Node: Ll-DI BOUNDARY Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Circular Circular Solution Algorithm: Automatic Span(in): I2.00 12.00 Flow: Both ' Rise(in): 12.00 12.00 Entrance Loss Coef: 0.500 Invert(ft):829.000 828.000 Exit Loss Coef. 0.000 Manning's N: 0.013000 Top Clip(in): 0.000 0.013000 0.000 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use do I V Z4v Bot Clip(in): 0.000 0,000 Solution Incs: 10 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge wl headwall Dry detention area outlet line. *** Weir 1 of I for Drop Structure DET1-D *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coe 3.200 Geometry: Circular Orifice Disc Coef: 0.600 Span(in): 6.00 Invert(ft): 829,000 Rise(in): 6.00 Control Elev(ft): 829,000 Name: L1-D From Node: Lakel Length(ft): 117.00 Group: BASE To Node: LI-Dl BOUNDARY Count: l UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Circular Circular Solution Algorithm: Automatic Span(in): 12.00 12.00 Flow: Both Rise(in): 12.00 12.00 Entrance Loss Coef: 0.500 Invert(ft): 829.000 828.000 Exit Loss Coef 0.000 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0,000 Inlet Ctrl Spec: Use do Bat Clip(in): 0.000 0,000 Solution Incs: 10 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge wl headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Lake#1 outfall line. *** Weir 1 of for Drop Structure LI-D *** TABLE Count: 1 Bottom Clip(in): 0,000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Circular Orifice Disc Coef: 0.600 Span(in): 8.00 Invert(ft): 835.000 Rise(in): 8.00 Control Elev(ft): 835.000 *** Weir 2 of 2 for Drop Structure Ll-D * * * TABLE Count: I Bottom Clip(in): 0.000 Type: Horizontal Top Clip(in): 0.000 V2�- ' Flow: Both Weir Disc Coef: 3,200 Geometry: Rectangular Orifice Disc Coef: 0,600 ' Span(in):24.00 Invert(ft):837.000 Rise(in): 24.00 Control Elev(ft): 837.000 Name: Lake2-D From Node: Lake2 Length(ft): 68.00 Group: BASE To Node: Lakel Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance ' Geometry: Circular Circular Solution Algorithm: Automatic Span(in): 12.00 12.00 Flow: Both Rise(in); 12.00 12.00 Entrance Loss Coef: 0.500 Invert(ft): 835.500 835,000 Exit Loss Coef: 1.000 ' Manning's N: 0,013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0.0W 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0.000 0.000 Solution Ines: 10 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall ' Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Lake #2 outfall line. ••* Weir I oft for Drop Structure Lake2•D TABLE Count: 1 Bottom Clip(in): 0.000 8 y f ,1 t Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Circular Orifice Disc Coef: 0.600 'I Span(in): 8.00 Invert(ft): 838.000 Rise(in): 8.00 Control Elev(ft): 838.000 ' "• * Weir 2 of 2 for Drop Structure Lake2-D *•" TABLE Count: I Bottom Clip(in): 0.000 Type: Horizontal Top Clip(in): 0.000 I Flow: Both Weir Disc Coef: 3.200 Geometry: Rectangular Orifice Disc Coef: 0.600 ' Span(in):24.00 Invert(ft):840.000 Rise(iri 24.00 Control Elev(ft): 840.000 Weirs ' Name: CB CONTROL WEIR From Node: DEV-EI Group: BASE To Node: 36" CONTROL STR Flow: Both Count: I Type: Horizontal Geometry: Circular 1 MR 1 Span(in):24.00 (' Rise(in): 24.00 Invert(ft): 822,500 ' Control Elevation(ft): 822.500 TABLE Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Discharge Coef: 3,200 Orifice Discharge Coef; 0,600 '---------------------------------- ---------------------- Name: E7 WEIR From Node: DEV-E7 Group: BASE To Node: DEV-E7 BOUNDARY ' Flow: Both Count: I Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 15.00 ' Left Side Slope(h/v): 20.00 Right Side Slope(h/v): 20.00 j Invert(ft): 825,150 Control Elevation(ft): 825.150 Struct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0.000 Top Clip(ft): 0.000 Weir Discharge Coef: 3.200 " - Orifice Discharge Coef: 0.600 ---------------------- - - Name: E8 WEIR From Node: DEV-E8 1[ Group: BASE To Node: DEV-E8 BOUNDARY JJ ' Flow: Both Count: 1 Type; Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 100.00 Left Side Slope(h/v): 100.00 Right Side Slope(h/v): 50.00 1 Invert(ft): 830.300 Control Elevation(ft): 830,300 Struct Opening Dim(ft): 9999.00 TABLE Bottom Clip(ft): 0,000 Top Clip(ft): 0.000 Weir Discharge Coef. 3.200 ' Orifice Discharge Coef:0,600 Hydrology Simulations ' Name:002YR-24HR Filename: S:\2K\2722\002\drainage\ICPRdev\002YR-24HR.R32 Override Defaults: Yes ' Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 2.93 1 V n q �1 �1 Ii Time(hrs) Print Inc(min) ------------ ------------"- 30.000 1.00 Name: O IOYR-24HR Filename: S:\2K\2722\002\drainage\1CPRdev\OIOYR-24HR.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 4.20 Time(hrs) Print Inc(min) --- --------- —--------------- 30.000 1.00 Name: I OOYR-24HR Filename: S:\2K\2722\002\drainage\]CPRdev\IOOYR-24HR.R32 Override Defaults: Yes Storm Duration(hrs): 24,00 Rainfall File: Scsii-24 Rainfall Amount(in): 5.82 Time(hrs) Print Inc(min), 30.000 1.00 I V36 I m 1 0 0 % S in Tpr r.-10 .i T10 No r 1'lmm vlpr ooq olnm N.1 .+ r ob oT.1 oTrt ro 0. A O'1-I Olmp mOlm OI 1l1T Om p h mI(1 Nmp oOO 0110N (O TP'1 Olhm Ohm ohb W m £ W U ri rd m Vl r OI t'! 1'1 N r O T N W N m ri m O O O p 1D Ol Ol 1(1 r-1 Oi N O O O r O O r W (� Y b01 000 CV 14 1'1 p IA 101'I 1; 01'I 000 Oil 11 POIm 111Nm 000 000 O'1 k ONPrb tO NUI rlrP POP rmT (Or1G OOO 1G NO TOh 10 Nr OJ)Oi Oe-1N f01(1 �. '� pNb pv)1p blpr 1'1NN ('11'11'1 NNb 000 PN.-I vl pl'1 1O N1'1 Obm Oho NM FW pl'1 ('I CNN NNN NNry NNN ('I ('1m 000 NNN NNN NNN OR1N Ot+1 !'I NN j Y r-I r-1 r-1 N N N N r-1 fi N N N f1 rl r1 N N '-1 rl rl .i N N r1 rl N N fl N fl 'i fi i ' X 4 o 0, r p M m 1'1 P N fl T 1!1 IO m m o O N Ol p r 1H. It) m r N H H 10, O M H N O W NmP Q1 ('1 oOf'1 01�Q1 PmO OITN mmP rb11 omN 101 Olpr Ohm m1 £WU Wflm Pro O1N 1'11'1N O1 mrm.-1 r-I .im P(lh .y fl O1 N r"I 000 OOr O1W MVIOL Npm h.-Im N1'1P Ol lnp 1l11pp IpON rlll 111 1l1 .�O pU1m f11+11D OOO Ofi i N I N 1' 1 r b r r r m m m r l r p m M N 10 r l O p r 1 D 1"1 m r O v l T O. O ill m h o O V l O l V l 1(1 O H N N b O O O H. H b w h N N N P N N P N b N O O INN IO pm M H N O b m H, G FW P1 P1 Pl NNN NN N N H NNN NNN NNN NNN POI Of NNN NNN NNN NNN ONN Y. H rl .i N rl r-I rl rl r-1 .4 H1. 'i i-1 rl 'i r4 ei H rl r'i .i r-I fi rl N r-1 N r-1 ri r'i d 11 k W WN HIM 1 Nr1 oOlr 01r.1 mT61 (tor mmm rpm mPm (1rm N., W01 oO ' N U Y m m m m m m r b m m V m 01 P V1 m 1vI 1p h T Vl Pl ti'-I m p P m P m N P H N 'a MW '-INN p111P 1Dm1O I'IpP 1l1 01 p✓Im 1')H- M., M., .11 H 04 ul TI+1 ONU 11H Opal NMV11C 10 PmN NMI M. Nm IN 1 % H 1e41 e4 IN N" NHN HNN £ M o, IN, Iq O pl r0'i Nlt Oho 000 000 .4 1O IO Qim ONm .-Ipp OOIq rOl ICI1 Y [TW V1 I!1 Yl NNH RI m, INN NIN Nvl V) OOO NI'IN .11 r-1 .-1 NO HHH OOO NN 10 O O O O O O O O O ... O O O O 00 00 O O O O O O O 00 00 O O O O O O O O O O O N Y o 0 0 0 0 0 0 0 o ... ... O O o O o o O O o O o O O o 0 0 o O O 0 m O O O O O o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O U � 11 I 11 1 I 1 I I 1 nGi £ 1 T N Y O O O 0.0 O O O O O O 0.0 000 O O O O O O 000 O O O O O O O O O O O Q G 01W 000 O o q o 0 0 0 0 0 0 0 0 0 C 00 O O O O O O o O O o O O o O o O o O O O o O o p o O O o 0 0 0 0 o O o O o O NNN 1r)I, I -IN r-1 pm00. I'm III rrr 10b 10 1n 10 IO Hr _; rli-1 r1 bm O .� N NNN 1'11'I1'1 III NNN I NNN NNN NNN NNN NNNIII R11`tI I, m m m m m m m m m m m m m m Nm m m m m m m m m m m m m m W W W m m m W m U %LY t IN TIO O\ mOm Nr01 phm NrU1 000 I I Om, MI N ON.1 Ori !)1 Nlll J, R N OIW 1.1NO1 mN1t)' rOY1 01pO Y1ON ripU bIG tO V Pm (•1b P OH- £ o M rNb r0, bNN ONp NIp U r'inl N NO W 10.N Ppp r'1 n1 pI!1r p10b OlMto III N WOIT TOO mT0 rrr mOlm OriN hrr v1h V1 Nv110 Ill Yl 111 0100 000 NI(1 ri eiN NIM NN1 NNN I'm ' NNN HIH NNN Nm NN NNN NRI1'I III ICIm m m m m W m m m m m m m m m m ... ... m .. ... m .. m W m m m m ow 1r1 V 1N 10, 1' I r b O O O 1' I T u t I o11 P N h m r I' i O r 4 N I. 0 N Fo� OOpPRIppt+lTrO'I RI 1'1 N N N N N N 1'1 1'1 P P p P 1'1 1+1 rt1 O O O N N N N N N N N Ns xxx xxx xxx xxx mxx xxx xxx xxx xxx Pxx xxx xxx xx N N P P P P P P P p P P P p p P N N P p P P N N p C N N N N N N N N N N N N N N N N N N N N N N" N N N N N N N N N N N N k 1 1 1 I I I I 1 1 1 I I 1 1 1 1 1 I 1 I I I I 1 I 1 1 1 1 I p ., aaa aaa aaa aaa aka aaa aaa aka a aaa aaa a v N N N N N N N N N N N N N N N N N a N N N N N >. N >+ p E N O O N O O N O O N O O N O O N O O N O O N O O N O O N O O N O O N O O N O fi .{ OHO 0. 0 OH' a,. 0,0 OH. ONO ONO Or-10 0r . ONO 0.. 01 A m 0.. O O r1 .01 O O M O O N O O N O a H O O N .01 O OH O O N 0 O 1 O W WNW WNW WNW WNW WNW WNW WNW WNW WNW WNW WNW WNW WW 'J V N m m v i m m M o v r m o m v N m N m. m m m o m m o m r w m y m l� o 44 1C Q Q Q 444 Q rC 444 Q Q Q Q Q �a Q Q Q Q Q 444 Q 44 R Q Q mm mmm mmm mmm mmm mmm gmm mmm mmm mmm mmm mmm mm c ' a1 HN.i NNN aNN aNa RI'M .11-1 r1 NNN NNN rr h aNa NN mmm Naa µNµ'' N HH q NWN WWW WWW QQQ WWW WNW QQQ WNW WNW RQQ WNW Qr1Q WW U 2 0O q 1mq q y❑yyqyq q q q »> q yqy z❑y »> »> q yq qz » Gq�y yqy yqy I 1 'd 000 qqP OOq P6G 000 000 �bb .Poo bDb WW U aaa o00 000 000 000 0o d mmm mmm mmm mmm 0 00 N N N H .H r r r m m m p V U U U F F F W W W W W W W W W 0 N N W I I I I 1 1 1 t [ s ❑ q q > > > > > > > > > 10 1n b 41 W 4 ( M mm WO q 0 0 0❑ CH 0 ti I 1 %,a N b rl mo f Vm vl mN Ol r-Ir N., mHN mI- oOo oOO NmP AOW P mNP0 mmN ObN Ol ry 110r ..o OpV1 moo 000 olo I(1Nm 000 mlpP £ r- I U W b .0 01 { O m ry 1 g m 01 N N r I V 1 r N, O N I p 0 NwP N b l p 0 0 0 h t O V 1 O 0 0 1 p N r Y rl O fi N O rl N ry rl rl N f•'I @ 1n VI b f1 N P .-I N V rl N P O O O O rl N O O O O N H O I' NSN �OF O b 1Ar1O NM. m CP N I I NIo NNf'1 NNN (.l 1'Ih PN1`l NNN 000 .N. m00 b1', rl rl ry Oo0 O00 o" NryN p00 000 POm ID Or F W N N N N N N N N N N N ry N N N N N N N I N N N N N O O O N N N O O O N o b Y M NNN NNN Nry r1 fl ry .y Nrl ry NNfI .-1NN ry r1N .-1 e-IN �y RIN O %jM b rOb NY1 an r4Pm NmN mr-Ir OPO bN. m1 1 mOm mNb MIw PrP q O W N m m P m O O m m ry N N m P N N .i r 0.1 o N b m r-1 P m m ('1 N N m m b P j E W U O m 1'1 b O O ('1 011t7 m r m N m N I N I O N P O NW, N b o h m o r w o o r-1 h C 1'I O fi N N N 1'1 O rl rl 11 1p .{ M I'1 P M N P fl N P N N P ri N P O N 1 O 1; N O 0 Moo Omm mp p NNP NNI NNN Np NN hNN b!' m r MN OMI M0N �O N Nt'Ib N.-Iri NMI 000 NNN 000 00 ri Nr-I ry fl '1 NrI ri NNN 0.1 F W N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O 10 :C N fl 'i 'i r'i e4 fi I-1 ri r'i rl e-1 r'i i-I I N H I . N I r'i N r-1 r'i ei I-1 '-I fi N M'i '1 'i r-I r4 r1 rl £ WqN ('1 1'1mO C'-Im mI'1N b1'1P Nmm 1001(1 O1rm 10 Y1O ('1 ('111 r4 flm r-1 .-1 f1 '.1 1'1 .i P Itl Vl vI V m b m m N N O N m h m N C r m mNN j' H W N Q N t!1 N N 1'1 C 1'1 m N l N V 1 m m N I r l m 1'1 .�1 V1 V1 lD . '.I .y N h 1p I(1 N ri N P m VI m No r N q E b Nmm o.o IP oo� 1'IOb No 000 POI 0oO i� LI bIW vmY r1 NNP lm1 N('IP 000 oo, NI- N lo- 000 OOO 000 r-i q N O O O O O o o O O 0 0.0 O O O O O o .00 O O O .Nl�.a O O O 0N�N0. O O O O o o 0MMI00 O O O O 0 O o O o Y ❑ N O ... O O O 000 .00 O O O O O O 00. O O O O O O O O O .0. O O O 0 000 000 000 000 000 000 000 moo 000 00o aoo 000 p 1 I £ OIN Y C m w O o 000 000 0.. O o 0 O O O .0. .00 .00 O O O .0. O O O o o 0 O O O 0 0 0 O O O o O o ... 0 .. ... ... ... 0 0. O 0. o o o + m 01 O 000 www 000 000 000 b1O10 000 000 000 000 0oO 000 NN 1U 101010 v1 VI lA V1 v1 v1 bbb blpb 000 mmm 000 000 mmm 000 000 A f'1 1'IM1'1 mNm mMI 1'1mm PPP PmP I('1N PP V P r'111I 3 m mmm m mm m mmm m m mmm mmm mPv mm mmm m m mp0 mmm I, I{NY m NIw mOm rriN ('ImN NPP Ow.. NPb mml0 000 NmN 000 NMI l Am m NOb t Np low mmw mhN OP Nr0 0.b mmm NmP b10b bplH E Y "I h Ol N h h r h 10 (1 m b r m m N r 1'I P ID N I'1 1I1 P P P N 10 N Y1 V1 1t) O c r m ID Poo 1T1 NNN PvI V1 m1'Im hmm rrr wbb 1.0 mm01 rrr mmm RI 1'1 f'I 1'1 ('1 M I m 1'I 1'1 m m I 1'1 ('1 (`l m m , t'1 M 1 l'I !'1 RI 1'1 1'1 ('I ICI 1'1 FI N N N m m m m ... m .. ... m m m m ... m m m ... ... ... ... ' NNN 01 1 ml .Pp Nm, M1INI'I 11` M' N PN II'M 000 OMI 000 POm E qUF +Hi 1"1 NNN N11P NM. NNN NNN 000 000 .�i ri e-1 000 NNN O00 -01 Y N N N N N N N N N N N N N N N N N N N N N N N N N O O O N N N O O O x N N N N N N fl fi r-1 N N fi ei fl rl r'i N fl N .i N rl r'i .-1 N N r'i 'i N �-I 11 N q ' �I E O v 555 5S aasa SSx .4g aa SxS aa aa aa xxS 5xS 555 a a x�x 'm aa Sx5 SWS xxx Y N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N �l A' � I a 1 I I aka 1 I I aaa I I I aaa 11 1 aaa 1 1 I aka I I I aka 11 1 aaa 1 I 1 aaa 11 1 aaa 1 I 1 aaa 11 I aaa 1 1 I aaa O N O O N O O N O O N O O N O O N O O N O O N o O N O o N O o N.0 No O O ONO ONO Or10 O'i0 000 000 ONO ONO .10 0.2 0r . 0. m fi 0Or1 00, 00. 