Loading...
HomeMy WebLinkAbout19 0802_Structural Calc Package Structural Calculations Bank Of America - Carmel Client: Gensler 11 East Madison Street, Suite 300 Chicago, Illinois 60602 Prepared by: 1100 Warrenville Road, Suite 400W Naperville, Illinois 60563 Date: 5/17/2019 IMEG JOB NO. 18002541.00 Registered Design Professional: Heather Heidenreich Registration Number: 11800688 Table of Contents: Seal: Design Loading ....................................................... 1 Gravity Design ........................................................ 13 Lateral Design ........................................................ 32 Misc. Calcs ............................................................. 56 EXP 07/31/20 Page 1 DESIGN LOADING Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 SNOW LOADING In accordance with ASCE7-10 Tedds calculation version 1.0.09 Building details Roof type;Flat Width of roof;b = 100.00 ft Ground snow load Ground snow load (Figure 7-1);pg = 20.00 lb/ft2 Density of snow;g = min(0.13 ´ pg / 1ft + 14lb/ft3, 30lb/ft3) = 16.60 lb/ft3 Terrain typeSect. 26.7;B Exposure condition (Table 7-2);Fully exposed Exposure factor (Table 7-2);Ce = 0.90 Thermal condition (Table 7-3);Unheated structures Thermal factor (Table 7-3);Ct = 1.20 Importance category (Table 1.5-1);II Importance factor (Table 1.5-2);Is = 1.00 Min snow load for low slope roofs (Sect 7.3.4);pf_min = Is ´ pg = 20.00 lb/ft2 Flat roof snow load (Sect 7.3);pf = 0.7 ´ Ce ´ Ct ´ Is ´ pg = 15.12 lb/ft2 100' Roof elevation Balanced load 20.0 psf Page 2 1 1.1 1.3 1.4 2.2 2.3 2.4 2.5 3 A B C D E F D.1 1.2 42 PSF TAPERING TO 0 PSF OVER 11' -4" 20 PSF TAPERING TO 0 PSF OVER 6' -6" 20 PSF TAPERING TO 0 PSF OVER 6' -6" 26 PSF TAPERING TO 0 PSF OVER 8' -0" 30 PSF TAPERING TO 0 PSF OVER 8'-6" 27 PSF TAPERING TO 0 PSF OVER 11'-9" 27 PSF TAPERING TO 0 PSF OVER 11'-9" 13 PSF TAPERING TO 0 PSF OVER 8'-9" 13 PSF TAPERING TO 0 PSF OVER 8'-9" SNOW DRIFTS IN ADDITION TO BALANCED LOAD Snow Load Page 3 Seismic Load SEISMIC DESIGN CATEGORY B IMPORTANCE FACTOR 1.0 SEISMIC FORCE RESISTING SYSTEM STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC R 3 Cd 3 ΩO 3 ANALYSIS PROCEDURE EQUIVALENT LATERAL FORCE BASE SHEAR, STRENGTH LEVEL V = CS x W = 0.0405 x 380 KIPS = 15.4 KIPS PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 106TH ST. & N. MICHIGAN RD. CARMEL, IN 46077 Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 WIND LOADING In accordance with ASCE7-10 Using the envelope design method Tedds calculation version 2.1.03 100 ft80 ftPlan 80 ft 16.2 ftElevation Building data Type of roof;Flat Length of building;b = 100.00 ft Width of building;d = 80.00 ft Height to eaves;H = 16.17 ft Height of parapet;hp = 2.83 ft Mean height;h = 16.17 ft End zone width;a = max(min(0.1´min(b, d), 0.4´h), 0.04´min(b, d), 3ft) = 6.47 ft Plan length of Zone 2/2E when GCpf negative;LZ2 = min(0.5 ´ d, 2.5 ´ H) = 40.00 ft Plan length of Zone 3/3E encroachment on zone 2;LZ3 = max(0 ft,0.5 ´ d - LZ2) = 0.00 ft General wind load requirements Basic wind speed;V = 115.0 mph Risk category;II Velocity pressure exponent coef (Table 26.6-1);Kd = 0.85 Exposure category (cl 26.7.3);C Enclosure classification (cl.26.10);Enclosed buildings Internal pressure coef +ve (Table 26.11-1);GCpi_p = 0.18 Internal pressure coef –ve (Table 26.11-1);GCpi_n = -0.18 Topography Topography factor not significant;Kzt = 1.0 Velocity pressure Velocity pressure coefficient (T.28.3-1);Kz = 0.86 Velocity pressure;qh = 0.00256 ´ Kz ´ Kzt ´ Kd ´ V2 ´ 1psf/mph2 = 24.8 psf Page 4 Wind Load (MWFRS) Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Velocity pressure at parapet Velocity pressure coefficient (T.28.3-1);Kz = 0.89 Velocity pressure;qp = 0.00256 ´ Kz ´ Kzt ´ Kd ´ V2 ´ 1psf/mph2 = 25.6 psf Parapet pressures and forces Velocity pressure at top of parapet;qp = 25.61 psf Combined net pressure coefficient, leeward;GCpnl = -1.0 Combined net parapet pressure, leeward;ppl = qp ´ GCpnl = -25.61 psf Combined net pressure coefficient, windward;GCpnw = 1.5 Combined net parapet pressure, windward;ppw = qp ´ GCpnw = 38.42 psf Wind direction 0 deg (|| to width): Leeward parapet force;Fw,wpl_0 = ppl ´ hp ´ b = -7.2 kips Windward parapet force;Fw,wpw_0 = ppw ´ hp ´ b = 10.9 kips Wind direction 90 deg (|| to length): Leeward parapet force;Fw,wpl_90 = ppl ´ hp ´ d = -5.8 kips Windward parapet force;Fw,wpw_90 = ppw ´ hp ´ d = 8.7 kips Design wind pressures Design wind pressure equation;p = qh ´ [(GCpf) - (GCpi)]; Design wind pressures – Loadcase A Zone GCpf p(+GCpi) (psf) p(-GCpi) (psf) Area (ft 2) +Fwi (kips) -Fwi (kips) 1 0.40 5.5 14.4 1408 7.7 20.2 2 -0.69 -21.6 -12.6 3483 -75.1 -44.0 3 -0.37 -13.6 -4.7 3483 -47.5 -16.4 4 -0.29 -11.7 -2.7 1408 -16.4 -3.8 1E 0.61 10.7 19.6 209 2.2 4.1 2E -1.07 -31.0 -22.1 517 -16.0 -11.4 3E -0.53 -17.6 -8.7 517 -9.1 -4.5 4E -0.43 -15.1 -6.2 209 -3.2 -1.3 Page 5 Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 1 2 .9 ft8 7 .1 ft16.2 ft80 ft 1 2 3 4 1E 2E 3E4E Loadcase A Design wind pressures – Loadcase B Zone GCpf p(+GCpi) (psf) p(-GCpi) (psf) Area (ft 2) +Fwi (kips) -Fwi (kips) 1 -0.45 -15.6 -6.7 1408 -22.0 -9.4 2 -0.69 -21.6 -12.6 3483 -75.1 -44.0 3 -0.37 -13.6 -4.7 3483 -47.5 -16.4 4 -0.45 -15.6 -6.7 1408 -22.0 -9.4 5 0.40 5.5 14.4 1189 6.5 17.1 6 -0.29 -11.7 -2.7 1189 -13.9 -3.2 1E -0.48 -16.4 -7.4 209 -3.4 -1.6 2E -1.07 -31.0 -22.1 517 -16.0 -11.4 3E -0.53 -17.6 -8.7 517 -9.1 -4.5 4E -0.48 -16.4 -7.4 209 -3.4 -1.6 5E 0.61 10.7 19.6 105 1.1 2.0 6E -0.43 -15.1 -6.2 105 -1.6 -0.6 Page 6 Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 1 2 .9 ft8 7 .1 ft16.2 ft73.5 ft 6.5 ft1 2 3 4 1E 2E 3E4E 5 5E 6 6E Loadcase B Design wind pressures – Loadcase AT Zone GCpf p(+GCpi) (psf) p(-GCpi) (psf) Area (ft 2) +Fwi (kips) -Fwi (kips) 1 0.40 5.5 14.4 599 3.3 8.6 2 -0.69 -21.6 -12.6 1483 -32.0 -18.7 3 -0.37 -13.6 -4.7 1483 -20.2 -7.0 4 -0.29 -11.7 -2.7 599 -7.0 -1.6 1E 0.61 10.7 19.6 209 2.2 4.1 2E -1.07 -31.0 -22.1 517 -16.0 -11.4 3E -0.53 -17.6 -8.7 517 -9.1 -4.5 4E -0.43 -15.1 -6.2 209 -3.2 -1.3 1T - 1.4 3.6 809 1.1 2.9 2T - -5.4 -3.2 2000 -10.8 -6.3 3T - -3.4 -1.2 2000 -6.8 -2.4 4T - -2.9 -0.7 809 -2.4 -0.6 Page 7 Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 1 2 .9 ft3 7 .1 ft5 0 ft16.2 ft80 ft 1E 2E 3E4E 1 2 3 1T 2T 3T4T Loadcase AT Design wind pressures – Loadcase BT Zone GCpf p(+GCpi) (psf) p(-GCpi) (psf) Area (ft 2) +Fwi (kips) -Fwi (kips) 1 -0.45 -15.6 -6.7 1408 -22.0 -9.4 2 -0.69 -21.6 -12.6 3483 -75.1 -44.0 3 -0.37 -13.6 -4.7 3483 -47.5 -16.4 4 -0.45 -15.6 -6.7 1408 -22.0 -9.4 5 0.40 5.5 14.4 595 3.2 8.6 6 -0.29 -11.7 -2.7 595 -6.9 -1.6 1E -0.48 -16.4 -7.4 209 -3.4 -1.6 2E -1.07 -31.0 -22.1 517 -16.0 -11.4 3E -0.53 -17.6 -8.7 517 -9.1 -4.5 4E -0.48 -16.4 -7.4 209 -3.4 -1.6 5E 0.61 10.7 19.6 52 0.6 1.0 6E -0.43 -15.1 -6.2 105 -1.6 -0.6 5T - 1.4 3.6 647 0.9 2.3 6T - -2.9 -0.7 647 -1.9 -0.4 Page 8 Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 1 2 .9 ft8 7 .1 ft16.2 ft40 ft 33.5 ft 6.5 ft1 2 3 4 1E 2E 3E4E 5 5T 5E 6 6T 6E Loadcase BT Page 9 DESIGN WIND PRESSURE (ZONE 1 & 4) = 15.6 PSF + 6.7 PSF = 22.3 PSF DESIGN WIND PRESSURE (PARAPET) = 25.61 PSF + 38.42 PSF = 64.03 PSF DESIGN PRESSURE (MWFRS) = [(16'-2"/2×22.3 PSF)+(2'-10"×64.03 PSF)] / [(16'-2"/2)+(2'-10")] = 33 PSF THE BASE SHEARS UNDER WIND LOADS IN EACH ORTHOGONAL DIRECTION ARE GREATER THAN THE BASE UNDER SEISMIC LOADS, SO WIND LOADS ARE THE BASIS OF DESIGN OF THE BUILDING'S LATERAL SYSTEM. Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 WIND LOADING In accordance with ASCE7-10 Using the components and cladding design method Tedds calculation version 2.1.03 100 ft80 ftPlan 80 ft 16.2 ftElevation Building data Type of roof;Flat Length of building;b = 100.00 ft Width of building;d = 80.00 ft Height to eaves;H = 16.17 ft Height of parapet;hp = 2.83 ft Mean height;h = 16.17 ft General wind load requirements Basic wind speed;V = 115.0 mph Risk category;II Velocity pressure exponent coef (Table 26.6-1);Kd = 0.85 Exposure category (cl 26.7.3);C Enclosure classification (cl.26.10);Enclosed buildings Internal pressure coef +ve (Table 26.11-1);GCpi_p = 0.18 Internal pressure coef –ve (Table 26.11-1);GCpi_n = -0.18 Parapet internal pressure coef +ve (Table 26.11-1);GCpi_pp = 0.00 Parapet internal pressure coef –ve (Table 26.11-1);GCpi_np = 0.00 Gust effect factor;Gf = 0.85 Topography Topography factor not significant;Kzt = 1.0 Velocity pressure Velocity pressure coefficient (T.30.3-1);Kz = 0.86 Velocity pressure;qh = 0.00256 ´ Kz ´ Kzt ´ Kd ´ V2 ´ 1psf/mph2 = 24.8 psf Page 10 Wind Load (C&C) Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Velocity pressure at parapet Velocity pressure coefficient (T.30.3-1);Kz = 0.89 Velocity pressure;qp = 0.00256 ´ Kz ´ Kzt ´ Kd ´ V2 ´ 1psf/mph2 = 25.6 psf Peak velocity pressure for internal pressure Peak velocity pressure – internal (as roof press.);qi = 24.80 psf Equations used in tables Net pressure;p = qh ´ [GCp - GCpi]; Parapet net pressure;p = qp x [GCp - GCpi_p]; Components and cladding pressures - Wall (Table 30.4-1 and Figure 30.4-2A) Component Zone Length (ft) Width (ft) Eff. area (ft2) +GCp -GCp Pres (+ve) (psf) Pres (-ve) (psf) <10 sf 4 - - 10.0 0.90 -0.99 26.8 -29.0 50 sf 4 - - 50.0 0.79 -0.88 24.0 -26.3 200 sf 4 - - 200.0 0.69 -0.78 21.7 -23.9 >500 sf 4 - - 500.0 0.63 -0.72 20.1 -22.3 <10 sf 5 - - 10.0 0.90 -1.26 26.8 -35.7 50 sf 5 - - 50.0 0.79 -1.04 24.0 -30.2 200 sf 5 - - 200.0 0.69 -0.85 21.7 -25.5 >500 sf 5 - - 500.0 0.63 -0.72 20.1 -22.3 5 54 6.5 ft87.1 ft 6.5 ft16.2 ftElevation of side wall 5 54 6.5 ft67.1 ft 6.5 ftElevation of gable wall Components and cladding pressures - Roof (Figure 30.4-2A) Component Zone Length (ft) Width (ft) Eff. area (ft2) +GCp -GCp Pres (+ve) (psf) Pres (-ve) (psf) Page 11 Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Component Zone Length (ft) Width (ft) Eff. area (ft2) +GCp -GCp Pres (+ve) (psf) Pres (-ve) (psf) <10 sf 1 - - 10.0 0.30 -1.00 11.9 #-29.3 25 sf 1 - - 25.0 0.26 -0.96 10.9 #-28.3 50 sf 1 - - 50.0 0.23 -0.93 10.2 #-27.5 >100 sf 1 - - 100.0 0.20 -0.90 9.4 #-26.8 <10 sf 2 - - 10.0 0.30 -1.80 11.9 #-49.1 25 sf 2 - - 25.0 0.26 -1.52 10.9 #-42.2 50 sf 2 - - 50.0 0.23 -1.31 10.2 #-37.0 >100 sf 2 - - 100.0 0.20 -1.10 9.4 #-31.7 <10 sf 3 - - 10.0 0.30 -2.80 11.9 #-73.9 25 sf 3 - - 25.0 0.26 -2.12 10.9 #-57.1 50 sf 3 - - 50.0 0.23 -1.61 10.2 #-44.4 >100 sf 3 - - 100.0 0.20 -1.10 9.4 #-31.7 1 1 2 2 2 2 2 2 3 3 3 3 6.5 ft87.1 ft 6.5 ft6.5 ft87.1 ft 6.5 ft6.5 ft33.5 ft33.5 ft6.5 ft Plan on roof Page 12 Page 13 GRAVITY DESIGN Page 14 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Building Gravity Members Diagram Page 15 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Page 16 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Column Sizes Page 17 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Framing Sizes HIGH ROOF FRAMING Page 18 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Dead Loads RTU-1 664 LBS RTU-1 767 LBS RTU-1 893 LBS RTU-1 893 LBS RTU-1 767 LBS RTU-1 697 LBS RTU-1 893 LBS Page 19 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Snow Loads SNOW DRIFT - REFER TO DESIGN LOADING Page 20 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Column Bending Utilization (Envelope Of Load Cases) DETAILED REPORT ON PAGE 22 DETAILED REPORT ON PAGE 23 Page 21 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Framing Bending Utilization (Envelope Of Load Cases) DETAILED REPORT ON PAGE 27 DETAILED REPORT ON PAGE 24 Page 22 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Page 23 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Beam: Shape Group: Code: Floor: Span: Size: Fixity: Material: Bending: Function: M10 Wide Flange AISC 14th(360-10): LRFD Roof Single W24x55 Pinned-Pinned A992 (Fy = 50ksi) Strong Axis Gravity Geometry: Length = 42.75ft Points (Start to End): N21 to N13 (56.57,86.49,0) to (99.32,86.49,0) Angle: 0 degrees Diagrams for Load Combination 8 : 1.2DL + 1.6SL Load Diagram (Live Load Reduction not shown): Distributed Loads (k/ft), Point Loads (k) .101 8.9458.11 7.067.0567.0567.056 23.903 at 0 ft -25.705 at 42.75 ft V k 295.076 at 24.047 ft M k-ft RISAFloor Version 13.0.2 Page 1 [\...\...\...\...\...\...\...\Design\Structural\Building Model\Bank Of America.rfl] Page 24 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 2.526 at 21.375 ft D in A k Reaction for LC 8: (k) I-End Reaction: Axial:0k J-End Reaction: Axial:0k Shear:23.903k Shear:25.705k Moment:0k-ft Moment:0k-ft *Live Load diagram displays controlling LL, LLS, RLL, SL, RL Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End:6.534 0 0 10.039(a) 0 J-End:6.612 0 0 11.106 0 Maximum Total I-End Reaction: 23.903k for LC 8 (1.2DL + 1.6SL) Maximum Total J-End Reaction: 25.705k for LC 8 (1.2DL + 1.6SL) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DLPre LLConst DLConst DL LL Start 0 .057 .013 0 .067 0 End 42.75 .057 .013 0 .067 0 Dist(ft) LLS RLL SL SLN RL Start 0 0 0 .013 0 0 End 42.75 0 0 .013 0 0 Point Loads (k) RISAFloor Version 13.0.2 Page 2 [\...\...\...\...\...\...\...\Design\Structural\Building Model\Bank Of America.rfl] Page 25 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Dist(ft) DLPre LLConst DLConst DL LL 6.107 .327 1.811 0 1.686 0 12.214 .327 1.811 0 1.686 0 18.321 .327 1.811 0 1.686 0 24.429 .327 1.811 0 1.689 0 30.536 .327 1.811 0 1.868 0 36.643 .327 1.811 0 1.686 0 Dist(ft) LLS RLL SL SLN RL 6.107 0 0 3.146 0 0 12.214 0 0 3.146 0 0 18.321 0 0 3.146 0 0 24.429 0 0 3.146 0 0 30.536 0 0 3.668 0 0 36.643 0 0 4.326 0 0 Live Load Reduction FLL Code: ASCE 7 RLL Code: ASCE 7 Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 0 2 1 1 1 Design Rules: Perimeter Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None 11.9 None None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 None 240 Cat1 Name Cat1 Defl (in) Cat1 Ratio Cat2 Name Cat2 Defl (in) Cat2 Ratio DLPre 0.5 360 None None 360 Shear: 10.2% Capacity at 42.75ft for LC 8 (1.2DL + 1.6SL) V = 25.705k at 42.75ft fv = 2.757ksi phi*Vn = 251.694k Bending: 63.7% Capacity at 24.0469ft for LC 8 (1.2DL + 1.6SL) M = 295.076k-ft Cb = 1 LbTop = 6.5ft LbBot = 42.75ft fb = 30.95ksi phi*Mn = 463.406k-ft L-torque = 42.75ft Deflections: 81.7% Capacity at 21.375ft. (Camber = 0in) PreDL DL LL* DL+LL* DLPre None Deflection (in):.213 .669 1.077 1.746 .213 0 Span Ratio 2412 767 476 294 2412 10000 LL*: Live Load on beam can contain LL, LLS, RLL, SL, RL RISAFloor Version 13.0.2 Page 3 [\...\...\...\...\...\...\...\Design\Structural\Building Model\Bank Of America.rfl] Page 26 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Beam: Shape Group: Code: Floor: Span: Size: Fixity: Material: Bending: Function: M28 Wide Flange AISC 14th(360-10): LRFD Roof Single W12x19 Pinned-Pinned A992 (Fy = 50ksi) Strong Axis Gravity Geometry: Length = 18.66ft Points (Start to End): N22 to N23 (38.66,56.83,0) to (57.32,56.83,0) Angle: 0 degrees Diagrams for Load Combination 8 : 1.2DL + 1.6SL Load Diagram (Live Load Reduction not shown): Distributed Loads (k/ft), Point Loads (k) .023 5.642 4.284 5.549 4.677 5.968 10.735 at 0 ft -15.809 at 18.66 ft V k 66.837 at 6.414 ft M k-ft RISAFloor Version 13.0.2 Page 1 [\...\...\...\...\...\...\...