00. p.i 0'i 00, oo' 0.1 on Oof O0.i d W WWW WWW WWW WWW WWW WWW O m m N N W m m m m o m m m m N N m WWW .0m WWW m N N WWW m N N WWW m WWW N N m WWW N N m mmm mmm mmm mmm mmm mmm mmm mmm m444 mm mm mmw mmm t m OW "NN WWW 22,>W21 NNN 2Z2 mmm NNN ay�Qyy W QaQ �C jwQ QQ 2 yp❑ O O ypyp ypp0y0 q❑ ap W O W W W 0 0 0 q O 0 o 0 0 D2 D G Q O O yQ P P O n 0 0 yyQ D D❑ yyRQ P D P a mmm QQm mmm 000 000 000 000 000 mmm mmm mmm mmm mmm ' ( mmm N N N W W W N N N . N N N W W W W W W z 2 z2 2 z 2 Wwm N N W qop 1 1 1 WWW I I I WWW 1 1 1 WWW 1 1 1 WWW 1 1 1 WWW I I I WWW 1 1 1 AaN O O O ❑ 0 0 O q❑ ❑ o❑ q O P q q 0 V Y S N O H . I F mm.1 Nmti NbP mr.i V1 riN lOMm O ri ri O N N 1.. .11 00. � O O O 444 M M M N N N O N N r l. NOVI 01 �-IN mrr �nmm .iPr mmN rrr rm�o P PYI M P�(1 •iNr 000 000 000 000 000 000 000 000 o O O o 0 0 N O O m r-I P 000 hNi(1 O O O P P P M M M N N N ti ti H N N N u v w u u u xxx xxx aAaa N.qa aA I x x P P N N lNp •-1 I ri I N o .-i w a w P o 0 o y o 0 0 0 o r r m I WI m • 0 0 M O •0 o o P 0 0 0 N r M o (!)" .71nPPoo M rnm o•-lo o ul PLO W FCo W U.Cm U P in Co P N r p Qi 0 0 (7 p P P P V) N N O M O lO ri t0 O .-I rl O Ol I W I x � I N N N l0 H V] N H m P P P P N Ol N I W rjo W U.Cm U P CM r N m I Q CA O q f/) .J P P P N N N O M O lD rl m 0 rl m e-1 M 1 I I I i 1 I I I I i r' ' 1 I �1 1 I I I I I 11 a x P P F W N H m P P m 1p N Ol N 0 0 0 O m �O r W r$o W U �m U P Can m N� a x ry P P � N N m N W �. N m M M.i M O •.1 O O N O O O ry 10 O P H N N E N P P r r V) m U) 0 0 0 O O lO •-I a x P P M N N N mi a Po :ioo No o.�oor r.-Im r-1 W N ti m O O •.1 M O .i O O .-1 O O O O P N N F N N E m P P O O t0 Ol U) 0 0 0 O P O u] W rjo W U,Cm U P.0 �n r N P q pj O q N O P N N N N N O •-i O N rl r 0 .-i N rl r v a C (D d) .0 H -, -- Q) -- m -. -. ,. EE E 7 0 -O � a o C C A C Q 7 C m U C 7 oa n w C m iNd O •• O N y -H H ..i •.I H y •'I H ro -r Z `� H W .•i y z H y z H H° w �_ ro c 4 U w_ C7 •-I 0 d f U U C G C m U y 4) >, p U x x N C E7E H C C- 7 O H H Q ro ro -:I >1 f4 ° -AF EC J U 0 U] x. 2 4roi N -G Q) 3 5 O .� QI H E+ -H Q H W W W b a U C1, a F O O n U O a 94 a x P P P N N N N M V1 I V1 I N O w a W P o 0 o y o 0 0 0 0 o r n I W ?+ I m MM•.1Mo.ioo�o000NOi al Oi y V N J U P P r r m m m o m W a x P P O rl N rl N r VI I m I N O W a W P o .ioo y o 00 00 �mio �. I W !+ I m 00•.{M O.i oomo 0o rl Oi alO 'J m N 'J U1 P P N N QI Ol lQ O m O O Ol rl N W (.� O W U .0 m U P C P• O N m Q m 0❑ fn O P M M N N N O N O O •-i m 0 �-'. O r-I M a x P P � N N m I m I Q! O l0 W a W P O .iO O y O OOOOM P rl I W 7. I m • r r -•1 M O •.� O O P 0 0 0 e-I Ol ri ry �j V) N •j N P P l0 1p U) Ql Q) O N O O O ifl rl ❑ U] O q N O P N N y N N O N O N •-f lD O ri rl O P xr N N P r r Q O W Pi W P O .i 0 0 y 0 O O O O P m ifl O -.i O O O O O O N 1p t0 lD W m N .7 m P P lfl N 01 V) O r O O N r rl W y W WVI •J Q W O Q P P P V) N N O M O m •-I r 0 H •-I P O N a P P P N N r.i N I N I QI O W a W P o .io o y o 0000r.-lo ul 1 W i+ I m OO.i M OM OolOOOOO.-1N O Vl N •.� Iq P P O O V] T N O m 0 O r r M W ry'O W U.Cm U P Cul •-I N v0 Q W O Q fn O P N N N N N O N CL C N Q) .0 {4 Q) In m .. .. .. .. .. �. 0 0 -0 Oa a O C C• G O N 0-H O Tro y -H-H 'H -H H y-N H ro-.12 N W-.i y z H y 2 H H U E W -- .0 ro E .0 �- -- FC .0 U -- W C7 10 rnro�-- y rob Q1 H QI `� rl O W U U C C C v7 U y 01 >. > U % X Q) a t HH tz O-H El H�UQ ro ro H C 7 z a rn x X f~ E M `n .� a 3 D O y m .i •.a C O U O ri •-°i W -•i Q) E E -'i Q H G W W L D Ua a El 00 C va U 0 a a t> V I R LJ 0 0 1 1 1 n n I a x N N N I N I N O to m a v7 Po ••100 a+o 0000r m P I W �+ I m Mm•.imo .10o POO,oH mhal •J N N •J to P P O1 01 VI 01 Vl O m O O h lD r W FC O W U .0 m U P C N O N N O W O O Vl O P N N V/ N N O N O H H r 0 r-i O O m a x P � m N N P H H UylO OOO N V] a m PO •.i OO OOIp P P I W ?+ m r r ••i M o -.i o 0 01 0 0 o H 1p H H W rZ o W V ,G m U P C M ui N rn O W O O U7 O P M M In N N ONO .i H h o H H O P a x P P P N N N I N N O o Z a z PO -•i O O 11 OOOON m y I W �+ I m M m •rl m 0 •i O O o 0 0 0 o N H N W W KC N W U m P P Ol Ol VI Ol N O O Ol O O N 01 m O W G m V m • P G N m O W O O W O P O O U7 N N O h 0 0 •ti r 0 H H O N x d' P O z a z P O ••i o o � O o o o -o In P m . I W !• 1 m •m m 0 " � 0 0 •� O O O O m r lD .� fn N� fn P P ww N !P h O P O O Ol O H W �o W UFm U P CN m N �n ❑ W O W V7 O P H E m N N O H O H H r 0 .-1 H •-1 ul a x P P � N N P V O O z a Por r•Noo 0 0000o m I co i� m •00•.i mo •.1ooOl000 H mmm 14 (n N MP P u1 O� N O M O O N m to W r.CO U.Gm H H U P Cm H M H O CL C v N� H 8 C 0 V CL O G C H C to C C m U N O -H O ro 11 -H -H -H -rl H W- H ro -H Z H W -H V Z H4 Z E• 14 U W" .0 ro 4 U' ro m0 „,-W --mv NH-� y•� r-1 O [V U U C C C fn V a N >r •> U X X N 7 H C G -H C O E-N W H x H O ro ro 'O O) H H ro O -H .i rt C E E. N x. G H N C U O •o u O/ W•H•N C O N D w •.i E E -H O El F E.W W w W 0 a E O 7 C y U O aC4 a P P m H N N p W I 1 U O I a PO .i oo J� o 00 ooQ1 mIDP E fn O E N P P l0 l0 N N VI 0 0 0 O O m m W f�H W U Cm U P Cud m N o a x ry N N � W 1 I ro O P I a P O .1 0 0 {J o O O O O O m M •-1 F fn O F fn P P h r N N 41 0 0 0 O r l0 W ECG W U.Cm U P Cm �o NH m a x m N N m m I I v O a Po -.� 00 W o o Hoor �Or H H W �• H m 0 0 -•i O O -ri O O H O o 0 0 O\ �D itt F fn O H N P P O O N N N O O O O r Ol M W �S •� W V.Cm U P Can r ry P W W O❑ fn O P N N l/7 P N O H o N .1 r O .--� P ri .-� x '• P P N I 1 I N O O m tO N aN PO H OOl�o H000r tp rlN W W i-� N m 00 •.i m0-.i OO OOOOm ONr ff] N ro U Am P P P P ri Ol r • O O O O P a>;o P Cm W O�-i UI OP lO IDm NN OPOl0Hr0H MHN x N P P o H a• d) P O +i O P P 0 O- O 0 0 0 0 l O M r W W W i• N m• rh-mH -•OO N P000•ti Mh 0 fn ?' VI O O N Ol h F7 LbOi-] fn oPmm V]NN oNomHrOH PH.-1 E U O TJ 010 C C H C h 7 G m U C 7 ae m vl m iidd O -.i O N JJ --H P -H Cd -.i Z" H W -H V Z l4 W Z E H U-. . N N r w �- •C ro O 4 -- -- r.>; t U w C7 ro b ro =' — 41 ro •O N H •- U1 H O G. U U C C G to U +I N >1 > U X k 47 C H C C -H 7 0 E W W x H❑ ro ro F� O >,CHH a yl .0 �W V £ OH +/ ro -H A C C W D •rl H W -H v E H •.i W E W W W D a 0 0 a E O C va U p a a H 1 1 1 1 1 1 1 1 1 d x � P P o N N � m I m W p W d W P O .i oo W o OOOO mr Or I W N I m rr•.ioo.ioo P000HPOH W r.L rl W ULm U P Co to N H O Q) O O U 5 P N N U P N O N O N rl O O H m H H a x � P P P N N O\ r I r N O o W a W P O .I 0 0 yl O O O O O P m tl1 N I W i+ I m m m.100.10 o0000N P rnm > W H W U L m • U P O P . N • N O • O 4 m LA O W U D P P P U P N O m O m H r O H H H t a x � d' P Ip N N m I W i. 1 m 00•.100 H00l0O OOOr m N > W fC rl W U L m • U P l: Ili ..-1 N O ry ❑ W O p U b P N N U P N O rl O N H r 0 H H r1 m 5 H P P til N N N r1 1 H 1 N O I W Y. 1 m O o •.i 0 0 •.i O O P O O O N m m Q� > U O> U P P O O ft) N h O H O O Ol O r1 W fC H W U L m U O (CI O O U O P P P U P N O m 0 1p H l0 O H P •-I N x N P P P N N N to m W �+m m 00•'1 OO U) -O r OOOry tHOB F U O F U P P P P 01 N q N O O -m 0 W r.0 �-1 W ULm V P Cm r Nm P p RI O O U b P P P U P N O m 0 l0 rl m 0 H H N O v a s v v L u -, -, v � r• � !. UO' Itl a ro�HH06):jH�W -H- NN o •7 H 44 N-.i ZC N -. Z H WZ H H U L U m 0 N �W G) H � N H O L.• U U C C C V] U 1� 0 >, ;> U%% N 7 H C C •.1 C O H W l4 x H W Itl b .�i �CHHa. Oa-I.1 0 W U ££ o N x E H U C t; 0>> N N H H •.I p UI O •.i .-1 W fa U p a a > a x N N p N N N O Z dZ P o •Noo W 0000HNinr I W i+ I m m m •.1 O O •.1 O O O O O O O N H O > UO> U P P O101 41N V1000�0 •O Pm'm W cC .a W U L m U C N ry m O CJ O O O O U b P U P N a � _ r P P p H H U o Z a2 Po •.10o W o 0000�nm�n �n I W i1 > U O> C) P P 1p tp N N • O P O O r O P W r1,'r-I W U.Cm U P CN m N p d x r P P � N O 7d 1 I W i•+ m 0 0 •.1 0 0 •.I O O Ol 0 0 0 Ol P .-1 �(1 > U O U P P • O N • O • ... O O Ol N x P P O N N N N m I W i+ I m mm.1OO'1OOl000 ON NOOI >mo>UPPrr .AN m 000 o oNr W r$ •+ W U L m U P H m o N P o R1 O O U O P m m U P N O N 0 H rl m 0 rl N N m a x W a W PO •iO O N O O O O OlO pu)O I W J+ I m • 0 0 •.i O O.1 O O m 0 0 0 ey 1p O P > U O> V1 P P N N OI N 4f O m 0 O m ry P N O$ C N N L H O N -- •- — -. r. b H 00� M y .j '' ..I •'CI l4 V .H{ H N ..Hi Z to W Z H W Z F N U L — L U— W C7 N b+N N'U 0 H--- 0 .i o W U U H C f. N U +1 N T '. U%% 5 N a to C C .H 7 0 F W H x l4 M M M 01 H H d O -H L 1� U ££ 0 fn x O H W C E O> 0 .� v F F .,1 W F Cv w W a N a E. O r C m u O a s > P'F 6 a x p P P p N N r P7 I 1 N p I a Po .ao0 W o o.-loor Mmm e-V W N rl m 0 0 .i N O -fi O O r O O O O P O F m 0 �+ m P P O O ul m • h • O O O O - Om N W rho W U,Cm U P C � N P a � x m P P (vl R1 N N I I 1 N O O r O W W Y+ O m 00.O o o+i OOOOOO M Olo M b� N N O O O Ol rf FC � roU,Cm V P Cm �o r N m r a x M <* P r f11 N N P W W !. U m rr.�0o .loo P000,�r PM m p '0 m P P O p UI N 1/1 O Ol O O m O N l;C FL r-I m m tDC • . U •P CM • �m N •O� r7 (fJ O r7 O P M M U1 P N O N O M a x P P P N N p I W i+ 1 m M M -ri O O •.{ O O P 0 0 0 .-1 O �O O U1 O ,'� U) P P Ol 61 N N N • O M O O Ol P .-I a x P P 1p N N in r I fl N O M m a U Po •.a oo.aJo 0000'+io ui I W 7± I m rr•rl oo-r10 o Ol o0 o.-I 'i '-I lD (.> W 4 0 W u � W U.Cm U a C M •.n N m E 7 0 'O M O C H, l C N C C h U C 7 ca u1 ul C M AA O -.l O N LI •.1 -d •-4 ..1 N ro -.i N ro .i 2 H Z H m Z F H U W "'.0 ro t �- FC L U �) W (7 N b. ro U U Z y, rob U- a .� x y �-I O W U U .0 C C v1 U W O T H U k k N C N C C •11 7 0 F W H x H Q ro Itl U) x E Ea H m CU w O>i u m -rl -.1 C 7 Ul D •r1 ri W -H N F El q F G. W W b a 0 P, a E+ O 7 C va U O a 7 a x � P P N N I N N O O W a W P o -H oo y.ro 00 0 or.n .�N I W 0 • 0 0 - m m o0 N O •.1 O O 1p O O O O N to ri ./ VIP Poo - P G• 0 . . . o •rub Q,' W U.Y. m U 0 W Ogo.-I Nai a x p P P N N N m w W a W Po .Hoo +lo oo 000mMN W m 0 0 .N N O •r1 O O P p O O N o M P >0 In>v)PPoo am h o.io o -rlN W fl; O W U .G m U P ['• O P N O r a x o P P � N N N M W ro O O I a P O -.1 0 0 {J O 0 0 an m M M W Y+M m 00-.i N o-.i OO r 000N �M P H O Elm P 4 P P P Ill m N O N O O M r W O W U A m . • U • P C M r N O m q W r1 q U) .'J P P P m N N O M O l0 rl m 0 •-I N P R a x P P P N W I N O I a P O •.1 O M W N M m r r •.i N O -.i O O P O O O N O l0 ri F O F m W o W l- U U m P G• N • ... O Ol v) O U �G m in rn N m ❑ Oa .-I Q U) O P P P V) � N O M O N .-1 l0 O .-� f�l N rl a x r N N m Rl I I O o r I a Po •.goo �o 00000viti r N W >. N m MM•.i NO+IOONOOON NM � F+ O F U) P P r r Vl m N 0 0 0 O N O W 4 �o W U.Cm U P Cm � •N m r .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. m GL C N N .0 H m -- m -, .- 7 0 'O � o. O C C 4 C m a C m U C m y V1 C M O -rl O N v •rl -rl -H •rl H 41 •rl H ro •.1 Z `- H W •fl +� Z H Y' Z E+ H U L. •-• ro ,G `� FC .0 U -- W rl 01. U U C C C U) 0 N •HO b. H H q O •.OI El x H g N ro O>? -H N E+ F •rA Q FW F 4 W W a W N a E. O 7 C vat U O a a 7 037 a x r a' P rn N N M I I y O I wN m .00•.�No.�oom000r r+mm W < O O W .i ri (n O P ,-I H U] lf1 N O m O M •-I b O H N •-i N a N T Q N N N N p m m N O W d W P O •.{ O O yl O O O O O O P N O I W i+ 1 m M M•f1 N O .{0 0100 -0 N M H O w a• P r r VI m VI.000 O M l0 o U W rj .0 m u a• C m o • N M ❑ W •� O V] O P M M Vl tll N O N O H .-I m 0 H M M r-I d x M P P M H N H N m m I N O W d W P O.i O O yl O 0 0 0 0 l0 m P tq I W i+ 1 m 0 0 .1 N O •.1 O O m 0 0 0 H N H P •> m 0, U1 P P N N UI m N O m 0 O O l0 N W FCo W U.Cm U P CP o N H O R1 •-I ❑ f/) O P M M !A ul N O N O O .-i m 0 H M M .� d x N a a• � N N m m I m' I UI O W d W P O .1 O O 11 O 0 0 0 0 O1 O N m I W �+ I m r r •.1 N O •M - 0 P o 0 0 0 m 0 P V1 0, V] P P t0 lD V1 m v 10 O O M N (; O . • ❑ W H❑ N O w N N p ul N O N O N •-1 1p O .-I 1p N N d x m P C r r I r I m o M W d W a' O •.{ O O yJ O O O O O P r .-1 O I W ?+ 1 m MM•.1 N O ••iOOO o00N.y P N >mo> win ui wm m •or o •o .mr W LC O W U .C m U A Rl H g N O P P P VI N N O M O m H r 0 ,-1 H N m R 0'0 �040 P: 9 m� g m u a �--M C M O ••1 O ro 41 -. -H ..{ H 1.1 - F1 N .i 2 H W ..1 +I zH+IzFHUr4 01..--.cm�x,---- FC.cu�-w 4- ttO{{! R7 UHH ro 0.0 Fwi FGx �Q£ m x m •C 43 3, O NH N +C-1� O b H'O-I w> E+ W W a P N F O 7 C a i U 0 d a a P W N N a' H aH P o.ioo a,o 0000Houl� W W N a m • r r rl N O •i 0 0 P 0 0 0 rl N r-1 M VI M P m 0 0 % m (.�.1 O Ol O • O P m FC O ro U .0 m • • U • P �y M • • m N M • m 11 (L H 14 In O P M M y N N O N O M ,-I r 0 •-1 H M P d x p P P � N N M N I N I N I W I m P 41 M M m N m O rl p 0 P O p 0 H 1p N N M 0 > 0P Ql Ol l/1 M O O l0 Ol W rS 0 W U W CA H❑ Vl p P N N m N N O N O .i ,-I r 0 .i M N H d x m N N � 1 H I N O Vl d UI P O •.i O O yl O 0 0 0 0 H m P l0 I W» I W r r •./ N O •.{ O O Q� 0 0 0 •-1 1p ry m p mopmaPoo rnm h •oPo •o •�n ,-Im a x p N N r N I N I N O 2 d 2 Po -Hoo x+ 0000Hu��nr I W �+ I m M M- f I N 0 • r i 0 0 0 0 0 0 0 0� N 0 F4 N 0 N P P Q� T OJ • m . 0 0. . O O H N W FC O WU .0 m O P C In N o O x •� W (/1 .'� P O O (n ul N O r 0 0 .y r 0 H P M H a x M P P m •� 1 I N o d z I P O 0-H0 OOOO Mlp lOM W ?+ I m -H 0 0 •.{ N O 0. O r1 0 0 0 0 H H m 7 m m O, VI a' P �D l0 N O C P . O N P P N W N r O x H O m 0 P H H V] h N O H O H .y r 0 •-I LD M H m 7 0 •O P• o C C H Cm 7 C m U C m 41 N C M N O ••i O ro ••i •-H•-H•i H +� .1 NM •'1 Z H" -HIH z H++2F H 0 E EL., �•4 ro �x �- 4x Uw �- f.7 ro N •� 0 J� �- •- ro N H •..• •� W � • rl 4. U U C C U N N >> U%% > a)7 H C C•ro 0M FW �Nx 70n £ 9 u�i x a N u] C U 0 O •Wi W F F -H 0 W C CL Ip 11 W F . W W D d F O C O va U 0 a 7 � a x a W N N u) 1 W O O H v N >, N C O •'I O O 11 O i-1 O O O r (n m t�l W N N G 00 •'I N O•'10 0 0 0 0 0 t1 •'i O tA�17 rn o�Wu1N Oao�Hro Htifnr N d q N W ,G H r. N N ^..•� E O T7 O. 4L O q rt G$4 7 H m U C on nl h rJ iidd O .-1 O i� N •.1 H 5 •H N ,i 2 -- H W •H .i 1.4 El G r -H 2 H W 2 H Cv — �- ,G 6 H .q •— — a ,G U •-• W .4 O G. u u H G a N U N F wF{{ e U x% W Tl 40 bn H H m O A El x E X �n x fi E u rn .� Fi o -H N E 1 F •'�I O W O - El C. W W W O a W 1 a. F O 7 G 0 u O a � D V ] ! 1 1 1 fS:\2k\2722\002\drainage\drainreport-11-22-04.doe ! 1111A�1oi91PIf� s V - _ _ _ _— —�a4 �zv.- • • • lJr ..1._u- �➢.JJ...• � Mmum M WdIw- pm �—LVE am p • C y ♦ � I ill' � . � 'q►�♦��.. �� ♦ , , � — _� i � � ♦� ���\� lip ���I P7 N Bare earth 0.55 Steep grassed areas (slope 2A) 0.60 Turf meadows 0.25 Forested areas 0.20 Cultivated fields 0.30 All watertight roof surfaces 0,.90 Pavement 0.85 Gravel 0.85 Impervious soils (heavy) 0.55 Impervious soils (with turf) 0.45 Slightly pervious soil 0.25 Slightly pervious soil (with turf) 0.20 Moderately pervious soil 0.15 Moderately pervious soil (with turf) 0.10 Business, Commercial & Industrial 0.85 Apartments & Townhouses 0.70 Schools & Churches 0.55 Single Family Lots < 10,000 SF 0.45 Lots < 12,000 SF 0.45 Lots < 17,000 SF 0.40 Lots > % acre 0.35 Park, Cemetery or Unimproved Area 0.30 TABLE 204-1: Runoff Coefficients ® for Use in the Rational Method City of Indianapolis Z Appendix page A2-10 >`- M m r N i!1 0 (O r 0) f0 0 0) (D 00,0 N h (D YJ h h 0 O M 0 h (D 0 M 0) 0 - O) 0 I c0 00 O N (V o to N O c0 M of h N !O v , In N N W V co o0 r IT V h M h 0) O V I h I't M ti I to .r- O �.O I.0 O O O MiM N I N M _ FJl � c 00, mI N 0)(o r 07 V CO O(D r r co (M (M N h 00 N (O M OQ) m h N N O N M 0) 0) M Q1 Oi N M N N M N h M M O "G of o [.ice 40 in (D O (n (D (O c0 I 0) h (7M NM M O O V 7 N cG Wr d— 72 -�-' -M N 0 N M 0 (D to o r In r 1. NCO 00001 M M (D M fD N co (O (D o <D r 'IT N co O V' O O 0 O O l Oi 0 O r 0 O r r t} 0 N M V O N lD co r 0) M V 0 O 0 I O M q O r h 00 (D h pp 0 O O OO O M',O N q CV (V N N r N 0.0 (n V V 0 0 0 0! NISo 0 U � T4 _ O (7) (D 000M O) (O Q) to V. to co O) (O OOO O) o O 0 O O 0) m (n c0 N (D MO O I m V O C O 0 O O O NO M (V O O h M m za )--r JU F" LL �` � (n (O (O (n (n 0 0 coW Ih O I 0 I 0 a 0 N A z O WCq O VM C O N cl O V O (C) o In M 0 V 0 (n co 0 0 h M 0 OO N On N (n 0 h 00 0 O h N 0000 O mo 0000 000 K 0 (D M h 0 0 O O o 0 0 O I O 0 0 o 0 cn 0) O N ClM r n h 0 to (D O 00 O O h 0 r D r N 0) fV O00 (n 0 (D 7 0 (D N OO N 0 O O O .O O 0. O ,q 0 O; 0 O O O 0 O O 0 O O 0 O O 0 O 0 r N M M 00 M 70 O 0 o O O O O r 0 O O It O 03 ". r= Q a U (q E O Q a 9 s, 4O V M V N V IT co M h co N M 1n co N Cl) O co 0 N h N (D N M N Oco N a V r N V r V r O V r h M to Cl) r (O M,M rir V' (D N r h N r h N rrr co N tfi N N 'N jr 0) r h rr'. (D : M r�� - )O IT M V' N IT r 7 07 MMM h co (n MI N M O m 0 NNN h (D M N. 0'00 N rr h V r w 1 I! I' 1 �co0).(q o o O o ac 0 0 0 0 =, _T O O O O x p. O o t o O o O Q O 0 O 0 7 � � o o 0 0 0 o 0 a O o 0 0 0 0 U _ �. r o 0 0 0 0' W cG o 0 0 0 0 0 R N 0 b d' -_' o U N co LO N hi p 17 p 1 L ���� N7 eM-�htON N�N NN 9 9 u N } C ry O IS 4 N � N 61 Cam- � c o o o o +y ^yyO iy V1 q O ° y 3- m O N N NON $ O O 0 0 v $ D p Ury u 7 W h W O N h W N N i I' 1 1 1 7 Um Ci cmD, UO co to u), ro Cii E� r rr rrN r t� co m co M jr co co f N Vr, N rift/ M o N o �t o O 0 O to O to N M O 0 IA 1-i O O N cl O O to O pp O co O N � C`l N O M r q 'd' O 0 O CO M co Lo to b {�. o N co co O co 7 W r} of ee}} W V 00 co d' co 7 N m m M co m co m CO ti s CZ) cl q 0 o 0 o to o 0 2 CO N N 0o V 01!Lq m I� O O h DOi, N O a} O hh M'cM} (V r (��V}} N O 1� (D h In "�- c 0000 O 10 1 W co W CO m co co u a I u_ O—l�y c O O 0 0 N 000 N O O O (D O V O m O o O p Oq F w ro E# co co eb roco 0 y O LO O 0)} O O 00 O N O N O tD O co O f.- O f 6 O p O O 7 -4 V V V moo} c0 sm{} M M M It V COO ���� N N N W 00 �� tO r N 0 N-It l LO M N r- V N 7 tO It 00 14 tD tV tO Cl) try m N M to N V) O It O n tO m o It r tci It O Cl) U m O m O fA 7 N N" m N Its N ! N � I V' 0 O t M V N (` f0 N O f0 fh mu'i co 0'i co (O coco fD st h N fD M M O vi (ro A AW _ rt' O O co co tD !` (D tO to �N tO M to M Ci M Ol (O O Ql CO tJ? N O N N (i r t0 N co M t- �_�}_�?•. r O O O O O O O O O 0 0 0 O O O O U 7 (tD CO it0 CO co co N LO tO r r• N 7� N' ��{ cq N r r N N L` O (D O CO r O 1� N O t0 ti 10 hi q N O N N N M M n t0 ti M O O N eN-- [ ;y W> N Cl) V' 00 m (D N (p NON tO tO N o (D ~' ('?' O r 1� c m O o Y 2' a ,2' m Y 2� h co N'coO! <tt M p p Vd U � N It O � co tO It (D r ti (0 t() N m n c0 <t m co co co N N N N N fV r r r r r r r� it I `. tO m N CO to t0 N O o (D M O o7 It [h 't 7 m Cl) m Cl) Cl) m N'N N N i u �I o N o o o 00 d= a L o 0 0 0 N Q_ m m h m N 00 Oi Go00 co 2 N O � t;' o'h o N co 0 o co jig m N t�1 M cV M N V' 1_ — of co [t In r cV N cV N m F1 w � .. A Wl_ � O V O M O O co O aME N N N N N O.."` O UN� z rH F rt ♦ Y 1 Y w a 'd a O ti A - m o h v r r r v o 0 0 ti W LAKE 2 - B WATERSHED NOT TO DETENTION BASIN MAP SCALE ■ I _ -------------- - _ - 3.35 Ac. ' • - _ \ : ♦•■■■■.fit _- - ` ■ ■ ■ \ lip. ��44 �� i'� / � �� -' _ _ _ _ ■ ■ jj\j4 ■ 1 ■ LAKE2-B 165.27 Ac. ■ I, _ OAK - i r_ 60 AC. }....:l C-1 Table 2-2a.—Runoff curve numbers for urban areasl Curve numbers for Cover description hydrologic soil group — Cover type and hydrologic condition Fully developed urban areas (vegetation established) Average percent impervious areal A B ED] Open space Dawns, parks, golf courses, cemeteries, etc.}': Poor condition (grass cover < 50%) .............. 68 79 86 89 Fair condition (grass cover 60% to 75%)........... 49 69 79 84 Good condition (grass cover > 75%) ......... . . .... 39 r 61 1 74_ 8o Impervious areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way) .......................... Streets and roads: Paved; curbs and storm sewers (excluding right-of-way) .................................. Paved; open ditches (including right-of-way) ....... Gravel (including right-of-way) ............... . .. . Dirt (including right-of-way) .................... . Western desert urban areas: Natural desert landscaping (pervious areas only)4... Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) ............... Urban districts: Commercial and business .......................... Industrial ........................................ Residential districts by average lot size: 118 acre or less (town houses) ...................... V4acre ......................................... 1/3 acre ......................................... 1l2acre ......................................... 1 acre ........................................... 2 acres .......................................... Developing urban areas Newly graded areas (pervious areas only, novegetation)" ................................... Idle lands (CN's are determined using cover types similar to those in table 2.2c). 98 98 98 98 98 98 98 98 83 89 92 93 76 85 89 91 72 82 87 89 63 77 85 88 96 96 96 96 85 89 92 94 95 72 81 88 91 93 65 77 85 90 92 38 61 75 83 87 30 57 72 81 86 25 54 70 80 85 20 51 68 79 84 12 46 65 77 82 77 86 91 94 'Average runoff condition, and I.., = 0.2& cThe average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN.of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 24, 'CN's shown are equivalent to those of pasture, Composite CN's may be computed for other combinations of open space cover type. °Composite CN's for natural desert landscaping should be computed using figures 2 3 or 24 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in Door hydroiogic condition. CComposite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2.3 or 24, based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. 14147elit:-'; D- (210-VI-TR-55, Second Ed., June 1986) `1 12'up'w',f 2-5 C-Z Table 2-2c.—Runoff curve numbers for other agricultural lands' Curve numbers for Cover description hydrologic soil group — Hydrologic Cover type condition A B C D Pasture, grassland, or range —continuous forage for grazing.2 Meadow —continuous grass, protected from grazing and generally mowed for hay. Brush —brush -weed -grass mixture with brush the major element.3 Woods —grass combination (orchard or tree farm).s Woods c Poor 68 19 85 89 Fair 49 69 79 84 Good 39 61 74 80 — 30 58 71 78 Poor 48 67 77 83 Fair 35 56 70 77 Good 430 48 65 73 Poor 57 73 82 86 Fair 43 65 76 82 Good 32 58 72 79 Poor 45 66 77 83 Fair 36 60 73 79 Good 430 55 70 77 r Farmsteads —buildings, lanes, driveways, — 59 74 82 86 and surrounding lots. 'Average runoff condition, and I„ — 0.2S. %Poor: <507< ground cover mheavily grazer] with no mulch. Fair: 50 to 75r6 ground cover and not heavily grazed. Good: > 75'7, ground cover and lightly or only occasionally grazed. 'flour: <507r ground cover. Fair•: 50 to 757 ground cover. Good' >75% ground cover. ?Actual cui 'e number is less than 30; use CN = 30 for runoff computations 'CN's shown Here computed for areas with 50% woods and 507 grass (pasture) cover. Other combinations of conditions may be computed from the CN's for e'ouds and pasture. 6Pomr Forest litter, small trees, and brvah are destroyed by heavy grazing or regular homing hair: Woods are grazed but not burned, and some forest litter covers the soil. Good Woods are protected from grazing, and litter and brush adequately cover the soil. (210-VI-TR-55, Second Ed., June 1986) I'AA h+vpF sav 2-7 c-3 CARMEL CENTRAL PARK REVISED DRAINAGE BASINS - LAKE 2-B & DET3-B1 NKOPOSED DET 3-B1 (AC) Area (Ac.) Cover Type Curve Number Product C pM�gn 'PA 66 aL.D Q-Epw r C DMP A&r, QL� R'"a T" 2.77 2.29 LAWN GROUP C 74 0.48 PAVEMENT 98 169.5 0.0 47.0 Weighted CN 78 PROPOSED Area Cover Type Curve Number Lake 2-B (AC) (Ac.) Product 65.27 15.6 LAWN GROUP C 74 1154.4 15.67 LAWN GROUP B 61 5 WOODS Group C 70 5 WOODS GROUP B 55 9.9 LAKE SURFACE 98 14.2 PAVEMENT 98 955.9 350.0 275.0 970.2 1391.E Weighted CN 7ti &A 8 u m NH .FI 4a4�� O N 'd L ✓ H U U H N 'JN \\\VIN NGU FU' NVI FJ VW b�z 0v.i OOc ONUHZ' p0(i]hvl vl CW3UG]Ca Cataly G] Za0 Zry"JF}: RIOD�niiN i.]aZU4]mtG24lW% C-r m ovl >; m m m z 2}y�3 MA mmm 00�10 61^Ol 0m�.1 �() h 4• (�1 N N OOG NMV r)mN mh vlOm nlm � mNN mmv Pi C)C) NNN NNnI .yNri ri�I�I ri Nri ri ri •i �I�1 ri N CI Or rlmN alm mMN N m =1 M O M 11 ul Or N 1� N N M N J)Orl Nm0 h�-i Nrlm 0m •IN �i•1 �NN N N O m m m m N N M M rl N N N N N N N N N mr1 �()NO o0)m mM .+•�.ti smP ma �°on� mmH G NIn •1.y .i O�OO vN morn 1-o.ti ooN NNri MMrI NMNI ooG o00 >p _ COipO�l J c0]U 000 1 1 1 I I I 1 O I 0o Oo 000 0 0 0 0 0 niory mmn mm 0010 0mm m100 0mm m m m m N )0N Oat M m CmflO LM p>NH b rim [.fi � O1mN [)Of Tu)0 0 O(V O O V ¢� J] N 0 O O O U O O O ri r. O •y ri r O ri I N I � ri ri N M ri ..I ri c?00 vRl •N mNON r0 Ir) ro1N NCIm r110 N(1 Nm� f7Mft OG nl(I NnIN OI']N NNN 11 1J N NN r11 i ril .i •y �l riI •C-il Gm N �mm� I.iN mmr orn.ti mrom ro�o N•nP P m .a rnlNm rnof m mCl IN- .i •.I TNmI mON Jl c HMO U00 O•ICI Ori •y riNR] 0�1�-i riMul n. Nn. •i m NID MOG I+tNN ulmM m�l)Ji RINO O 0m N M rO lV m N'•1 P ri .i .il •1•-i .i ri1NN NN(NI NN•-1 N1 .4 ri1 ONri .4l ril nl ri�IN •INC. Vi Nri nl �ti('1 MMM rho Mma fnrvM NON oo Mho m.ti -mN �I ri fl Cl m m O m N O W u) N Nmm NOO NI T m 00 mm �I �N)ri NMm Mmrm mrlm I � rl i-iN NM aiNN mNm NN nl r)rl pp o00 000 ooi> oGo 000 000 C>00 OUO O p00 O U 000 O > O U O O 1< 00 o O o 0o p O o o p o 0 0 0 0 o > C)0 CIMm oI� rV l9O ori� oN 0mm m00 mW101 00m m00 00m 000 NNIOI C m uICN NN1O C>O rymN FN mNl� CINN NN Nl ri nl rlrim C.il ri riNN 000 .i nlN NNni mM OC1M • N .i � � •- .i N • • • ri N .y r � aaa area a:aa aaa aaa aaa aaa aaa aaa waa aaa aaa LL P n P =Y c� Pi mN= Piam PPP NPm PP NNnI NNN N IN NNN NNN NCIN NNN N N N IN NNN NN NNN 11 I 11 1 I I I 1 I I I I 1 I I I I I 1 I I I I I I I I I I a a�•N aaa aGa Noo aaa area aoa ao� a:aa aaa �:aa aaa NO NOOp O NUO OI OHO OHO NO„ iVOo NON .i0 Op .10 CIO [O>OpN OOri Op pri 00 pOri OON OOr-1 OO.i 00•J pOri OOri W [al W 11 w w w W. W 41 fal lil GI w W W w W w W W W W W Ll w w W W W W w w W W VI m (n eQim ra m (/j v{ In cn m vl m ul M Cn v1 m m 0 (n In v) cf (n u) c/l a a a N N N i• i• ?• M M .i �• i• i• IN N � - N N i• !� i� i• ri ri FHF FFH FHF a((��q' FFH wwul mQ ry' Glww www C�[4 t� www ry UIOm WWII wWw www 1I Q II1 11I 0.0.A, 111 ry o O W w q w W o 0 o W N p p pow o w> p> w q m [l ??> o A N N Z Z W m W 2 W Z W W w W w w aaa 000 WOW 000 non OWP 'O.oO OOCl OOp zzz mmm mmm o00 000 mmm mmm coo NNN wWw I00. m H F H own ,jw Ll m!'] W141w nmr� nnn '',1�r:1 1ww q Ll Fl 00(_l rmm Nmm u) lomro NNM nlNa O 1 .> O O l opo 00 G>mm 0m0 m)00 mmW N0m Nmrn Nm� f {�Ih mmm mam wmc)1 mmlm Nrl NNN Nrlm NMO .y ri ri N.N-1 fi rNi�N hNl nl aaa aaa aaa aaa INN NNN N N N aaa aaa' awa aaa O `NO' 11 NONN Nisi• OOri GOON OO.i OO� CVai�(w/1 WW. ()WM mow `Id `�m amiwa`ri u`�iw� w`�m w raw coo urmum Ww°d Ow5 ppi pww ntin mmm onn '00 N W N N N mmm 0 w [.l W w W W 11 1 1 1 » > nnn colon Cl O O C- ✓ Ot4l W A> O w %aI 14 O W £ m m W W N �mt HYn a N z I p 4 r vrl �imw Ci )V> �010 m~� (,m Itau) T 1Ni()1 1N 11 T 1I1 T mOi nl rX mrnw +�av NNm NNm Oro oNN o0o O 1 I . oN f N !