\Design\Structural\Building Model\Bank Of America.rfl] Page 27 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 1.164 at 9.33 ft D in A k Reaction for LC 8: (k) I-End Reaction: Axial:0k J-End Reaction: Axial:0k Shear:10.735k Shear:15.809k Moment:0k-ft Moment:0k-ft *Live Load diagram displays controlling LL, LLS, RLL, SL, RL Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End:4.019 0 0 3.695(a) 0 J-End:5.881 0 0 5.47 0 Maximum Total I-End Reaction: 10.735k for LC 8 (1.2DL + 1.6SL) Maximum Total J-End Reaction: 15.809k for LC 8 (1.2DL + 1.6SL) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DLPre LLConst DLConst DL LL Start 0 .019 0 0 .019 0 End 18.66 .019 0 0 .019 0 Point Loads (k) Dist(ft) DLPre LLConst DLConst DL LL 6.22 .331 1.845 0 2.211 0 6.33 .267 1.63 0 1.724 0 12.44 .319 1.734 0 2.028 0 RISAFloor Version 13.0.2 Page 2 [\...\...\...\...\...\...\...\Design\Structural\Building Model\Bank Of America.rfl] Page 28 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 12.66 .263 1.587 0 1.453 0 17.91 .317 1.717 0 2.131 0 Dist(ft) LLS RLL SL SLN RL 6.22 0 0 2.072 0 0 6.33 0 0 1.63 0 0 12.44 0 0 1.947 0 0 12.66 0 0 1.587 0 0 17.91 0 0 1.928 0 0 Live Load Reduction FLL Code: ASCE 7 RLL Code: ASCE 7 Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 0 2 1 1 1 Design Rules: Typical Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None 11.9 None None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 None 240 Shear: 18.4% Capacity at 18.66ft for LC 8 (1.2DL + 1.6SL) V = 15.809k at 18.66ft fv = 5.514ksi phi*Vn = 86.01k Bending: 96.1% Capacity at 6.41438ft for LC 8 (1.2DL + 1.6SL) M = 66.837k-ft Cb = 1 LbTop = 6.5ft LbBot = 18.66ft fb = 37.634ksi phi*Mn = 69.5203k-ft L-torque = 18.66ft Deflections: 89.5% Capacity at 9.33ft. (Camber = 0in) PreDL DL LL* DL+LL* None None Deflection (in):.08 .43 .405 .835 0 0 Span Ratio 2798 520 553 268 10000 10000 LL*: Live Load on beam can contain LL, LLS, RLL, SL, RL RISAFloor Version 13.0.2 Page 3 [\...\...\...\...\...\...\...\Design\Structural\Building Model\Bank Of America.rfl] Page 29 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Page 30 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Spread Footings Page 31 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Soil Bearing Pressure (1.0DL + 1.0SL) Page 32 LATERAL DESIGN Page 33 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Building Lateral Members Diagram Page 34 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Page 35 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Member Sizes Page 36 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - North/South Wind Loads Page 37 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - East/West Wind Loads Page 38 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Member Unity Check (Envelope Of Load Combinations) DETAILED REPORT ON PAGE 39 DETAILED REPORT ON PAGE 40 DETAILED REPORT ON PAGE 41 DETAILED REPORT ON PAGE 42 Page 39 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 1.2DL + 0.5SL + 1.0WL Page 40 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 1.2DL + 0.5SL + 1.0WL Page 41 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 1.2DL + 0.5SL + 1.0WL Page 42 PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 1.2DL + 1.6SL + 0.5WL Page 43 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Footings Resisting Lateral Loads SF10.0 SF5.0 SF8.0 SF6.0 Page 44 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Bearing Pressure (0.6DL + 0.6WL North/South) Page 45 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Bearing Pressure (0.6DL + 0.6WL East/West) PROJECT DATE BY IMEG # Page 46 Bank of America Carmel 4/20/2019 MJK 18002541.00 Front Entrance Member Sizes Dead Loads Wind Load EW Wind Load NS 25psf x 29.33'/2 x 8.5'/2 35.1psf x 28'/2 35.1psf x 11'/2 26.7psf x 28'/2 PROJECT DATE BY IMEG # Page 47 See following pages for girt detailed report See following pages for column detailed report Bank of America Carmel 4/20/2019 MJK 18002541.00 Envelope Moment Demand - Strong Axis Envelope Moment Demand - Weak Axis Member Envelope Utilization Beam:M5 Shape: Material: Length: I Joint: J Joint: Code Check: Report Based On 97 Sections HSS12X6X8 A500 Gr.B Rect 27.5 ft N9 N12 Envelope 0.328 (LC 2) -.104 at 0 ft -.106 at 0 ft A k 4.254 at 0 ft -3.113 at 27.5 ft Vy k 3.089 at 0 ft -3.082 at 27.5 ft Vz k .003 at 0 ft -.495 at 0 ft T k-ft 21.093 at 13.75 ft -.171 at 0 ft My k-ft 28.344 at 0 ft -11.694 at 18.906 ft Mz k-ft .006 at 2.005 ft -.127 at 17.188 ft Dy in 0 at 0 ft -1.089 at 13.75 ft Dz in -.007 at 0 ft -.007 at 0 ft fa ksi 7.531 at 0 ft -7.531 at 0 ft f(y) ksi 8.335 at 13.75 ft -8.335 at 13.75 ft f(z) ksi AISC 15th(360-16): ASD Code Check Max Bending Check Max Shear Check Max Defl Ratio Location Location Location Equation Span 0.328 (LC 2) 13.75 ft H1-1b 0.050 (z) (LC 2) 0 ft L/2681 17.188 ft 1 Bending Flange Compression Flange Bending Web Compression Web Compact Non-Slender Compact Non-Slender Fy 46 ksi Pnc/om Pnt/om Mny/om Mnz/om Vny/om Vnz/om Tn/om 125.739 k 421.437 k 80.798 k-ft 131.756 k-ft 162.999 k 70.779 k 81.242 k-ft Cb 1.809 y-y z-z Lb Lc/r 27.5 ft 27.5 ft 135.239 78.411 L Comp Flange 27.5 ft L-torque 27.5 ft Page 48 Girt Detail Report Column:M4 Shape: Material: Length: I Joint: J Joint: Code Check: Report Based On 97 Sections W12X40 A992 28 ft N10 N11 Envelope 0.174 (LC 2) 6.873 at 0 ft 1.855 at 28 ft A k .613 at 17.208 ft -1.263 at 0 ft Vy k .202 at 17.208 ft -.16 at 0 ft Vz k .07 at 0 ft T k-ft .007 at 16.917 ft -2.7 at 16.917 ft My k-ft 6.62 at 17.208 ft -17.128 at 0 ft Mz k-ft .509 at 28 ft -.013 at 11.375 ft Dy in .066 at 9.625 ft -.355 at 28 ft Dz in .587 at 0 ft .159 at 28 ft fa ksi 3.984 at 0 ft -3.984 at 0 ft f(y) ksi 2.942 at 16.917 ft -2.942 at 16.917 ft f(z) ksi AISC 15th(360-16): ASD Code Check Max Bending Check Max Shear Check Location Location Equation Max Defl Ratio 0.174 (LC 2) 16.917 ft H1-1b 0.028 (y) (LC 2) 14 ft L/659 Bending Flange Compression Flange Bending Web Compression Web Compact Non-Slender Compact Slender Ae=11.7 in2 Fy 50 ksi Pnc/om Pnt/om Mny/om Mnz/om Vny/om Vnz/om 58.714 k 350.299 k 41.916 k-ft 105.113 k-ft 70.21 k 148.209 k Cb 1.696 y-y z-z Lb Lc/r 28 ft 28 ft 173.066 65.594 L Comp Flange 28 ft L-torque 28 ft Page 49 Column Detail Report Page 50 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Trash Enclosure Masonry Diagram Page 51 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - North/South Wind Loads Page 52 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - East/West Wind Loads Page 53 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Wall Bending Demand (1.2DL + 1.0WL North/South) Page 54 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 RISA Model - Wall Bending Demand (1.2DL + 1.0WL East/West) Page 55 RISA Model PROJECT DATE BY IMEG # Bank Of America - Carmel 5/1/2019 AARCLA 18002541.00 Wall Detailed Report Page 56 MISC. CALCS Design Information AISC 14th LRFD Connection Information Reaction Load Ru 38.3 kips Beam Designation W24X62 HSS Column Type HSS5X5X3/8 HSS ASTM Material A500 Gr B Distance from face of support to bolts a 2 1/2 in Eccentricity eb 2 1/2 Material Properties Beam steel yield stress Fy 50 ksi Beam steel ultimate stress Fu 65 ksi Connecting material yield stress Fyc 36 ksi Connecting material ultimate stress Fuc 58 ksi Bolt Information Bolt grade and type A325-N Hole Type STD Bolt diameter db 3/4 in Minimum number of bolts 4 Maximum number of bolts 7 Number of bolts n 7 Plate vertical edge distance Lev,plate 1 1/2 in Distance from top bolt to top of cope Lev,top 1 1/2 in Distance from bot bolt to bot of cope Lev,bot 4.20 in Bolt spacing s 3 in End of plate to bolt line Leh 1 1/2 in Plate Length L 21 in Copes TOP BOTTOM Depth of cope dc 1.50 0.00 in Length of cope Lc 4.50 4.50 in Plate Plate thickness (Maximum) tp max N/A in Plate thickness tp 1/2 in Weld Recomended weld size 5/16 in Weld size w 5/16 in Shear Capacity Summary Bolt shear 112.2 kips Bolt hole bearing - Plate 245.5 kips Shear yield - Plate 226.8 kips Shear rupture - Plate 194.1 kips Block shear - Plate 181.1 kips Buckling - Plate N/A kips Flexure - Plate N/A kips Bolt hole bearing - Beam 236.6 kips Shear yielding - Beam 305.7 kips Shear rupture - Beam 221.0 kips Coped beam block shear N/A kips Coped beam flexural rupture N/A kips Coped beam web buckling N/A kips Weld shear 291.5 kips HSS Local Buckling Check OKAY HSS Concentrated Force Check OKAY Assumptions and Limitations: 1. Calculation is performed using AISC 14th Ed. 2. Calculations reference AISC 14th Ed for wide flange information 3. Top of beam is the compression flange 4. Weld shear based on Instantaneous Center of Rotation 5. Plate welded to support and bolted to beam 6. Beam can have no cope, top cope, or both top and bottom cope 7. Bolt connection is for one vertical column of bolts 8. Design references can be under the ASD Equ or LRFD Equ tabs. 9. 1/2" gap is assumed betweend the beam and support beam/column 10. Weld size is equal to 5/8 plate thickness as a minimum KNIFE PLATE CONNECTION Job: Bank Of America Subject: By: AARCLA Checked By: Job Number: 18002541.00 Date: 5/1/2019 GOVERNS LRFD Design Calculations Weld thickness check OK Connection Utilization = 35% OK OK No Cope OK OK OK OK Bolt quantity check Plate thickness check OK (beam web meets limit) Page 57 RA (lb) RB (lb) Joist designation 24K7 Joist self-weight 9 plf 132.75 132.75 span 29.5 ft Distributed load (w1)* =325.5 plf 4801.1 4801.1 moment capacity 38400 lb-ft Point load 1 (P1) = lb a1=ft 0 0 max end reaction ** 5206 lb Point load 2 (P2) = lb a2=ft 0 0 minimum shear *** 25 %Point load 3 (P3) = lb a3=ft 0 0 capacity moment 353 plf Point load 4 (P4) = lb a4=ft 0 0 capacity shear 353 plf Point load 5 (P5) = lb a5=ft 0 0 WLL 0 plf Point load 6 (P6) = lb a6=ft 0 0 Triangular load 1 (w2) =0 plf b1=0 ft 0 0 b2=0 ft Triangular load 2 (w3) = plf c1=ft 0 0 c2=ft Partial dist load (w4) = plf d1=ft 0 0 d2=ft Point moment (m) = lb-ft e= ft 0 0 sum = 4934 4934 Moment Shear Moment Shear ft lb-ft lb lb-ft lb (%) (%) lb 0.0 38400 5206 0 4934 0% 95% 0 1.2 38400 4772 5812 4523 15% 95% 0 2.5 38400 4338 11118 4112 29% 95% 0 3.7 38400 3905 15919 3700 41% 95% 0 4.9 38400 3471 20215 3289 53% 95% 0 6.1 38400 3037 24006 2878 63% 95% 0 7.4 38400 2603 27290 2467 71% 95% 0 8.6 38400 2169 30070 2056 78% 95% 0 9.8 38400 1735 32344 1645 84% 95% 