`l �l lfl tV N N - nl o a 1� CJ CI r` O p n O NO NNN ��Nlrl - IN (�I 00 Il)NN N OI .i �1 - ] bnlN TN(�1 cTOT lO CI �X IO 001 µ� m min TN, -I NIA (VYN Nu~i 111 4to ul NIl) tnNm Nrlr OCPIC TCI 1')tO (I NI+IC rl (yo .y N mO NN Y NN-a� ON{�t OryN 0.4,1 �Y nIN Tm)N ' a n 10)00 Nc>IN t010011 110 NN 1O 1„N nl VN yN N�In nINN NNry N<N nl NM Nl� N(�I ri rl al� NtnO nl NNN rnarn mNN ot.lo Na)n rl .l .0 Nti T N N ml to NNN - fi Nbl(1 cr N `X ItNI NO mI O1N Oi r rl` �NN OOT m C>00 1100 NOm cq O4o 000 NO �XN 111!)0l NI`10 V)v}p C I()N Jl NC)N N Nf�IC OOp O >CO> on0 [J CO) O^ Oco 000 00 GOO 000 C> 000 000 OC> OGO 00 C>00 tip0 11 I 1 I I I I O O O O 10 J O O O o p0 > O o O O Oa O o OU o 0 o O o O O O O �r) 000 000 000 000 000 O00 T r . 0 fn0 0N0 mom 010m 00m ¢tm4� m00 N0m mQ�O 00G> m00 i-i C K K K K K K K K K K K K K K m K K m K K K K K K K K K K K 4ei K K mva aca 99,+. �'JIS aaa --- -K'1 --- --- N N N N N N N N N N n N N N N N N N N N N N N N N N N N N N N N N 11 I 11 I I I 1 I I I I I I I I 1 I I I 1 1 I I 1 I I I I I KKK KKK KKK KKa KKK KKK KKa KK[L K[GK KKK aKK N O O no , N O Q n o l of o OII. In OoIOU> 000 NO OON pO y N O O N O O O O N O N O O N O O N O O r4 O O N O N O O N WWW NOW W. WWw 4l Ww wWw WWW Wow 41ww WWw WwW met mmT wet mNm wW mug rnm� Krim cn v�T wu> c�ww a�m� >�N>. NN YrNN NN.i �.N it NNN NJ+,>. NNN NN.i INN KCCGG (fi rnw vl �( mWw K fLa1� [� aaa wva » nnn 9 » nna pp� °don >?' Wd nWW Nmm metro ...Izzz www zzz www zzz www zzz zy2,yy aaa aaa non ... nnm Oo0 "noon o0o Gnw 'Iwo 5bb 000 mwm mmm M. mmm MmM N N 2 ^l, 'L 'I.ZZ VI UIW fnwl/1 wOO »> > ;yl I 1 WWW w14 ol ww. I non non nno Won C-7 I N i !w o on ro I I it a. X QJ mUW bN1�NaNIN ONON omN mN N(V WtO (Venom OCbto tOm .. UID t>N hNJ)tO o.bi £m to Vl ,-I Jl lal ulaM V)NONmN W)(tJb nOO Tlh trnovm oaten-o.o. Jain mrh .J'rM p.ibu)TJ"ia ITt4 �noova°r MrMV NM1)u1T I m a�mmr-mnom000mao Mcom m.,�ma�nmmmo�min rornm.�Ji ,v �,r„n ,.mm�n �naln In r.lnm min�rnrorv�ciow�n MrIM mmmmml rvimm nm"1 a`vimm�mm mMM rI,...NNNm MNNry� 'I tanimmmmal)mmmtnmm� `vmmtn ivmmmmmm NNN E broli R)C lf. �017m1`ln1+J(lllMmYtDOlV M1`l 11Hf11h1 .i Nf.N r. hMNhanO NONa1NNm�to tON NNNJI�^-bim NNC NIn J)N CNO NN NN-viONNN N7N0 NCNh ICI fVOa N000 hNN tON F(/1 N.MiH'i C1NN.-i.i`i rl n,-iNl.i'i1NN.-i�`i.41 C1,-1'i`i)i'>I�IOnINCnI M1)N-iCl'iNCi InNONONNNCI ('1 M1{Mm .i1N �. 'i1bNNmN1 yl %WYN Nm Nh OMOUNNhrn TanMCI (alUmhMf- f�OMtJINm Ou)mT miMJlr om of^�y m�TNOJImia�PONTOVJ�H OTMC £m41 N MI. . . .iV W nlm 6iaT� ro TTNc�m YIIVm nMaJ .) m..ban,nM ie)a qoM� nIMNMln to Mh NMr . . . ulOf�tnTmV1 m IG UThm in NUlrn Om aN aulmmVl'Ihhm NOl JI V)OU VI JIry mNmmJlM PmtOry TNOhO TNln ulOnlo U m q Ul mlmmmmm Wmmml%mmNlmmmm mm0mim0mm0mlmm¢Mi mlmbryiW0m0mmmmlmmmCmm Omr mlm Om Mmmmmm 0m men m m p wvm bail Na MPm oh ) Om MNmp cr-mhan olrhhh NJl r- )T� n aJno� tD aJrnjf Nmh Nv o Mnlan 1 rNpto JlNNoo,yNNN �O town �. v" - mL . .. .tmvm MOUE[. .00�Ob1p trnoN .. lotto Nr N.y MooaaU HL m M 1'I Ci a tiINN CI�N`i.y rvlH.iI'M f+afNh MNN.i t`i .-i .Ni N`i rir thNCI N.i .iNC Nnl yl Nl7MNl .il �IM�ryHINCN -I HI ti I rom £o o U Xa m w NNOatDpNmptoh momto loal�w alrJ �n� oom.000 oo,� �I .�,�o Mmooi%l o.�i o.00 ol�o oo �`'mrnhto tootom �CJO U !-1 £mU NI�(]p J10N mOa00 rzJ �O pMNOUN OCOi tp O�iO`i •ice C>O.y p0 OM NOON anO pm O�pOf' V N � N 'iM00, DOOM ONUOp000C]U .1000�IMUO�100Om0 V OOCJOOOOONOOU i M ; ONOO i r)CJNV OU 1 1 Ill 1 1 1 I I I I O O I I i I 1 1 I 1 O O 1 I q I 1 XTN mOW CJ N Oh N,-I MO NOU nhMV)f-IMmNOI mI tO tO o)aa0`iOmNa�,-inTmm<V Nm aol90 OI rIO�n In CloNNt�.iM VJ OOOmOIOTt� Oc men OTm M'-I LN Y £4 O C)OImm tOmT rnNVV NpI 'm-I Ol (V )mmlU� VIh CITNNhT I.-INOM1p Mmto lO OM NN VJ)VI n. . (l I . VI tVOO MNm UT au)OOC]ONOOOO �. M,i.-i NN paMN.iN mNfO O.y �i .-1.-iN.iPMNNNNM1,M OON O.i C N C' vx EOii M a.-1 m o Na 11 1 MCMNPNrn�ocJMJlhmoahN vr- Ntohho No aNNaNbi�MMMM�OVINNN00���om h T,vo O FWL NPOhr{MrvlmVb N( CIN 1 IOO NNN(�ONCINNI.iN MIVUNN( Cif:I.i.�CIN NNYIN NMMN.IN.y.y rvlN.y t`i C1N.il C1 CINM11 .i �I ,-i .-i O m C W O aaa axxaaarr.aaaaa axxca aaaaa axa as xaaa xaa as xaaa aaaaax as aaa axaaxaaa as vacvvcUnvvvco T� O m n N my vccoavvvmvv�~svvmz ccaaca mvvaamvv vvavvv- -Xis vvaxroavcc vmvice N 1 N N N N N M N N N N N N M N N N N N N N N N N N N N 1 i 1 1 I I O , .� - 11 1 1 1 1 I 1 1 I I I 1 1 1 I I 1 1 1 1 1 1 I 1 I 1 11 1 1 I 1 1 I I 1 11 I I I 1 I I 1 1 I 1 axa aaalzWK.aaaa axa aaaxaxa awaaaaaa axlz as wxaaa as aaaaaa as axwxaaxa axaxa tp SI E1 t40O101 NNNNN NNN NNN INNNOO 00000000 q . (O 00000 O00 O OO OOOOUOOUpO 000000CJ00000 pO�'I ,-i ri .- N'i �i rl 1 N.y ri- Op000O00OU00 O O O O O O O O O O O O O O O O U O O O O O O O O O O O O CJ O O O O O .� .� O O O O O O O O O O N a/ Oe a W to W W W W W W W W W W W W [al W W W W W W W W W Fl W W W !il W W W w W W W Wt W W W W W G] W W Fa' Y '] x O E W W W W Wt W W 4] W W W W w W W Gl W W W lCCn� Vl(n(nVI!/+(gqn iron frn�(n VryJ'ir�n rV�I 0.mµ VI VI m!/j V0.µI Vl V)tV�'I [ryry/{VI.VI[0.q1{VI Vy)m V1lyyn fJJm Rry, tryrynn''CVC��I In (Om U0.µI VI r��r��JJm Vl inmtttnn�� RUryI V) /n ic��ri�n (nm rU�I 4I t0.0.o lnm m�mmm�NRlfliml➢IA IAN�m WmWaI���W N�`wCW ��m W6i�6�1lA 0.i WRl��m Pl��[q��mmWW�jN �0.�1m 0tJ10mN �tA�q N m O L ti N 3 E F�a Ll r]ILW µIa a.Ja�IFaH FgWgN NFIFN Fa gNCL lJrw aa.i a, F.].1F IW IL J. 41 n]a.1 a.1E aaly W 1 ILW H W H W a W4la 2 1 W W W a a a x H W W W H W H W a W W a 1 Z U m IpC ........... rl1 a W H WI-,W a OW W.iZNf'1H WrW IW2`L!� W.i 2yNILZ[� WOk1 W.-rZNMI-IZ W311Z ImW ZZW.-Iy1ZZ2 W.iZryM4ZWW IW Ea [-10.�`. �j 'F iyJ Hit N.iZy ��a73 Fa FE�x �'31-.^a (D Fa WfI W Wa[YL 5 QFS4aY1Hr] •p y a.N :G a] WRWW W WHryl IP }'Y'F. SS rI r]HN WSZWW R W WN zoaq ppN�h a O Um 1r au zggN m U Y TS 000 u muw o,ja .uu Uro bO ZaaLI goNlr!P ! ouuu .� 000u Ooo u mu[a iu ouuo a uuououo £a\ Pl ja U x toz W WW Pzwlil W 4.122 �: �02 �.j �W ZZ.. WZZ�-ioZ W mflo 1 O 1 X '✓y rl f 1 11 11 1 1 I Mo 1 O i 1 II 1 C I I 1 mMo 1 qN N U N N N N [v] 1 .y U N N U CC\ I I F W tHnmmm .`�[ 222 F W mmm(/) W NN U N U Wp W W W W Z 2 Zy [ L. O ado C-8 N T N T O m T .i VINO m m,y .y r�lmm000 N mm�n foem�>m to m mmm mimmmfa°mo e f�mroo�Pmm Nva moN w l C�1 (�1 N �ONONNI+IN ✓1 N V fD m m i() Cj f0 lO 00001 [OImWmOmrym .) f so Nan ml-r)N1� Nan om�ncNom.. N NNOIO NNNNry �lil��M �-IN NCI .iNN �-i t+IC ONE-INb O NO.iO J).i O O O O O m ry N O mlma moon rlNm�i •li-i V39vvV N✓ b(O N1`l m «1NmOG - N N N N N N N .y ENN�N.i .i .i�lr4 a maaaaaaaaa x xxxxx,r,xxzx P N N N N N N NNt NN I I I I I I I I I 1 I a aaaaaaaaaa NOooOOOf>o 0o o n000000 W W W W W W W W W W W ��`uimwmmrnm `ui� C-9 Basin Maximum Conditions Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 I SimulaLin' Basin Group Time Max Flow Max Volume Volume I i hrs cfs in ft3 002YR-24HR DET1-B RASE 12.01 2.441 1,021. 74S2.823 010YR-24HR DE'1'1-5 BASE 12.07 4.795 .1.967 14351.369 IOOYR-24HR DET1-B BASE 12.07 8.043 3.318 24208.760 002YR-24HR DET2-B BASE 12.20 7.063 1,600 29148,852 010YR-24HR DET2-B BASE 12,20 11.934 2.'123 49621.592 I.00YR-241IR DET2-9 BASE 12.20 18.257 4.231 77097.871 002YR-24HR DET3-B1 RASE 12.29 2.178 1.077 1.0829.844 OIOYR-24HR DE"T3-R1 BASE 12.29 4.246 2,044 20548.044 100YR-24HR DET3-Bl BASF: 12.21 7.163 3.414 34327.390 002YR-24HR DET3-B2 BASE 72.25 8.290 1.675 38133.651. 010YR-24HR DET3-B2 BASE 12.25 13.815 2.B16 64099.642 IODYR-24HR DET3-B2 BASF 12.25 20,950 4.338 98743.35D 002YR-24HR DF.V-El BASE 12.2/ 1.577 0.438 9160.162 OIOYR-24HR DEV-E1 BASE 12.20 4,981 1.085 24191.551 100YR-24HR DEV-F1, BASE 12.20 10.684 2.133 47542.B20 002YR-2.4HR DEV-E2 BASE 12.01 4.711 0,720 1.5305.145 010YR-24HR DEV-E2 BASE 12.07 1.0.737 1,531 32558,966 100YR-24HR DEV-F2 BASF, 12.07 19.550 2.751 58512.929 002YR-241IR DEV-E7 BASE 12.24 4.568 0.765 2416D, 447 OIOYR-24HR DEV-E'7 BASE 12.24 10.486 1.599 50482.946 100YR-24HR DEV-E7 BASE 12.24 19.173 2.841 89720.1'78 002YR-24HR DFV-E8 RASE 1.2.13 1..094 0,511 4712.616 OIOYR-24HR DEV-F8 BASF 12.13 3.041 1.206 1111.7.501 100YR-24HR DEV-ES BASE 12.09 6.080 2.305 21248.862 002YR-24HR DEV-F.S1 BASE 12.1.6 0.998 1.196 3820.910 010YR-24HR DEV-ES1 BASE 12.16 1.860 2.205 7044.01.4 100YR-24HR DFV-ES1 BASE 12.16 3.028 3,614 L1545.833 002YR-24HR DEV-ES2 BASE 12.20 1,097 1.195 4599.434 01.0YR-24HR DEV-ES2 BASE 1.2.20 2.054 2.204 8419.830 100YR-24HR DEV-ES2 RASE 12.20 3.354 3.612 13900.045 002YR-241IR DEV-N BASE 13.08 0.293 0.339 4111.706 010YR-24HR DEV-N BASE 12.92 1.056 0.916 11275.942 100YR-24HR DEV-N BASE 12.83 2.457 1.886 23212.508 002YR-24HR DEV-N1 BASE 12.D5 1..984 1.07E 5516.570 OIOYR-24HR DEV-IV1. BASE 12.05 3.768 2,045 10465.907 100YR-24HR DEV-N1 BASE 1.2.03 6.216 3.416 17483.183 002YR-24HR DEV-N2 BASE 12.02 1.223 0.914 2985.624 OIOYR-24HR DEV-NE BASE 1.2.01 2.422 1.815 5930.700 100YR-24HR DEV-N2 BASE 12.01 4.095 3.125 10207.790 002YR-24HR DEV-S1 BASE 12.16 1.264 0.914 4941.543 010YR-241[R DEV-S1 BASE 12.11 2.616 1.815 9816.356 IOOYR-24HR DEV-S1 BASF 12.11 4.56E 3.124 16896.118 002YR-241IR DEV-S2 BASE 12.17 0.1B8 0,674 3279,649 OIOYR-24HR DEV-S2 BASE 12,12 1.902 1.462 711.0.604 100YR-24HR DEV-S2 BASE 12.12 3.564 2.658 12928.350 002YR-24HR LAKEl-S BASE 12.16 4.033 1.071 15408.002 010YR-21HR LAKE1-0, BASF 12.11 7.670 2.044 29233.473 l ODYR-24HR EdkKEI-B BASE 12.11 13.209 3.415 4BB36.145 002YR-24HR L,KE2-B BASE 12.42 41.724 1.079255765.954 010YR-24HR LAKE2-8 BASE 12.42 82.103 2,0484B5232.523 1OOYR-241IR LAKE2-B BASE 12.42 138.176 3,421810574.926 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. C _ 1 0 Page 1 of 1 Complete input Bond Routing with Overflow Pkg, and Drainage. Solution 04/13/12 Basins Name: DETl-B Node: DET1 Status: Onsite Group: BASF, Type: SCS Unit. Hydrograph CN Unit Hydrograph: Uh4B4 Peaking Factor: 484.0 Rainfall File: Storm Uuration(hrs): 0.00 Rainfall A:nount(in): 0.000 Time of Coac(min): 15,00 Area(ac): 2.010 Time Sh,i.ft(hrs): 0.00 Curve Number: 71.00 Max Allowable Q(cfs): 999999,000 DCIA($): 0.00 Basin to dry detention area west of Mourn Trail. 1 Name: DET2-B Node: DET2 Status: Cosine Group: BASE Type: SCS Unit Hydrograph ON Unit Hydrograph: U1,484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount (in): 0,000 Time of Conc(min): 28.00 ` Area(ac): 5.020 Time Shiftthrs): 0.00 Curve Number: 86.00 Max Allowable Q(cfs): 999999.000 DCIA($): 0.00 Basin to dry detention area west of Monon Trail. ----------------------------------------------------------------------------------- Name: DET3-B1 Node: DET3 Status: Onsite { Group: BASE Type: SCS Unit Hydrograph ON Unit Hydrograph: Uh484 peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0,000 Time of Conc(min): 35,00 Area(ac): 2."0 Time Shift(hrs): 0.00 Curve Number: 78.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 Basin to bib- Swale, Olame: DET3-82 _________________________________ Node: UET3 Status: Onsite { j Group: BASE Typo: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(mird: 33.00 Are. (ac): 6.270 Time Shift(hrs): 0.00 Curve Number: 87.00 Max Allowable Q(cfs): 999999.D00 DCIA(°%): 0.00 y` Basin to bio-swale. ----------------------------------------------------------------------------------- Name: DEV-E1 Node: DEV-EL Status: Onsite Group: BASE 'typo: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 464.0 Rainfall File: Storm Duraticn(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 30.00 Area(ac): 6.140 Time Shift(hrs): 0.00 Curve Number: 64.00 Max Allewable Q(cfs): 999999.000 DCIA($): 0.00 ____________ ___ ______________ Name: DEV-E2 ___ _____________________________________ Node: DEV-E2 __________ Status: Onsite Group: BASE Type: SCS Unit Hydrograph ON Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(ia): 0,000 Time of Conc(min): 15.00 Area(ac): 5.860 Time Shift(hrs): 0.00 Curve Number: 71.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 Fame: DEV-E7 Node: DEV-E7 Status;-Onsite- Group; BASE Type: SCS Unit Hydrograph ON Unit Hydrograph: Uh484 Peaking Factor: 481.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Coac(min): 34.00 Area(ac): 8.700 Time Shift(hrs): 0.00 Curve Number: 72,00 Max Allowable Q(cfs): 999999.000 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Ino. (: _ l I Page I of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 DCIA(%1: 0.00 Name: DEV-E8 Node: DEV-F8 Status: Onsi.te Group: BASF Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Durabion(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(m.in): 20.00 Area(ac): 2.540 Time Shift(hrs): 0.00 Curve Number: 66.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 ---------- --.________n-------- Name: DEV-C�1 -------_-_----____-_________-_-__-_-__---____----__. Node: DEV-F.S1 Statoa: Onsite Group: BASF, Type: SCS Unit Hydrograph CN 'i Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc Uai.n): 24.00 Area (act : 0.880 Time Shift(hrs): 0.00 Curve Number: 80.