0 11.1 38400 1302 34113 1233 89% 95% 0 12.3 38400 1302 35377 822 92% 63% 0 13.5 38400 1302 36135 411 94% 32% 0 14.8 38400 1302 36387 0 95% 0% 0 14.8 38400 -1302 36387 0 95% 0% 0 16.0 38400 -1302 36135 -411 94% 32% 0 17.2 38400 -1302 35377 -822 92% 63% 0 18.4 38400 -1302 34113 -1233 89% 95% 0 19.7 38400 -1735 32344 -1645 84% 95% 0 20.9 38400 -2169 30070 -2056 78% 95% 0 22.1 38400 -2603 27290 -2467 71% 95% 0 23.4 38400 -3037 24006 -2878 63% 95% 0 24.6 38400 -3471 20215 -3289 53% 95% 0 25.8 38400 -3905 15919 -3700 41% 95% 0 27.0 38400 -4338 11118 -4112 29% 95% 0 28.3 38400 -4772 5812 -4523 15% 95% 0 29.5 38400 -5206 0 -4934 0% 95% 0 Job: Bank Of America - Carmel Subject: By: AARCLA Checked By: Job Number: 18002541.00 Date: 5/1/2019 Excess ShearTotal LoadCapacity Moment Utilization Shear Utilization * Do not include joist self wt with distributed load ** If no max end reaction is listed in joist tables, this value is equal to the allowable total load times half of the span *** See SJI specifcation JOIST CHECK (ASD) Joist is Okay for Shear, is Okay for Moment, and has no Stress Reversal Applied LoadsJoist Information Page 58 Joist = 24K7 Span = 29.5 ft Subject: JOIST CHECK (ASD) Checked By: Date: 5/1/2019 Job: Bank Of America - Carmel By: AARCLA Job Number: 18002541.00 -6000 -4000 -2000 0 2000 4000 6000 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0Shear (lbs)Position (ft) Joist Shear Capacity Demand -5000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0Moment (lb*ft)Position (ft) Joist Moment Capacity Demand Page 59 Page 60 W.P. STEEL COLUMN - REF PLAN 2' - 0"10" ERECTION BOLT 1/4 1/4 1/4 5 MIN TYP 1/4 5 MIN TYP 1/4 1/4 SQUARE HSS TUBE - REF ELEVATION GUSSET PLATE 3/8" REFER TO TYPICAL SHEAR CONNECTION STEEL BEAM - REF PLAN NOTES: 1. BRACE IS SLOTTED OVER GUSSET PLATE ON BRACE CENTERLINE. 3/4" = 1'-0"6 BRACE CONNECTION DETAIL Page 61 Page 62 Page 63 Page 64 Page 65 Page 66 Page 67 Page 68 Page 69 Page 70 Page 71 Page 72 Page 732' - 6"10" 1/4 5 MIN TYP 1/4 5 MIN TYP 1/4 1/4 1/4 1/4 W.P.REFER TO COLUMN BASEPLATE DETAIL GUSSET PLATE 1/2" STEEL COLUMN - REF PLAN ERECTION BOLT SQUARE HSS TUBE - REF ELEVATION NOTES: 1. BRACE IS SLOTTED OVER GUSSET PLATE ON BRACE CENTERLINE. 3/4" = 1'-0"7 BRACE CONNECTION DETAIL Page 74 Page 75 Page 76 Page 77 Page 78 Page 79 Page 80 Page 81 Page 82 Page 83 Page 84 Page 85 Page 86 Page 87 Page 87 Page 85 Page 86 Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 COLUMN BASE PLATE DESIGN In accordance with AISC Steel Design Guide 1 and AISC 360-10 Tedds calculation version 2.1.02 1.5"8"1.5"1.5"8.0"1.5"Plan on baseplate Elevation on baseplate 0.41 ksi 50.0 kips 16.0 kips HSS 5x5x1/4 Bolt diameter - 0.8" Bolt embedment - 8.0" Flange/base weld - 0.3" Web/base weld - 0.3" Design forces and moments Axial force;Pu = 50.0 kips; (Compression) Bending moment;Mu = 0.0 kip_in Shear force;Fv = 16.0 kips Eccentricity;e = ABS(Mu / Pu) = 0.000 in Anchor bolt to center of plate;f = 0in = 0.000 in Column details Column section;HSS 5x5x1/4 Depth;d = 5.000 in Breadth;bf = 5.000 in Thickness;t = 0.233 in Baseplate details Depth;N = 11.000 in Breadth;B = 11.000 in Thickness;tp = 0.750 in Design strength;Fy = 36.0 ksi Foundation geometry Member thickness;ha = 12.000 in Dist center of baseplate to left edge foundation;xce1 = 30.000 in Dist center of baseplate to right edge foundation;xce2 = 30.000 in Dist center of baseplate to bot edge foundation;yce1 = 30.000 in Dist center of baseplate to top edge foundation;yce2 = 30.000 in Minimum tensile strength, base plate;Fy = 36 ksi Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Minimum tensile strength, column;FyCol = 50 ksi Compressive strength of concrete;f’c = 3 ksi Strength reduction factors Compression;fc = 0.65 Flexure;fb = 0.90 Weld shear;fv = 0.75 Plate cantilever dimensions Area of base plate;A1 = B ´ N = 121.000 in2 Maximum area of supporting surface;A2 = (N + 2 ´ lmin) ´ (B + 2 ´ lmin) = 3600.000 in2 Nominal strength of concrete under base plate;Pp = 0.85 ´ f'c ´ A1 ´ min(Ö(A2 / A1), 2) = 617.1 kips Bending line cantilever distance m;m = (N - 0.95 ´ d) / 2 = 3.125 in Bending line cantilever distance n;n = (B - 0.95 ´ bf) / 2 = 3.125 in Maximum bending line cantilever;l = max(m, n) = 3.125 in Plate thickness Required plate thickness;tp,req = l ´ Ö((2 ´ Pu) / (fb ´ Fy ´ B ´ N)) = 0.499 in Specified plate thickness;tp = 0.750 in PASS - Thickness of plate exceeds required thickness Design bearing strength (AISC 360-05-J8) Design bearing strength;Pp = 617.10 kips Factored bearing strength;fcPp = 401.12 kips PASS - Allowable bearing stress exceeds applied bearing stress Flange weld Flange weld leg length;twf = 0.3125 in Tension capacity of flange;Ptf = bf ´ t ´ FyCol = 58.3 kips Force in tension flange;Ftf = Mu / (d - t) - Pu ´ (bf ´ t) / Acol = -13.5 kips Critical force in flange;Ff = min(Ptf, max(Ftf, 0kips)) = 0.0 kips Flange weld force per in;Rwf = Ff / bf = 0.0 kips/in Electrode classification number;FEXX = 70.0 ksi Design weld stress;fFnw = fv ´ 0.60 ´ FEXX ´ (1.0 + 0.5 ´ (sin(90deg))1.5) = 47.250ksi Design strength of weld per in;fRnf = fFnw ´ twf / Ö(2) = 10.4 kips/in PASS - Available strength of flange weld exceeds force in flange weld Shear weld Shear web weld leg length;tww = 0.3125 in Shear web weld force per in;Rwl = Fv / (2 ´ (d - 2 ´ t)) = 1.764 kips/in Electrode classification number;FEXX = 70.0 ksi Design weld stress;fFnw = fv ´ 0.60 ´ FEXX ´ (1.0 + 0.5 ´ (sin(0deg))1.5) = 31.500ksi Design strength of weld per in;fRnl = fFnw ´ tww / Ö(2) = 7.0 kips/in PASS - Available strength of shear weld exceeds force in shear weld Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 ANCHOR BOLT DESIGN In accordance with ACI318-11 Tedds calculation version 2.1.02 Anchor bolt geometry Type of anchor bolt;Cast-in headed end bolt anchor Diameter of anchor bolt;da = 0.75 in Number of bolts in x direction;Nboltx = 2 Number of bolts in y direction;Nbolty = 2 Total number of bolts;ntotal = (Nboltx ´ 2) + (Nbolty - 2) ´ 2 = 4 Total number of bolts in tension;ntens = NboltN = 0 Spacing of bolts in x direction;sboltx = 8 in Spacing of bolts in y direction;sbolty = 8 in Number of threads per inch;nt = 10 Effective cross-sectional area of anchor;Ase = p / 4 ´ (da - 0.9743 in / nt)2 = 0.334 in2 Embedded depth of each anchor bolt;hef = 8 in Material details Minimum yield strength of steel;fya = 36 ksi Nominal tensile strength of steel;futa = 58 ksi Compressive strength of concrete;f’c = 3 ksi Concrete modification factor;l = 1.00 Modification factor for cast-in anchor concrete failure la = 1.0 ´ l= 1.00 Strength reduction factors Tension of steel element;ft,s = 0.75 Shear of steel element;fv,s = 0.65 Concrete tension;ft,c = 0.65 Concrete shear;fv,c = 0.70 Concrete tension for pullout;ft,cB = 0.70 Concrete shear for pryout;fv,cB = 0.70 Shear force applied to bolt group;V = 16.00 kips Steel strength of anchor in shear (D.6.1) Built-up grout pads are used so nominal strength will be multiplied by 0.8 (D.6.1.3) Effective number of anchors in shear;NboltV = 4 Nom strength of anchor in shear;Vsa = 0.8 ´ NboltV ´ 0.6 ´ Ase ´ futa = 37.25 kips Steel strength of anchor in shear;fVsa = fv,s ´ Vsa = 24.21 kips PASS - Steel strength of anchor exceeds shear in bolts Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Concrete breakout strength in shear perpendicular to edge - Case 2. All shear resisted by rear bolts (D.6.3)2' 2.0"8.0"2' 2.0"2' 2.0"8.0"2' 2.0" Plan on foundation Concrete breakout - shear 16 kips 5'1'8"Section A-A The anchors are influenced by three or more edges where any edge distance is less than 1.5ca1 so value of ca1 is limited to c'a1 (D.6.2.4). Bolt offset for limiting shear;xV,r = 16.67 in Limiting edge distance;c’a1 = 17.33 in Applied shear;Vapp = V = 16.00 kips Edge distance x for shear near corner;ca1 = 34 in Edge distance y for shear near corner;ca2 = min(yce1, yce2) - (((Nbolty - 1)/2) ´ sbolty) = 26 in Load bearing length of anchor;le = min(hef, 8 ´ da) = 6 in Basic concrete breakout strength;Vb1 = 7 ´ (le / da)0.2 ´ Ö(da) ´ la ´ Ö(f'c ´ 1psi) ´ (c'a1)1.5 = 36.32 kips Vb2 = 9 ´ la ´ Ö(f'c ´ 1psi ´ 1 in) ´ (c'a1)1.5 = 35.57 kips Basic concrete breakout strength;Vb = Min(Vb1, Vb2) = 35.57 kips Projected area of a single anchor;AVco = 4.5 ´ c'a12 = 1352 in2 Projected area of a group of anchors;AVc = 720 in2 Mod factor for edge effect;yed.V = 1.000 = 1.000 Eccentricity of loading;e’V = 0 in Modification factor of eccentric loading;yec,V = min(1, 1 / (1 + ((2 ´ e'V) / (3 ´ c'a1)))) = 1.000 Modification factor for cracking;yc,V = 1.000 Modification factor for edge distance;yh,V = max(Ö(1.5 ´ c'a1 / ha), 1) = 1.472 Nominal concrete break out strength in shear;Vcbg = AVc / AVco ´ yec,V ´ yed,V ´ yc,V ´ yh,V ´ Vb = 27.89 kips Concrete break out strength in shear;fVcbg = fv,c ´Vcbg = 19.52 kips PASS - Shear breakout perpendicular to edge strength exceeds shear in bolts Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Concrete breakout strength in shear perpendicular to edge - Case 3. All shear resisted by front bolts (D.6.3)2' 2.0"8.0"2' 2.0"2' 2.0"8.0"2' 2.0" Plan on foundation Concrete breakout - shear 16 kips 5'1'8"Section A-A The anchors are influenced by three or more edges where any edge distance is less than 1.5ca1 so value of ca1 is limited to c'a1 (D.6.2.4). Bolt offset for limiting shear;xV,f = 8.67 in Limiting edge distance;c’a1 = 17.33 in Applied shear;Vapp = V = 16.00 kips Edge distance x for shear near corner;ca1 = 26 in Edge distance y for shear near corner;ca2 = min(yce1, yce2) - (((Nbolty - 1)/2) ´ sbolty) = 26 in Load bearing length of anchor;le = min(hef, 8 ´ da) = 6 in Basic concrete breakout strength;Vb1 = 7 ´ (le / da)0.2 ´ Ö(da) ´ la ´ Ö(f'c ´ 1psi) ´ (c'a1)1.5 = 36.32 kips Vb2 = 9 ´ la ´ Ö(f'c ´ 1psi ´ 1 in) ´ (c'a1)1.5 = 35.57 kips Basic concrete breakout strength;Vb = Min(Vb1, Vb2) = 35.57 kips Projected area of a single anchor;AVco = 4.5 ´ c'a12 = 1352 in2 Projected area of a group of anchors;AVc = 720 in2 Mod factor for edge effect;yed.V = 1.000 = 1.000 Eccentricity of loading;e’V = 0 in Modification factor of eccentric loading;yec,V = min(1, 1 / (1 + ((2 ´ e'V) / (3 ´ c'a1)))) = 1.000 Modification factor for cracking;yc,V = 