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 __________________________________________________________ Name: DEV-ES2 _________ Node: DEV-ES2 ___________ Status: _. Onsite I Group: BASE 'Type: SCS Unit Hydrograph CN ❑nit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0,000 Time of Cono(min): 28,00 Arca(ac): 1..060 Time Shift(hrs): 0.00 Curve Number: 80.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 -.--------- ---------..___-_-.___________- Name: DEV-N _________-- --_____-_--------------------- Node: 1 Status: Onsite Group: BASE Type: SCS Unit Hydrograph CH Unit Hydrograph: U1484 Peaking Factor: 184.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 83.00 Area(ac): 3.390 Time Shift(hrs): 0.00 Curve Number: 61.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 Undisturbed area - Runoff Co Guilford Park Subdivsion. --- -- -- ----- ----------------------- -------------- Name: DEV-N1 Node: DEV-N1 Status; Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 12.00 Area(ac): 1.410 Time Shift(hrs): 0.00 Curve Number: 78.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 ________________________________________________________ Name: DEV-N2 _________ Node: DEV-N2 ____________ Status: Ons.ite Group: BASE 'Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Ameunt(in): 0.000 •rime of Conc(min): 7.00 Area(ac): 0.900 Time Shift(hrs): 0.00 Curve Number: 75.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 -- ----- ------ ----- Name: DEV-S1 ----------------- ---- ------ - --------- Node: DEV-S1 --------------- Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Dura tion(hrs): 0.00 Rainfall Amount(in); 0.000 Time of Conc(min); 23,00 Area(ac): 1.490 Time Shift(hrs): 0,00 Curve Number: 75.00 Max Allowable Q(cfs): 999999.000 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. C „ ( Z Page 2 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 DCIA(%): 0.00 Direct runoff to 18" CAIP under 111th Street. Name: DEV-S2 Node: DEV-S2 Status: Onsite Croup: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amouat(i.n): 0.000 Time of Conc(min): 22.00 Arca(acl: 1.340 Time Shi.ft(hr.$): 0.00 Curve Number: 70.00 Max Allowable Q(cfs): 999999.D00 DCIA(8): 0.00 Direct runoff to 12" CMP under 111th Street. Name: LAKE1-B Croup: BASE Unit Hydrograph: Uh484 Rai.nfal.l File: Rainfall Amount (1n): 0.000 Area(ac): 3.940 Curve Number: 78.00 1 DCTA(€1: 0.00 plain to Lake #1 Node: Lakel Status: Onsite Type; SCS Unit Hydrograph CN Peaking Factor: 484.0 Storm Dufatiou(hrs); 0.00 Time of Conc Qni.n): 23.00 Time Shift(hrs): 0.00 Max Allowable Q(cfs): 999999.000 ___________________________________._..__ Name: LAKE2-8 Node: Laka2 Status: Onsite j Group: BASE Type: SCS Unit Hydrograph CN 1 Unit Hydrograph: 01484 Peaking Factor: 484.0 Rainfall File: Storm Durat:ion(hrs): 0.00 Rai.nfal.l. Amount(in): 0.000 Time of Conc(min): 48.00 Are. (ac): 65.210 Time Shift(hrs): 0.00 Curve Number: 78.00 Max Allowable Q(cfs): 999999.000 DCTA(a): 0.00 Basin to Lake #2 ..----_. .... ..___.. .... - ... - ..._-_ _ ---------------- ---- _..-- _.-.-_ _- - Nodes -. -- __.--- ------ _ Name: 36" CONTROL S'TR Base F1ow(cfs): 0.000 Ioit.Stage(ft): B17.570 Group: BASE Plunge Factor: 1.00 Warn Stage(ft): 822.000 Type: Manhole, Flat Floor Stage(ft) Area(ac) -______________________________ ---------------------------------------------------------------------------------- Name: DET1 Base Flow(cfs): 0.000 Iait Stage(ft): 829.000 Group: BASE Warn Stage(ft); 833.000 Type: SCage/Area III Small detention area east of the Monon Trail Stage(ft) Area(ac) 829.000 0.0100 j 830.000 0.1700 831.000 0.3BOO 832.000 0.5800 li Name: DET2 Base Flow (cf s): 0.000 Init Stage(ft(: 627.500 Group: BASE Warn Stage(ft): 831.000 Type: Stage/Area Small dotenti.on area east of the Monon Trail Stage(ft) Area(ac) --------------------- 8275000 828,000 0.1900 829.000 0.2600 830.000 0.3300 831.000 0.4100 Name: DET2 BOUNDARY Base F1ow(cfs): 0.000 left Stage(ft): 827.000 Group: BASE Warn Stage(ft): 829.000 Typo: Stage/Area Detention outfall point Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. C 3 Page 3 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 Stage(ft) Area(ac) _______________._--________._______ Name: DET3 Base ---------------------- Clow(cfs): 0.000 .___________________.._-____ Tuit Stage(ft): 838.DDO Group: BASE Warn Stage(ft): 840,000 Type: Stage/Aroa S.,all detention area to the wast of. the Morton 'Trai.1. ((( I Stage(ft) Area(ac) 83B.000 0.1200 839,000 0.3300 840.00, 0,6800 ---------- -------- ---------------- Name: DEV-EI Base ----------- Flow(cfs): ------ -------------- 0.000 Ildt ----9------ to e(ft) ----------- : 817,570 Group: BASE Warn Stage(ft): 823,000 ( 'Type: Stage/Aroa I Stage(ft) Area(ac) ---------------- _ _ ___________ 81.7.510 0.0000 819.DDD 0.0010 820.000 0.0750 821.000 0.2300 822.000 0.5600 823.000 1.3000 --------------------------------------------------------------------------- Name: DFV-El. BOUNDARY Base F,l.ow(cfs): 0.000 Init Stage(ft): 817.460 Group: BASE Warn Stage(ft): 823.000 Type: Time/Stage Time(hrs) Stage(ft) _______________ _ _____________ O.OD 817.460 1 999.00 817.460 Name: DRV-E2 Base Fl.ow cfs 0,000 snit: Sta e ft B2d.400 Group: BASE Warn Stage(ft): B27.000 Type: Stage/Area Stagc(ft) Area(ac) __ ______ _ ___ _______________ ------------------------------------------------------------------------------------------ Nam: DEV-E7 Base P9.oe(cfs): 0.000 Init Stage(ft): 824.730 Group: BASE Warn Stage(ft): 826.000 Type: Stage/Area ' stage(ft) Ar'ea(ac) __________ _______________ _ __ 824,730 0.0000 ( 825.000 0.0400 825.150 0.0700 S26.000 0.3700 _____._____________________________- I Name: DEV-E7 BOUNDARY _____-_____-___- Base Flow(cfs): _______________- 0.000 Init _____- _______-_____ Stage(ft): 825.150 Group: BASE Warn Stage(ft): 826,000 Type: Stage/Axe. Stage(ft) Area(ac) i __________________________________________________ Name: DEV-F.B Base Flow(cfs): ________________ 0,000 Ielt _______ ____________ Stage(ft): 829.090 _ Group: BASE Warn Stage(ft): 531,000 Type: Stage/Area Stage(ft) Area(ac) 829.090 0.0000 830.000 0.2600 830.300 0,4600 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc, C .. LI Page 4 of 15 Complete input: Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 ------- 830,500---- 0.5000 Name: DFV-E8 BOUNDARY Base F1ow(cfs): 0,000 Group: BASF. ( Type: Stage/Area Stage(ft) Area(ac) Name: DEV-ES1 Group: BASE Type: Stage/Aroa Base Flow(cfs): 0.000 Stage(ft) Area(ac) -------- -------._---- 834,500 O.00DO 835.B00 0.0050 836.000 0,1000 Name: DEV-ES1 BOUNDAR Base Flow(cfs): 0.000 Grenp: BASE Type: Stage/Area Stage(ft) Area(ac) Name: UBV-F,52 Base E'low(cfs): 0.000 Group: BASE Type: Stage/Area Init Stage(ft): 830.300 Warn Stage(ft): 831.000 Init SLage(ft): 834.500 Warn Stage(ft): 836.000 Init Stage(ft): 834.51.0 Warn Stage(ft): 836.000 TrItt Stage(ft): 833.510 Warn Stage(ft): 835.600 Stage(ft) A------) 833.570 0.0000 834.000 0.005o 835.000 0.1500 835.600 0.20D0 I_________________ ________________________________________ Name: DEV-ES2 BOUNDAR Base Flow(cfs): 0.000 _._____- IniL ______ Stage(ft): 832.590 __ - Group: BASF, Warn Stage(ft): 835.000 Type: Stage/Area Stage(ft) Area (ac) Name: DEV-N1 Base __________ Flow(cfs): _________________________'-________ 0.000 Init Sta e(ft 833.000 Group: BASE Warn Stage(ft): 836.000 Type: Stage/Area Upstream end of proposed culvert 1 at east entrance off 111th St. Stage(ft) Are.(ac) 833.000 0.0100 835,000 0,0582 836.000 0.1300 __________ ____ __________ _ _.__________________________- ` Name: DEV-N1 BOUNDARY Base Fl ow (cfs): _____- 0.000 _______________.______ Init Stage(ft): 833.460 Group: BASE Warn Stage(ft): 846.000 Type: Stage/Area 11 Stage(ft) Area(ac) f Name: DEV-N2 ____ _________ BaseFl ___ow (c fs):_ _ 0.000 __________ Init _ Sta g(fq : ________. 83'7. 2.50 Group: BASE Warn Stage(ft): 840.600 Type: Stage/Area Stage(ft) Area(ac) Interconnected Channel and Pond Routing Model (ICPR) (02002 Streamline Technologies, Inc, C` IT Page 5 of 15 Complete Input Pond Routing wi Ch Overflow Pkg, and Drainage Solution 04/13/12 837.250 010000 838.000 0.0020 839,000 0.0030 840.000 0.0050 843.,000 0.0400 Name: DLV-N2 BOUNDARY Base P'low(cfs): 0.000 Tnit Stage(ft): 831.000 Group: BASE Warn Stage(ft): 838.000 Type: Stagc/Area Stage(ft) Area(ac) ------Grou BASF Wazn Stage(ft): 840.000 Type: Stage/Area . Stage(ft) Area(ac) 835,700 010000 836.000 0. 0020 837.000 0.0050 838.000 0.0100 839.000 0.07.00 840.000 0.1000 (____________.____________________________ i Name: ❑EV-S1 BOUNDARY Base ________________________ FLow(cfs): 0.000 _______ Init ____________ Stage(ft): 63.5.480 Group: BASE Warn Stago(ft): 840.000 Type: Time/Stage Time(hrs) Stage(ft) 999.00 835.480 i Name: DEV-52 ease L'lrw (cfs): 0.000 IniC Sta e ft 8'7 .57,0 Group: BASE Warn Stage(ft): 839,500 Type: Stage/Area ( Stage(ft) Area(ac) B37.520 0.0000 838.000 0.0040 839.000 0.0300 839.650 0.1000 _______________________ _____________________________________________________________ Name: DFV-S2 BOUNDARY Base Fl.ow(cfs); 0.000 Init Stage(ft): 837.560 Group: BASE Warn Stage(fl.): 840.000 Type: Time/Stage Time(hrs) Stage(ft) --------------------- 0.00 837.560 999.00 837.560 ------------------------------------------------------------------------------------------ Name: L1-D1 BOUNDARY Base Fl ow (cfsl: 0.000 Iait Stage(ft): 828,000 Group: BASE Warn Stage(ft): 830.000 Type: Stage/Area Stage(ft) Area(ac) ------------------------------------------------------------------------------------------ Name: Laker Base Flow(cfs): 0.000 Init Stage(ft): 835.000 Group: BASE Warn Stage(ft): 837.000 Type: Stage/Area Detention pond west of the Mourn Trail. Stage(ft) Area(ac) 835.000 1.5600 836.000 1.7500 Interconnected Channel and Pond Routnrg Model (ICPR) ©2002 Streamline Technologies, Inc, C. 1 t0 Page 6 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 Name: Lake2 Ease Flow(cfs): 0.000 Group: BASE Type: Stage/Area Large Lagoon area to the west of the Monon 'frail Stage(ft) Area(ac) 8:38.000 10.4500 839.000 11,4600 840.000 13,7900 ------------- -.. Name: Group: EASE UPSTREAM Geometry: Circular Span(la): 0.00 Rise(in): 0.00 Invcrt(ft): 0.000 Manning's N: 0.000000 Top Clip(in): 0.000 But Clip(in); 0.000 From Node: To Node: DOWNSTREAM Circular 0.00 0.00 0.000 0.000000 0.000 0.000 Upstream FHWA Inlet Edge. Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Ini.t Stage(ft): 838.000 Warn Stage(ft): 840,000 Length(ft): 0.00 Count: 1 Friction Equation: Average Conveyance Solution Algorithm; Automatic Plow: Both Ent ranee Loss Coal; 0.00 Exit Loss Ccef: 0.00 Bend Loss Coe& 0.00 Outlet Girt Spec: Use do or tw Inlet Ctrl Spec: Use do Stabilizer option; None Name: 1B" CONTROL ---------------------------------------------------------- From Node: DEV-El Length(ft): 10.00 Group: BASE To Node: 36" CONTROL STR Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm; Automatic Geometry: Circular Circular Flow: BOCK Span(in): 18.00 18.00 Entrance Loss Coal: 0.50 Rise(in); 18.00 1B.00 Felt Loss Coal; 0.00 Invert(ft): 818,800 818.000 Bend Loss Cost: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top C1ip(in): 0,000 0.000 Inlet CtrL Spec: use do not Clip(in): 0,000 0.000 Stabilizer Option: None UpstreCircular FHWA Inlet Edge Description: Circular CMP: slope Mitered to slope Downstream FHWA Inlet Edge Description: Circular Concrete: i Square edge w/ headwall ____ __ __ ____ Name; __________________ 36" CULVERT _____________________ From Node: ___ ______________ 36" CONTROL STR Length(ft): ___________________ 43.80 Group: BASE To Node: DFV-E1 BOUNDARY Ccunt: 1 j Eriction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in); 36.00 36.00 Entrance Loss Coal: 0.50 Rise(in); 36.00 36.00 Exit Loss Coef: 0.00 rnvert(ft): 817.570 81.7.460 Dead Loss Cool: 0.00 ' Manning's N: 0.013000 01013000 Outlet Ctrl Spec: Use do or tw Top Clip(io): 0.000 0.000 Inlet Ctrl Spec: Use do Bot Clip(in): 0,000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting -------------------------------- Name: DET2-P From Node: SETS Length(ft): 157.00 Group: EASE To Node: DET2 BOUNDARY Count: i Friction Equation: Average Conveyance Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. C.