1.000 Modification factor for edge distance;yh,V = max(Ö(1.5 ´ c'a1 / ha), 1) = 1.472 Nominal concrete break out strength in shear;Vcbg = AVc / AVco ´ yec,V ´ yed,V ´ yc,V ´ yh,V ´ Vb = 27.89 kips Concrete break out strength in shear;fVcbg = fv,c ´Vcbg = 19.52 kips PASS - Shear breakout perpendicular to edge strength exceeds shear in bolts Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Concrete breakout strength in shear parallel to edge - Case 2. All shear resisted by rear bolts ( parallel to edge - Case 2. All shear resisted by rear bolts)2' 2.0"8.0"2' 2.0"2' 2.0"8.0"2' 2.0" Plan on foundation Concrete breakout - side shear 16 kips 5'1'8"Section A-A The anchors are influenced by three or more edges where any edge distance is less than 1.5ca1,p so value of ca1,p is limited to c'a1,p Bolt offset for limiting shear;yV,r,p = 16.67 in Limiting edge distance;c’a1,p = 17.33 in Applied shear;Vapp = V = 16.00 kips Edge distance x for shear near corner;ca1,p = 34 in Edge distance y for shear near corner;ca2,p = min(xce1, xce2) - (((Nboltx - 1)/2) ´ sboltx) = 26 in Load bearing length of anchor;le = min(hef, 8 ´ da) = 6 in Basic concrete breakout strength;Vb,p1 = 7 ´ (le / da)0.2 ´ Ö(da) ´ la ´ Ö(f'c ´ 1psi) ´ (c'a1,p)1.5 = 36.32 kips Vb,p2 = 9 ´ la ´ Ö(f'c ´ 1psi´ 1in) ´ (c'a1,p)1.5 = 35.57 kips Basic concrete breakout strength;Vb,p = Min(Vb,p1, Vb,p2) = 35.57 kips Projected area of a single anchor;AVco,p = 4.5 ´ c'a1,p2 = 1352 in2 Projected area of a group of anchors;AVc,p = 720 in2 Mod factor for edge effect;yed,V,p = 1.000 Eccentricity of loading;e’V,p = 0 in Modification factor of eccentric loading;yec,V,p = min(1, 1 / (1 + ((2 ´ e'V,p) / (3 ´ c'a1,p)))) = 1.000 Modification factor for cracking;yc,V = 1.000 Modification factor for edge distance;yh,V,p = max(Ö(1.5 ´ c'a1,p / ha), 1) = 1.472 Nominal concrete break out strength in shear;Vcbg,p = 2 ´ AVc,p / AVco,p ´ yec,V,p ´ yed,V,p ´ yc,V ´ yh,V,p ´ Vb,p = 55.77 kips Concrete break out strength in shear;fVcbg,p = fv,c ´Vcbg,p = 39.04 kips PASS - Shear breakout strength parallel to edge exceeds shear in bolts Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Concrete breakout strength in shear parallel to edge - Case 3. All shear resisted by front bolts ( parallel to edge - Case 3. All shear resisted by front bolts)2' 2.0"8.0"2' 2.0"2' 2.0"8.0"2' 2.0" Plan on foundation Concrete breakout - side shear 16 kips 5'1'8"Section A-A The anchors are influenced by three or more edges where any edge distance is less than 1.5ca1,p so value of ca1,p is limited to c'a1,p Bolt offset for limiting shear;yV,f,p = 8.67 in Limiting edge distance;c’a1,p = 17.33 in Applied shear;Vapp = V = 16.00 kips Edge distance x for shear near corner;ca1,p = 26 in Edge distance y for shear near corner;ca2,p = min(xce1, xce2) - (((Nboltx - 1)/2) ´ sboltx) = 26 in Load bearing length of anchor;le = min(hef, 8 ´ da) = 6 in Basic concrete breakout strength;Vb,p1 = 7 ´ (le / da)0.2 ´ Ö(da) ´ la ´ Ö(f'c ´ 1psi) ´ (c'a1,p)1.5 = 36.32 kips Vb,p2 = 9 ´ la ´ Ö(f'c ´ 1psi´ 1in) ´ (c'a1,p)1.5 = 35.57 kips Basic concrete breakout strength;Vb,p = Min(Vb,p1, Vb,p2) = 35.57 kips Projected area of a single anchor;AVco,p = 4.5 ´ c'a1,p2 = 1352 in2 Projected area of a group of anchors;AVc,p = 720 in2 Mod factor for edge effect;yed,V,p = 1.000 Eccentricity of loading;e’V,p = 0 in Modification factor of eccentric loading;yec,V,p = min(1, 1 / (1 + ((2 ´ e'V,p) / (3 ´ c'a1,p)))) = 1.000 Modification factor for cracking;yc,V = 1.000 Modification factor for edge distance;yh,V,p = max(Ö(1.5 ´ c'a1,p / ha), 1) = 1.472 Nominal concrete break out strength in shear;Vcbg,p = 2 ´ AVc,p / AVco,p ´ yec,V,p ´ yed,V,p ´ yc,V ´ yh,V,p ´ Vb,p = 55.77 kips Concrete break out strength in shear;fVcbg,p = fv,c ´Vcbg,p = 39.04 kips PASS - Shear breakout strength parallel to edge exceeds shear in bolts Project: Bank Of America Project No: 18002541.00 Page: Location:Design By: AARCLA Date: 5/1/2019 Pryout strength of anchor in shear (D.6.3)2' 2.0"8.0"2' 2.0"2' 2.0"8.0"2' 2.0" Plan on foundation Concrete breakout - tension 16 kips 5'1'8"Section A-A Coeff for basic breakout strength in tension;kc = 24 Breakout strength for single anchor in tension;Nb = kc ´ la ´ Ö(f'c ´ 1 psi) ´ hef1.5 ´ 1 in0.5 = 29.74 kips Projected area for groups of anchors;ANc = 768 in2 Projected area of a single anchor;ANco = 9 ´ hef2 = 576 in2 Min dist center of anchor to edge of concrete;ca,min = 26 in Mod factor for groups loaded eccentrically;yec,N = min(1 / (1 + ((2 ´ e'N) / (3 ´ hef))), 1) = 1.000 Modification factor for edge effects;yed,N = 1.0 = 1.000 Modification factor for no cracking at service loads;yc,N = 1.000 Modification factor for cracked concrete;ycp,N = 1.000 Nominal concrete breakout strength;Ncbg = ANc / ANco ´ yed,N ´ yc,N ´ ycp,N ´ Nb = 39.66 kips Concrete breakout strength;fNcbg = ft,c ´ Ncbg = 25.78 kips Coefficient of pryout strength;kcp = 2.0 Nominal pryout strength of anchor in shear;Vcpg = kcp ´ Ncbg = 79.32 kips Pryout strength of anchor in shear;fVcpg = fv,cB ´ Vcpg = 55.52 kips PASS - Pryout strength of anchor exceeds shear in bolts ;