-11 Page 7 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 UPSTREAM DOWNSTREAM Geometry: Circular Circular Spon(in): 12.00 12.00 Ri.sc(.in): 12.00 12.00 Invert(et): 321,500 827.000 Manning's bl: 0.013000 0.01.3000 Top Clip(in): 0,000 0.000 But C.if) ( in) : 0.000 0.000 Upstream FHWA Inlei Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Detention area outfall line. Name: DET3-P Group: BASE UPSTREAM Geometry: Circular Span(in): 24.00 Rise (in): 11,10 Invert(ft): B37,000 Manning•s N: 0,013000 Top Clip(in): 0.000 Rot Clip(in): 0.000 From Node: DET3 To Node: Lake2 DOWNSTREAM Circular 24.00 24.00 836,500 0,013000 0.00o 0.000 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall 1 ,Downstream FHWA Inlet Edge Description: I '!Circular Concrete: Square edge w/ headwall 1 (Detention area outlet. Solution Algoritlun: Automatic, Flow: Both Entrance Loss Coef: 0.50 Exit: boss Goof: 0.00 Bond Loss Coe[: 0.00 Outlet Ctrl Spec: Uso do or to Inlet Ctrl Spec: Use do Stabilizer Option: None Length(ft): 1.59.00 Count: 1 Friction Equation: Average Conveyance Solution Algorithm: Automat.i.c Flow: Both Entrance Loss Cost: 0.50 Exit Loss Coot: 1.00 Dend Loss Coot: 0.00 Outlet Ctrl. Spec: Use do or to Inlet Ctrl Spec: Use do Stabilizer Option: None Name: DEV-S2 PIPE From Node: DEV-S2 Length(It ): 36.50 Group: BASE To Node: ➢EV-92 BOUNDARY Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular Circular Flow: Both Span(in): 12.0D 12.00 Entrance Loss Coot: 0.50 j Rise (in) 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 837.520 831.560 Rend Loss Cost: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use tin or to Top Clip(in): 0.000 0.000 Inlet Ctri Spec: Use on Pot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FI{WA inlet Edge Description: !Circular Concrete: Square edge w/ headwall ---- ___-__-__-_----__._-___-------------- Name: ES1-N1 CULVERT ------------------------9_--_`_---_-- From Node: DEV-E.51 Len th(£t ; - ----------- 30.00 Group:BASE To Node: DEV-ES1 BOUNDAR Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algoritlun; Automatic Geometry: Circular Circular Flow: Both 1 ! Span(iu): 1.2.00 12.00 Entrance Loss Cost: 0.50 Rise(in): 12.00 12.00 Exit Loss Cost: 0.00 Invert(ft): 834.500 834.510 Bend Less Goof: 0.00 Manning's N: 0.024000 0.024000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 0.000 Inlet Ctri Spec: Use do Bot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Name: ES2-El CULVERT From Node: DEV-ES2 Leagth(ft): 105.00 Group: BASE To Mode: DEV-ES2 BOUNDAR Count: 1 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Teclulologies, Inc. C _' 8 Page 8 of 15 Complete Input Pond Routing with Overflow eke, and Drainage Solution 04/13/1.2 UPSTREAM DOWNSTREAM Geometry: Circular Circular Span(i.n): 12.00 12.00 Rise(in): 1.2.00 12.00 .Lnve rt (f t): 833.570 832.590 Manninq's N: 0.024000 0.024000 Top Clip(in): 0.000 0.000 not Clip(in): 0.000 0.000 Upstream FHWA Inlet Edge Desc,r.iption; Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.50 Exit Loss Coef: 0.00 Bend boss Cast: 0.00 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use on Stabilizer Option: None Name: N1.-F2 From Node: DEV-Nl Longth(ft): 104.00 Group: BASE To Node: DEV-NI BOUNDARY Count-: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic. Geometry: Circular C,i.rcular Flow: Both Span(inl: 12,00 12.00 Entrance Loss Coati 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 0.00 Invert(ft): 833.800 833.460 Bend Loss Cent: 0.00 Manning'. N: 0.013000 0.01.3000 Outlet Ct r1 Spec: Use as or tw Top Clip(in): 0.000 0.000 Inlet CI_r,1 Spec: Use on Bar Clip(in): 0.000 0.000 Stabilizer option: None Upstream FHWA Inlet Edge Description: Circular Concrel_e: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Culvert under the east entrance off 111th St. ,. Name: ------------------------------ N2-N]. CULVERT From Node: DFV-N2 -----------..___------_-_----_------______- Length(ft): 48.00 Group: BASE To Node: DEV-N2 BOUNDARY Count; 1 Friot,ion Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular. Circular Flow: Both Span(in): 12.00 12,00 Entrance Los. Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Cost: 0.00 Invert(ft): 837.250 837.000 Bend Loss Goof: 0.00 Manning's N: 0.013000 0.0130DO Outlet Ctrl Spec: Use to or tw Top Clip(in): 0.000 0.000 Inlet Girt Spec: Use do Bet Clip(in): 1 0.000 0.000 Stabilizer Option: None Upstream FRWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular Concrete: Groove end w/ headwall ------------------------------------- Name: S1 CULVERT ------------------------ From Node: ---._-_---------_-___ DEV-S1 Length(ft): 41.00 Group: BASE To Node: DEV-S1 BOUNDARY Count: 1 Friction Equation: Average Conveyance UPSTREAM DOWNSTREAM Solution Algorithm: Automatic Geometry: Circular. Circular Flow: Both Span(in): 36.00 3b.00 Entrance Loss Coef: 0.50 Rise(in): 36.00 36.00 Exit: boss Coal: 0.00 Inverttft): 835.700 835.480 Bend Loss Coal: 0.00 Manning's N: 0,011100 0,111000 Outlet Ctrl Spec: Use on or tw 'Pop Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use on Sot Clip(in): 0.000 0.000 Stabilizer Option: None Upstream FHWA Inlet Edge Description: Circular Concrete: Groove end projecting Downstream FHWA Inlet Edge Description: Circular CMP: Headwall _=== Channels Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc, C - (9 Page 9 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 Name: DE'1'2-F2 CHANNEL Fmm Node: DFT2 BOUNDARY Length(it): 335.00 Group: BASE To Node: DEV-E2 Count :: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapoz.o.idal Trapezoidal Solution Al.gori Lhm: Automatic Invert(ft): 821.000 824.400 Flow: Both TCl.pinitZ((t): 9999,000 9999,000 Contraction Gael: 0.000 Manning's N: 0.060000 0.060000 Expansion Coal: 0.000 Top Cl.ip(tt): 0.000 0.000 Entrance Loss Gear: 0.000 Bot- Cli.p(ft): 0.000 0.000 ExiL Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use de or Is AuxElevl(ft): Inlet Ctrl Spec: Use an Aux XSec1: Stabilizer Op'Lion: None AuxF,1, ev2(it, : Aux XSec2: Top Width(fl-): Depth(ft): Bat Width(ft): 5.000 5,000 LLSdS1p(h/v): 3.00 3,00 Rt SdSlp(h/v): 3.00 3.00 ____---_---_P___..___--- Name: _-__ E2-El CHANNEL From Node: _..______________________ DFV-E2 __________.____---_______--_____..___--____._. Length(ft): 458.00 1 Grou BASE To Made: DEV-F.1 Count: 1 i UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: '1'xdpezoidal Trapezoidal Solution Algorithm: Automatic Invert(£t): B24.400 819.1.10 Flow: Both TC1plUitZ(ft): 9999.000 9999.000 Contraction Gout: 0.000 Manning. N: 0.060000 0.060000 Expansion Gael: 0.000 Top Clip(ft): 0.000 0.000 Entrance loss Coef: 0.000 Bost Clip(ft): 0.000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use dr. or tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSocl.: Stabilizer Option: None. AuxElev2(fi): < Aux XSec2: Top Width(ft): Depth(ft): But Width(ft): 5.000 5.000 Lt SdSl.p(h/v): 3.00 3.00 Rt SdSlp(h/v): 3.00 3.00 ______________________________ Name: E7-El ________..______---______- From Node: DEV-E7 -_____---_______----______----______- BOUNDARY Length (ft); _ 400.00 ( Group: BASE To Node: DEV-El Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Autotnat.i.c l nvert{ft): 825.150 819.500 E1 ow: Both TC1pInitZ (it): 9999.OD0 9999.000 Coat racti.on Coef: 0.000 Manning's N: 0.070000 0.070000 Expansion Coef: 0.000 Top Clip(ft): 0.000 0.000 Entrance Loss Coef: 0.000 Sot Clip(ft): 0.000 0.000 Exit- Loss Gout: 0.000 Main XSec: Outlet Ctrl. Spec: Use do or tw AuxElevl(ft): Inlet Ctrl Spec: Use on Aux XSec1; Stabilizer. Option: None AuxElev2(ft): Aux XSec2: j Top Width(ft): li Depth(ft): Bat Width(ft): 10.000 5.000 LtSd5lp(h/v): 12.00 3.00 Rt SdSlp(h/v): 12.00 3.00 Name: E8-El From Near: DF.V-E8 BOUNDARY Len th(ft): 17 D, 00 Group: BASE To Node: DEV-El Count: 1. UPSTREAM DOWNSTREPM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft)t 830,300 819.500 Flow: Both TC1pInitZ(ft): 9999.000 9999.000 Contraction Coef: 0.000 ' Manning's N: 0.100000 0.100000 Expansion Goof: 0,000 Top Clip(ft): 0.000 0.000 Entrance Less cost: 0.000 Bot Clip(ft): 0,000 0.000 Exit Loss Cool; 0.000 Main XSec: Outlet Ctrl Spec: Use do or Lw AUXElevl(ft): Inlet Ctrl Spec: Use on Aux XSecl: Stabilizer Option: None AuxElev2(ft): Aux XSec2: Top Width(ft): Depth(ft): Interconnected Channel and Pond Routing Model JCPR) (02002 Streaulline Technologies, Inc. C - 2 L) Page 10 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 But Width(ft): 20. 000 20.000 I,t SdSlp(h/v): 50.00 50.00 RCSdSlp(h/v): 50.00 50.00 ( Name: ES1-N2 CHANNEL From Node: DEV-ES1 BOUNDAR Length(ft): 40.00 Group: BASE To Node: DFV-NI Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Goomctry: Trapezoidal. Trapezoidal Solution Algorithm: Automatic Invert (ft): B34.510 833.800 Flow: Both TClpInit'Z(ft): 9999.000 9999.000 Contraction Carl; 0.000 Manning's N: 0,030000 0,030000 Expansion Coef: 0.000 Top Cli.p(ft): 0, 000 0.000 Entrance Loss Coef: 0.000 But Cl.ip(ft): 0.000 0.000 Exil Loss Coef: 0.000 Main XSec: Outlet Ctrl Spec: Use door tw AuxElevl(ft): Inlet Ctrl Spec: Use do Aux XSec1: Stabi.l,izer. Option: Noun AUBE] ev2 (ft) : Aux XScc2: Top Width(ft:): Depth(ft): Bat. Width(ft): 5.000 5.000 LtSd41p(h/v): 3.00 3.00 RtSdSlp(h/v): I, 3.00 3.D0 ----------------------- Name: ES2-El CHANNEL From Node: DEV-ES2 ---------------------------- BOUNDAR Length(ft): 503.00 Group: BASE To Node: DFV-E1 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Trapezoidal Trapezoidal Solution Algorithm: Automatic Invert(ft): 832.590 819.11.0 Flow: Both 1 TC.IpInitZ(ft): 9999.000 9999.000 Contraction Coef: 0,000 Manning's N: 0.08000D 0.080000 Expansion Coef: 0.000 '.. Top Clip(ft): 0.000 0,000 Entrance Loss Coef: 0.000 ' Bat Clip(ft): 0.000 0.000 Exit Loss Coef: 0.000 Main XSec: Outlet Ct:rl Spec: Use do or I. AuxEle,vl(ft): .In.let Ctrl Spec: Use on 1 Aux XSecl: Stabilize, Option: None 1 Aux El.ev2(ft): Aux XSoc2: Top Width(ft): Depth(ft): 1 Bat Width(ft): 5.000 5.000 LtSdSlp(h/v): 20.00 3.00 3 Rt SdSlp(h/v): 20.00 3.00 --_--_._________________ Name: ___ ___ AKE1-E'! CHANEIE ___________________________________________________ From Node: L1-01 BOUNDARY LengtCoun : ____ _._____- 470.00 � Group: B BASE To Node: DEV-E] Count: 1 UPSTREAM Geometry: Trapezoidal Invert(ft): 828,000 �I. TC.pinitZ(ft): 9999.000 Manning's N: 0.060000 Top Cliptft): 0.000 Bot Clip(ft): 0.000 Main XSec: A.selevlift): Aux XSecl: AuxElov2(ft): Aux XSec2: Top Width(ft): Depth(ft): Bat Width(ft): 10.000 ' LtSdSlp(h/v): 40.00 RtSdSlp(h/v): 40.00 j---------------------------- Name: 01-E2 CHANNEL Group: BASE UPSTREAM Geometry: Trapezoidal Invert(ft): 833.460 9'C1pInitZ(ft): 9999.000 Manning's N: 0.080000 Top C1ip(ft): 0.000 Bot C1ip(ft): 0.000 Main XSec: AuxElevl(ft): DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal, Solution Algorithm: Automatic 824.730 Flow: Both 9999.000 Contraction Coef: 0.000 0.060000 Expansion Coef: 0.000 0.000 Entrance Loss Coat: 0.000 0.000 Exit Loss Coef: 0.000 Outlet Ctrl Spec: Use do or to Inlet Ctrl Spec: Use In Stabilizer Option: None 10.000 20.00 20.00 From Node: DEV-NI BOUNDARY Length(ft): 390.00 To Node: DEV-E2 Count: 1 DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm: Automatic 824,400 Flow: Both 9999,000 Contraction Coef: 0.000 0.080000 Expansion Coef; 0.000 0.000 Entrance Loss Coef: 0.000 0.000 Exit Loss Coef: 0.000 Outlet Ctrl Spec: Use de or to Inlet Ctrl Spec; Use do Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. ^ , I Page 11 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 Aux XSe.cl: AuxElev2(ft): Aux XSoc2: 'Vol) Width(ft): Depth(ft)t Dot Wldth(ft); 5,000 LtSd51p(h/v): 3.00 RtSdSlp(h/v): 3.00 Name: N2411. CHANNEL Group: BASE UPSTREAM Geometry: Trapezoidal Lnvert(ft): 837.000 TC1pInitZ(ft): 9999.000 Manniog's N: 0,030000 Top Clip(ft): 0.000 1 But Clip(ft): 0.000 Main XSec: Aualev l (ft) : Aux XSecl: AuxElev2(ft): Aux XSec2: 'Pop Width (it): Depth(ft): Rot Width(ft): 1.500 LtBdSl.p(h/v): 2.00 RtScgIp(h/v): 2.00 =T Drop Structures Stabilizer Option: None 5.000 3.00 3.00 From Node: DEV-N2 BOUNDARY LengUh(ft): 240.00 To Node: DEV-N). Count: 1 DOWNSTREAM Friction Equation: Average Conveyance Trapezoidal Solution Algorithm; Automatic 833.800 Flom. Both 9999.000 Contraction Goof: 0.000 0.030000 Expansion Coef; 0.000 0.000 Entrance Loss Coef; 0.500 0.000 Exit Loss Coet: 0.000 Outlet Ctrl Spec: Use do or to Inlet Ctrl Spec: Use do Stabilizer Option: None 1. son 2.00 2.DO Name: DET1-D From Node: DETI Veneto ( It) : 169,00 i Group: BASE To Node: 1d.-D1 BOUNDARY Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance ' Geometry: Circular Circul. at Solution Algorithm: Automatic Open (io): 12.00 12.00 Flow: Both Rise(in): 12.00 12.00 Entrance Loss Cost: 0.500 Invert(ft): 829.000 828.000 Exit Loss Coef: 0.000 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use do or tw Top Clip(in): 0,000 0.000 Inlet Ctrl Spec: Use on 1 not Clip(in): o.00o 0.000 Solution Ines: 10 IUpst ream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall 'Downstream FHWA Inlet Edge Description: Circular Concret: e: Square edge w/ headwall Dry detention area outlet line. *' Weir 1 of 1 for Drop Structure DET1-D *** Count: 1, Type: Vertical.: Mavis Flow: Both Geometry: Circular Span(in): 6.00 Rise(in): 6.00 Bottom Clip(in): 0.000 'top Clip(in): 0.000 Weir Disc Coef: 3.200 Oxifi.ce Disc Coat: 0.600 Invert($): 829.000 Control Elev(ft): 829.000 TABLE Name: Li-D From Node: Lakes Length(ft): 117.00 Group: BASE To Node: L1-D1 BOUNDARY Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Average Conveyance Geometry: Circular Circular Solution Algorithm: Automatic Span(in): 12.00 12.00 Flow: Both Rise(in): 12.00 12.00 Entrance Loss Goof: 0.500 Invert(ft): 829.000 820,000 Exit Loss Cost: 0.000 Meaning's N: 0.013000 0.013000 Outlet Ctrs Spec: Use do or to Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use on Bot Clip(in): 0.000 0.000 Solution Inc.: 10 Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Lake #1 outfall line. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. C -Z'ZPage 12 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainago Solution 04/13/12 *** Weir 1 of 2 for Drop Structure L1-D *'** Count: I 'type: Vertical: Mavis Flow: Both Geometry: Circular it Span(in): 8.00 RLse(in): 8.00 `** Weir 2 of 2 for Drop Structure L1-0 *** Count: 1 Type: Horizontal. Flow: Roth Geometry: Rectangular Span(in): 24.00 Rise (in): 24.00 TABLE Bottom Clip(i.n): 0.000 Top Clip(in): D.000 Weir Disc Corr: 3.200 Orifice Disc Coef; 0.600 Tnvert(ft): B35.000 Control El.ev(ft): B35.000 TABLE Bottom Clip(in) : 0.000 Top C.l.ip(lu): 0,000 Weir Disc Cost: 3,200 Orifice Disc Coef: 0.600 Invort(ft): 837.000 Control Elev(ft): 837.000 ---------------------------------------------- Name: Lake2.-D From Node: Lake2 Group: BASE To Mode: Lakel. UPSTREAM DOWNSTREAM Geometry: Circular Circular Seem (in) 12.00 12.00 Rise(in): 12.00 12.00 Invert(ft): 335.500 835.000 Manning's N: 0.013000 0.013000 Top Clip(le); 0,000 0.000 Rot Clip(in): 0.000 0.000 I Upstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall ,Downstream FHWA Inlet Edge Deocription: .Circular Concrete: Square edge wl headwall i -Lake #2 outfall line. *** Weir 1 of 2 for Drop Structure Lake2-D *** i Count: 1 Type: Vertical.; Mavis Flow: Roth Geometry: Circular Span(in) : 8.00 Rise(in): 8.00 *** Weir 2 of 2 for Drop Structure Lake2-D *** Count: 1 Type: Horizontal Flow: Both Geometry; Rectengular Span (ln) : 24.00 Rise(in): 24.00 Length(ft): 68.00 Count: 1 Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coef: 0.500 Exit Iris Coef: 1.000 Outlet Ctrl Spec: Use do or tw Inlet Ctrl Spec: Use on Solution Ines: 10 Bottom Clip(in): 0.000 Top Cl.ip(iu): 0.000 Weir Disc Coef: 3.200 Orifice Disc Coef: 0.600 Invert(ft): 83B.000 Control Elev(ft)t 83B.000 Bottom Clip(in): 0.000 Top Clip(in): 0.000 weir Disc Coef: 3.200 Orifice Disc Coef; 0.600 Invert(ft): 840,000 Control. Elev(it ): 840.000 --_. Weirs ---- --------------------- ----.------- ---- --..-, Name: CB CONTROL WEIR From Node: DEV-El Group: BASE To Node: 36" CONTROL STR Flow: Both Count: 1 Type: Horizontal Geometry: Circular Span(in): 2.00 ' Rise (in): 21.00 Invert(ft): 622.500 Control F.levation(ft): 822,500 TABLE Bottom Clip(in): 0.000 Top C1ip(iu): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 --------------------------------------------------------- blame: E7 WEIR From Node: DEV-B7 Group: BASE To Node: DEV-E7 BOUNDARY Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width (ft): 15.00 TABLE TABLE Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. C_L3 Page 13 of 15 Completo Input Pond Routing with Overflow PEN, and Drainage Solution 04/1.3/1.2 Left Side Slope(11/v): 20.00 Right Side Slope(h/v): 20.00 Invort(£t): 825.150 Control Elevation(ft): 825.150 Stmct Opening Dim(ft): 9999.00 TABLE Bottom C7.i.p(ft): 0.000 Top Clip(ft): 0.000 Woi.r Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 Name: E8 WEIR From Node: DEV-RB Group: BASE To Node: DEV-BB BOUNDARY Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Trapezoidal Bottom Width(ft): 100.00 Left Side Slope.(h/v): 100.00 ( Right Side Slope(h/v): 50.00 1 Invert(ft): 830.300 Control Elevatr.on(ft): 830.300 Struct Opening Dim(ft): 9999.00 TABLE Bottom t clip(f: 0.000 'fop Cli.p(ft): 0,000 Weir Discharge Cost: 3.200 Critics Discharge Cost: 0.600 -`- Hydrology Simulations Name: 002YR-24HR 1 Filename: T:\2k\2722\011.\drainage\002YR-24HR.R32 Override Defaults: Yes Storm Duratiou(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount.(in): 2.93 j Time(hrs) Print Inc 0nrn) ________ _____ _ _____________ 30.000 1.00 ------------------------------------ Name: 010YR-24HR Filename: T:\2k\2722\011\drainage\OlOYR-24HR.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 1 Rainfall File: Scsii-24 ( Rainfall Amount(in): 4.20 Time(hrs) Print Inc(min) _______ ____ _ _______________ 30.000 1.00 ------------------------------------------------------ Name: IODYR-24HR j Filename: T:\2k\2722\011\drainage\100YR-241[R.R32 { Override Defaults: Yes Storm Duratiou(hrs): 24.00 Rai.nfal.l. File: Scsii-24 Rainfall Amount(i.n): 5.82 Time(hrs) Print Inc(min) 30.000 1.00 __— Routing Simulations --------- ---------------- __------___-—.--____------__ -- Name: 002YR-24HR Hydrology Si.: 002YR-24HR Filename: T:\2k\2722\011\drainage\002YR-24HR.I32 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 Min Cale Time(sec): 0.5000 Boundary Stages: Delta Z Factor: 0.00500 End Time(hrs): 30.00 Max Cal. Time(sec): 60.0000 Boundary Flows: Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. C - Zq Page 14 of 15 Complete Input Pond Routing with Overflow Pkg, and Drainage Solution 04/13/12 - Time(hrs) Print Inc(min) 30.ODO 5.000 Group Run RASE-- ------- Ycs-- ---------- -_ ___._-_- ---__...__-__---Y----yj. '__-_- - -____ Name: OlOYR-29HR H dmlo S'.m: 010YR-29 HR Filename: 'f:\2k\2'722\011\drainage\010YR-24HR.I32 F,xeouto: Yes Restart: No Patch: He f ALternative: No 1, Max Delta ?,(it): ---------- -_ ___._-_- ---__...__-__---Y----yj. '__-_- - -____ Name: OlOYR-29HR H dmlo S'.m: 010YR-29 HR Filename: 'f:\2k\2'722\011\drainage\010YR-24HR.I32 F,xeouto: Yes Restart: No Patch: He f ALternative: No 1, Max Delta ?,(it): 1,00 Delta Z Factor: 0,00.500 Time Stop Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 30.00 Min Cale Time(sec): 0.5000 Max Calc Time(sec): 60.0000 Boundary Stages: 1; Boundary Fl.ows: Ti.me(hrs) Print Inc(min) _______________ ______________ 30.000 5.000 Group Run p BASE Yes Name: IOOYR-241IR Hydrology Sim: 100YR-24HR Filename: T:\2k\2922\011\drai.nngc\1.00YR-2911R.I32 Execute: Yes Restart: No Patch: M. Alternative: No Max Delta Z,(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizor: 10.000 Start Time(hrs): 0.000 End Time (hrs); 30.00 Min Cato Time(sec): 0.5000 Max Calc Time(soc): 60,0000 Boundary Stages: Boundary Flows: j lrime(hrs) l--------------- Frint Inc(min) 30.000 -------------- 5.000 'Group ____________ Run __ ----- ,,BASE Yes '; Interconnected Channel and Pond Routing Model JCPR) ©2002 Streamline Technologies, Inc. C_'Z J'Page 15 of 15 WATERSHED BASIN NOT TO SCALE O 22 1609 P MAP ,50 •Z Carmel Central Park CULVERT FOR BASIN 170 4/13/2012 Basin 170 Area Cover Type 2.84 Lawn (Steep slopes) 1.26 Asphalt Pavement M 0M 1,1 0.9 1.1 rD"� I "CABLE 201-1: Runoff Coefficients ° for Use in the Rational Method TYPE OF SURFACE Non -Urban Areas Bare earth Steep grassed areas (slope 2:1) Turf meadows Forested areas Cultivated fields Urban Areas All watertight roof surfaces Pavement Gravel Impervious soils (heavy) Impervious soils (with turf) Slightly pervious soil Slightly pervious soil (with turf) Moderately pervious soil Moderately pervious soil (with turf) Business, Commercial & industrial Apartments & Townhouses Schools & Churches Single Family Lots < 10,000 SF Lots < 12,000 SF Lots < I7,000 SF Lots > % acre Park, Cemetery or Unimproved Area I RUNOFF COEFFICIENT 0.60 0.25 0.20 0.30 0.90 0.85 0.85 0.55 0.45 0.25 0.20 0.15 0.10 0.85 0.70 0.55 c �A AtZ 0.45 FALt - 0.45 0.40 0.35 0.30 T7¢nrv, CAOMcl, SI-O2ryA W ATEw. t N UA 200-5 Carmel Central Park Subsurface Drain C 9/17/2012 M Area Cover Type 0.04 Lawn (Steep slopes) 0.5 0.02 Asphalt Pavement 0. Product M-5 THE SCHNEIDER CORPORATION or Sheet Flow segment ID segment ID Flow Length (<300 ft) ( ft) 0.00 70.00 PRE POST Two year 24-hr rainfall 2.90 2.90 Land Slope (ft/ft) 0.010 0.065 0.000 Time (hrs) 0.12 Surface coeff. 0.240 0.240 0.00 Time min) 7.03 Shallow concentrated flow Flow Length ( ft) 0.00 150.00 Slope (ft/ft) 0.015 0.020 (Paved/ Unpaved) U U 0.000 Time (hrs) 0.02 Ave. Velocity 1.90 2.20 0.00 I Time (min) 1.14 Channel Flow Cross Sec. Area ( W2) 0.00 6.00 Wetted Perimeter ( ft) 1.00 7.00 Hydraulic Radius ( ft) 0.00 0.86 Channel Slope ( Wit) 1.000 0.015 Manning's Coeff. 1.000 0.100 Velocity (Ws) 0.00 1.65 #DIV/0! Time (hrs) 0.07 Flow Length ft) 0.00 412.00 #DIV/01 Time (min) 4.17 PRE POST Total Time (hrs) => #DIV/01 Time (hrs) 0.21 Total Time (min) => #DIV/01 Time (min) 12.34 L tG Designed by RCW Page 1 Culvert Tc calcs,xls D- G PROJEC �� PROJECT NAME ...... _. _.. _.. DESIGNED _ _- .SHEET.. OF. _._ PROJECT PHASE ._. _. .., .... ....._DESIGNED BY. .. ..... .DATE .... .. r_ DESCRIPTION .... ... CHECKED BY. _.. ..... ...DATE:.... .... JC:�jrjidQ� .___....._. _._.. _. .. ...._ __. _..._. _.._..... .._. . __........ .......ASSUMPTIONS/REFERENCES -fie Schneider Corporation T) --7 0 r s Z 0 0 a a 0 V W W Z T U P - 0 CULVERTS CU-18 DRAINAGE CRITERIA MANUAL (V. 2) r z W f ° U � Q J12 4- O U A1100�3A M � W� I/1 1311no „n W 2 u WAN V U u NIIIO 1 N00 C1 Q O N y �I� W a >> m x n 0: y W U z 0 H O z } _ J J X W W a y 3 i S z J O e t p n E x r O U J C � N Vn Z I I II a o etl — O � 0 1� �.. _0 a f Q O J ._ _ x W Z o LL J J 0 0 V Z W W a n x W H T FF N iF U? if;z as w g— z 3 3 14 x a s = N_ Q F~ N V O N S — T O z p y W w >-� 2 U 9 u 0 O N W W U z0 i ys y 7 0 x n II IfN } G O �% W a JlT" a x 3L a �y f UQ w N Figure CU-8—Design Computation for Culverts —Blank Form 07/2001 Urban Drainage and Flood Control District DRAINAGE CRITERIA MANUAL (V. 2) ISO 101000 From BPR 169 8,000 EXAMPLE (I) (2) (3) 156 D-42 inches (3.5 feet) S. 6,0o0 144 5,000 G�12o ch 5. I 4,000 Hwn Hw 6' 132 a feet 3,000 (1) 25 88 120 2,000 (2) 2.1 7.4 108 @1 2.2 7.7 4.- n0 in feet 96 1,000 3' B00 84 600 / -- 500 72 400 / ; 2. = 300 6y/ S_ 1.5 2 / W 0 54 a a w 48 /� 100 > / < 80 / 0 / W 0 0 50 Hw SCALE �-NTRANCE 10 40 D TYPE w H w 36 30 Dye square edge with w ~a- - Q 33 / Madrall .9 PD (2) 4zoev%ne'ruh W 30 @I Groove and 8 27 _-^'. projecting _ 10 6 To use scola (2)pr (3) project 21 5 horizontally to scale (1)1 then 4 uzs straight inclined line through D and D scan*, or raven, at 3 illustrated. .6 I8 2 15 1.0 .5 12 Figure CU-9—Inlet Control Nomograph —Example 07/2001 Urban Drainage and Flood Control District CULVERTS 5. 4. 3. 2- 1.5 k 1.6 .5 L.5 CU-19 D- �� Go to Part III Go to Chart lz� 4 15� �7717' I AiiNeil E X 6Ft b I 1 50 -< 4 0' 54S 4 7 45 CL 0 0 500 'GO 700- 80P goo IaGQ rc Table 1 Entrance Loss Coef#ibients Outlet Control, Full or Partly Full Entrance head loss He = ke e o tructure and Design of Entrance oe iaent e Pipe, Concrete Projecting from fill, socket end (groove -end) ... p 2 Projecting from fill, sq. cut end ............ 0.5 Headwall or headwall and wingwalls Socket end of pipe (groove -end) .......... 0.2 , Square -edge .................. 0.5 Rounded (radius = 1/12D) ................ 0.2 Mitered to conform to fill slope ............. 0 7 `End -Section conforming to fill slope ........... .5 1 Beveled edges, 33.70 or 450 bevels ......... , 0.2 Side -or slope -tapered inlet .................. 0.2 i e, or Pi e-Arch Corrugated Metal Projecting from fill (no headwall) ............. 0.9 Headwall or headwall and wingwalls square -edge.. 0.9 Mitered to conform to fill slope, pgv6d or unpaved slope 0.7 *End -Section conforming to fill slope............ Beveled edges, 33.7° or 45° bevels........... Side -or slope -tapered inlet ................ " os, Reinforced Concrete 1.2 Headwall parallel to embankment (no wingwa Is) Square -edged on 3 edges ............. 0.5 Rounded on 3 edges to radius of 1/12 barrel dimension, or beveled edges on 3 sides .. 0:2 Wingwalls at 30° to 75° to barrel Square -edged at crown ................. 0.4 Crown edge rounded to radius of 1/12 barrel dimension, or beveled top edge ....... 0.2 Wingwall at 10° to 25° to barrel Square -edged at crown ........ ....... 0.5 6, B eat PROJECT NAME: ...,/t�..........:... .l..J L ._ .--PROJECT N0:.o�,�c�Io�TR .U.t. f........... SHEET................... OF ................ .. .� s .. d ..i.....G..•..�............. DESIGNED BY:.....:Q . .............. ...—.... DATE:..................... .................. Le �S^vpiLC �1.1 SCi1t12Id DESCRIPTION �' .. r // .0 _ ..................... CHECKED BY:.............................. DATE: REFERENCESPHASE: The Schneider Corporation 'P sT CoNSiV-aC iavQ ZNkP CAlCt04jjsN 5 - GAPAS5 R) E t &pa�)f Z) C e i low v t6e.i /.7 n= f-Z Roughness Coefficients (Manning's "N") for Sheet Flow it 11 ' The "n" values area composite of information compiled by Engman (1986). Surface Description nt Smooth surfaces (concrete, asphalt, gravel, or bare soil) 0.011 Fallow (no residue) 0.05 Cultivated soils: Residue cover < 20% 0.06 Residue cover> 20% 0.17 Grass: Short grass prairie 0.15 Dense grascs2 0.24 Bermudagrass 0.41 Range (natural) 0.13 W oods3: Light underbrush 0.40 Dense underbrush 0.80 (I Includes species such as weeping lvegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures. 1 3,I When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. 564 E -� 5125l2012 3 PROJECT NAME Central Park DESIGNER: JES JOB No.: 2722.011 DATE: 5/25/12 Purpose: To compute the maximum discharge for a weir section and compare it to the required design discharge. allow. s:1 depth s:1 b TRAPEZOIDAL DITCH INPUT: Enter Weir Location: Enter Bottom Width, b Enter Side Slopes, s : Enter Allowable Depth Enter Weir Slope . Enter Manning's Coef. OUTPUT CALCULATIONS: Area Wetted Perimeter Hydraulic Radius Maximum Velocity Top Width Maximum Discharge: SUMMARY: Design Discharge : Maximum Discharge: Levelspreaderr. 1 4 0 eet 4.0 1 0.035feet 0.00%d 0.011 5.045 sq ft 144.289 feet 0.035 feet 0.000 fps 144.280feet cfs �evtL 3p4-cA,4 e Fin�-t R� si- Cc,Nzj&L-r-TioAj 3AIP Fi t+c,c S-ro-f P Q = 3.3 * b * H^1.5 (Clpolefll Weir Equation) where 3.3 = Spillway Coeff. 10GYR INFLOW PER Graphical Peak Ml harp CaL^ulaP;ocs ^.1.80'-cfs. (TR55) _ Design isA7SFAG7e;)JY ` 3`1£1 cfs. T:,.„ W, Prepared by The Schneider Corporation Page 1 �-3 Worksheet 4: Graphical Peak Discharge method Project /: {{ By Date Location Checked Date Till. S' .i,� - C�v -/�, Check one: ❑ Present 1� Developed 1. Data I , 2$/� Drainage area ....................... ............ —.... Am = C7(7'L mil (acres/640) Runoff curve number ... .......... ............. ....... CN = DU (From worksheet 2) Time of concentration ................ —.............. To = Sn r / hr (From worksheet 3) CAsait Mtn SMfu. i Rainfall distribution ....................................... _ (I, IA, II III) Pond and swamp areas sprea throughout watershed ................................... _ percent of Am ( .--'"'yamacres or mil covered) 2. Frequency.................................................................................... yr 3. Rainfall, P (24-hour).................................................................... in Storm #1 Storm #2 Storm #3 wEJre4 4. Initial abstraction, la..................................................................... in (Use CN with table 4-1) 5.Compute [a/P.................................................................................. QY' 6. Unit peak discharge, qu ............... I. ................................... (Use To and la/ P with exhibit 4— J_ ) .... csm/in 0 7. Runoff, Q...................................................................................... (From worksheet 2) Figure 2-6 in 0,9 8. Pond and swamp adjustment factor, Fp........................................... (Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond ans swamp area.) 9. Peak discharge, qp........................ ............... ......................... I.— ft3/s ( Where qp = q,AmQFp) /UQU (,0U2� D-4 (210-VI-TR-55, Second Ed., June t886) Chapter 4: Graphical Peak Discharge method This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed from hydrograph analyses using TR-20, "Computer Program for Project Formulation -Hydrology" (SCS 1983). The peak discharge equation used is qp = quAmQFp [Eq. 4-11 where qp = peak discharge (efs); q,l = unit peak discharge (csmlin); Am = drainage area (mi2); Q = runoff (in); and Fp = pond and swamp adjustment factor. The input requirements for the Graphical method are as follows: (1) T, (hr), (2) drainage area (mi2), (3) appropriate rainfall distribution (I, IA, II, or III), (4) 24-hour rainfall (in), and (5) CN. If pond and swamp areas are spread throughout the watershed and are not considered in the T, computation, an adjustment for pond and swamp areas is also needed. Peak discharge computation For a selected rainfall frequency, the 24-hour rainfall (P) is obtained from appendix B or more detailed local precipitation maps. CN and total runoff (Q) for the watershed are computed according to the methods outlined in chapter 2. The CN is used to determine the initial abstraction (I0 from table 4-1, Ia/P is then computed. If the computed Ia/P ratio is outside the range shown in exhibit 4 (4-I, 4-IA, 4-II, and 4-III) for the rainfall distribution of interest, then the limiting value should be used. If the ratio falls between the limiting values, use linear interpolation. Figure 4-1 illustrates the sensitivity of Ia/P to CN and P. Peak discharge per square mile per inch of runoff (q) is obtained from exhibit 4-I, 4-IA, 4-II, or 4-III by using Te (chapter 3), rainfall distribution type, and Ia/P ratio. The pond and swamp adjustment factor is obtained from table 4-2 (rounded to the nearest table value). Use worksheet 4 in appendix D to aid in computing the peak discharge using the Graphical method. 1.0 LN'=40 ]e 1 3 5 I 9 !1 13 15 Wnfall (P), inches Figure 4.1 -Variation of Ia/P for P and CN. Table 4-1.-Ia values for runoff curve numbers Curve number I, (in) Curve number I, (in) 40 3.000 70 0,857 41 2.878 71 0.817 42 2.762 72 0.778 43 2.651 73 0.740 44 2.545 74 0.103 45 2.444 75 0.667 46 2.348 76 0.632 47 2.255 77 0.597 48 2.167 78 0.564 49 2.082 79 0.532 50 2.000 80 0.500 51 1.922 81 0.469 52 1.846 82 0.439 53 1.774 83 0,410 54 1.704 84 0,381 55 1.636 85 0.353 56 1.571 86 0.326 57 1.609 87 0.299 58 1.448 88 0,273 59 1.390 89 0.247 60 1.333 90 0.222 61 1.279 91 0,198 62 1.226 92 0.174 63 1.175 93 0.151 64 1.125 94 0,128 65 1.077 95 0,105 66 1.030 96 0,083 67 0.985 97 0.062 68 0.941 98 0.041 69 0.899 (210-VI-TR-55, Second Ed., June 1986) 4-1 06/28/07 i I u F � __ - `t- - _ a _ _ - z j L 1 SOME 0 0 `l m h 0 N O 7 N O r (brnNO) jagtunN anano A41jenp ja;eM d Exhibit 701-1: Curve Number Calculation for Water Quality Storm Event 3 E-7 Worksheet 2: Runoff curve number and runoff Project C �vjrcaC /�az../c By �JE3 Date Location 5/_ 7L-fA/ — D -l-41d t Checked Date Check one: ❑ Present LX Developed Soil name Cover description CN J Area Product and of hydrologic CN x area group (cover type, treatment, and hydrologic condition; percent N d v ❑acres ❑ mil (appendix A) impervious; unconnected/connected impervious area ratio) LL LL /� ICavemajr i J Use only one CN source per line Totals» Usk ON (weighted) = total product = _ Use CN»1 total area �� Storm #1 Storm #2 Storm #3 4l Frequency ................................................. yr tlitN Rainfall, P (24-hour)................................. in (I( Runoff, Q.................................................. in fl r (Use P and CN with table 2-1, figure 2-1, or equations 2-3 and 2-4) A D-2 (210-VI-TR-55, Second Ed., June 1986) Chapter 2 Estimating Runoff Technical Release 66 Urban Hydrology for Small watersheds Figure 2-1 Solution of runoff equation. 0,C r, lh r1dimau Vr), II UHII Cover type Table 2-2 addresses most cover types, such as vegeta- tion, bare soil, and impervious surfaces. There are a number of methods for detenninhng cover type. The most common are field reconnaissance, aerial photo- graphs, and land use maps. Treatment Treatment is a cover type modifier (used only in table 2-2b) to describe the management of cultivated agri- cultural lands. It includes mechanical practices, such as contouring and terracing, and management prac- tices, such as crop rotations and reduced or no tillage. Hydrologic condition Hydrologic condition indicates the effects of cover type and treatment on infiltration and runoff and is generally estimated from density of plant and residue cover on sample areas. Good hydrologic condition indicates that the soil usually has a low runoff poten- tial for that specific hydrologic soil group, cover type, and treatment. Some factors to consider in estimating the effect of cover on infiltration and runoff are (a) canopy or density of lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of grass or close -seeded legumes in rotations; (d) percent of residue cover; and (e) degree of surface roughness. 2-2 (216-VI-TR-55, Second Ed., June 1986) �7_1 193 D(I O 1609 s 1CH DRAIN NOT TO SCA E MAP 10% 9 FI PROJECT NAME: _..PROJECTNO %?�WQI/ _ SHEET... OF.. _. PROJECT PHASE ...... ....DESIGNED BY .. ..DATE .... DESCRIPTION:... . .CHECKED BY. .,. DATE..... Schneider ._..._.. .... _._..._ .....__. .. . ... _- ...... ASSUMPTIONS I REFERENCES 'he Schneider Corporation NEW R 4996 SERIES HEAVY DUTY SELF -FORMING TRENCH FRAMES WITH GRATED OR SOLID COVERS, Catalog No. Standard Cover Dimensions Frame Length Outlet Location, Sizes Available Available Grate/Cover A B C D Side Bottom End R-4996-A R-4996-B 8 10 1 1 6 8 9 10-3/8 30 30 4,6 4, 6, 8 4 4,6 4 4,6 O ** p ** R-4996-C R-4996-CA 12 2 1-1/2 1-1/2 10 10 10 10 36 36 4, 6, 8 4, 6, 8 4, 6, 8 4, 6, 8 4, 6, 8 4 6, 8 A C D L A * Aircraft rated - standard bolted ** Can be incorporated into plans for ADA compliance All grates/covers are available bolted to frames if necessary with stainless steel countersunk screws Autocad drawings are available upon request O 000000 000000 Prefabricated angles and D��QOO �'rt�1I0�0� intersections are available. QQQ�QO oUoo de �o �oooc�ac�-t aac�c ° o0 Location of bottom, side and end outlets must be specified by contractor. Side and bottom outlet must be 6" from end. NEENAH F O U N D R Y Type A Grate Type C Grate Type L Grate Type Q Crate lype u Cover T- L4 r_ .� 159:1'� �7�►[�3:69�i17� 6�►[���►1��1�Xy:1�'1 Building a constant depth trench system is the best choice to maximize storage and volume. Why is this the case? Picture a constant depth trench with the closed and outlet ends at the same elevation. Should you choose to build in slope, you would fill in the closed end with material (such as concrete) and keep the downstream outlet at the same elevation. Building a sloped trench only fills in storage volume on the upstream end. Another example is water spilling over a dam. Regardless if the water behind the dam is 10 feet deep or 100 feet deep, the outfall flow rate is not effected. If the water is 100 feet deep, there is greater volume for rainfall storage. Storagevolume =LxWx D Storagevolume=LxWx1/20 t x side view side view (lead area bcrm�e sgpe) HYDRAULICS - WHY THE MANNING EQUATION DOES NOT APPLY No, it does not. The Manning equation assumes the upstream flow rate equals the downstream flow rate, as in pipe flow. Trench flow is generally introduced along the entire length and the Manning equation does not account for this non -uniform flow. The velocity at the upstream end of the trench is nearly zero whereas the velocity at the outlet is at its greatest. Those with hydraulics background can reference various non -uniform flow curves, including MI, M2, M3, Sl, S2, S3, Cl, C3, H2, H3, A2, A3 representing (M) mild, (S) steep, (H) horizontal and (A) adverse slope conditions. The surface water profile In a Neenah 4996 trench series with a free outfall is an H2 curve. This was proven under full-size testing conditions at the University of Wisconsin Hydraulics Facility. Below are the measured flow rates based on that testing: TRENCH OUTLET SIZE BOTTOM gpm (cfs) END gpm (cfs) SIDE gpm (cfs) FREE OUTFALL gpm (cfs) R-4996-A 4" 796 0,44 158 0.35 152 0.34 298 0.67 R-4996-B 4" 207 0.46 163 0.36 156 0.35 444 0.99 R-4996-B 6" 447 1.00 345 0.77 308 0.69 444 0.99 R-4996-C 4" 215 0.48 155 0,35 149 0.33 581 1.30 R-4996-C 6" 449 1.00 319 0.71 296 0.66 581 1.30 R-4996-C 8" 714 1.59 548 I 021 I 415 0.92 581 1.30 Additional testing on the R-4996-C was conducted for free outfall situations at 0.00/0, 0.3% and 0.6% grades. These results were: SLOPE 0% 0.30 0.6% FLOW cfs 1.295 1 1.476 1.571 %CHANGE - +11.23% +21% Manningn=.016 cfs 29 1.737 % error 20% 11% This illustrates that capacity is not significantly altered by slope and that a properly located outlet serves a greater benefit. Furthermore, a slope on the bottom of the trench effectively fills up otherwise useable storage capacity. A plot of the water depth with the flow introduced uniformly throughout the trench length illustrates the typical H2 curve for an R-4996-C trench. For additional information, contact our Product Engineering Department Hz Curve for 10" Wide Trenches 115 10 ,. 5 —`- .=-=. _-_ Q 0 _ -__._. _ - 1 3 5 7 9 11 13 15 17 19 21 23 25 27 DIM... from 0u .Jl fte) NF-1101-1MEPD FL6 Carmel Central Park TRENCH DRAIN BASIN 9/12/2012 n 170 Area Cover Type Coefficient 0.44 Lawn (Steep slopes) 0.2 Asphalt Pavement R. 111111111 �-7 THE SCHNEIDER CORPORATION Sheet Flow Flow Length (<300 ft) (ft ) Two year 24-hr rainfall Land Slope (ft/ft) Shallow concentrated flow Flow Length ( ft ) Slope ftft) (Paved / Unpaved) Ave. Velocity Channel Flow Cross Sec. Area ( ft^2 Wetted Perimeter ( ft) Hydraulic Radius ( ft ) Channel Slope ( ft/ft ) Manning's Coeff. Velocity ( fUs ) segment ID segment ID 0.00 42.00 PRE POST 2.90 2.90 0.010 0.100 1 0.000 Time (hrs) 1 0.04 0.00 210.00 0.015 0.015 U I U 0.00 0.00 1.00 0.00 0.00 #DIV/01 1.000 0.015 1.000 0.100 0.00 #DIV/01 #DIV/01 Time (hrs) 0.00 PRE POST Total Time (hrs) => #DIV/01 Time (hrs) 0.06 Total Time (min) => #DIV/01 Time (min) 3.96 �A55UM E" Designed by RCW Page 1 TRENCH Tc calcs.xis F'8 �z a s 10 zo AwaRge v0xity (IlJw) 7-AcncA ID124,.v db-),4(C � ups`fi� tom G4spt4G) F-7 9/12/2012