Loading...
HomeMy WebLinkAboutM003.016023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. Re: The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by ProBuild (CarterLee Bldg Components). April 3,2020 Liu, Xuegang Pages or sheets covered by this seal: I40867012 thru I40867069 My license renewal date for the state of Indiana is July 31, 2020. B20000974 Pyatt - 71 TG - Patel/Sharma IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2. 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss CG01 Truss Type Diagonal Hip Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867012 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:46 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-etUd5Oii5gJOCpkhbODxO6xBsKoP6miX?42K89zUQd7 Scale = 1:13.3 1 2 5 3 4 3x8 2-9-15 2-9-15 -1-5-0 1-5-0 2-9-15 2-9-15 0-9-02-1-05.66 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.16 0.06 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 0.00 (loc) 4-5 4-5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-9-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-4-9, 3=Mechanical, 4=Mechanical Max Horz 5=62(LC 8) Max Uplift 5=-28(LC 8), 3=-21(LC 5) Max Grav 5=226(LC 1), 3=58(LC 27), 4=50(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 32 lb down and 27 lb up at 2-9-3 on top chord, and 10 lb down and 0 lb up at 2-9-3 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 4-5=-20 Concentrated Loads (lb) Vert: 4=0(B) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss CG02 Truss Type Diagonal Hip Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867013 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:47 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-632?IkjKszRFqzIt86kAxKUKmk4IrDyhDkothbzUQd6 Scale = 1:16.2 1 2 5 6 7 3 8 9 4 3x8 4-10-0 4-9-8 -1-8-0 1-8-0 4-10-0 4-10-0 0-9-02-8-32-3-132-8-34.80 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.28 0.21 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.04 0.01 (loc) 4-5 4-5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 14 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-4-13, 3=Mechanical, 4=Mechanical Max Horz 5=75(LC 8) Max Uplift 5=-31(LC 8), 3=-25(LC 8) Max Grav 5=313(LC 1), 3=116(LC 1), 4=85(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-270/64 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 36 lb down and 15 lb up at 2-3-13, and 47 lb down and 34 lb up at 2-9-13 on top chord, and 3 lb down and 3 lb up at 2-3-13, and 5 lb down at 2-9-13 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 4-5=-20 Concentrated Loads (lb) Vert: 8=3(B) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss CG03 Truss Type Diagonal Hip Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867014 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:48 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-aFcNW4kydHZ6R6t4ipFPTX1VW8QXagCqSOXRD2zUQd5 Scale = 1:16.2 1 2 5 6 7 3 8 9 4 3x8 4-10-0 4-9-8 -1-8-0 1-8-0 4-10-0 4-10-0 0-9-02-8-30-4-62-3-132-8-34.80 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.28 0.21 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.04 0.01 (loc) 4-5 4-5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 14 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-4-13, 3=Mechanical, 4=Mechanical Max Horz 5=75(LC 8) Max Uplift 5=-31(LC 8), 3=-25(LC 8) Max Grav 5=313(LC 1), 3=116(LC 1), 4=85(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-270/64 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 36 lb down and 15 lb up at 2-3-13, and 47 lb down and 34 lb up at 2-9-13 on top chord, and 3 lb down and 3 lb up at 2-3-13, and 5 lb down at 2-9-13 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 4-5=-20 Concentrated Loads (lb) Vert: 8=3(F) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss CG04 Truss Type Jack-Closed Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867015 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:48 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-aFcNW4kydHZ6R6t4ipFPTX1WG8T5ae?qSOXRD2zUQd5 Scale = 1:16.4 1 2 3 7 6 8 9 10 4 5 3x6 2x4 2x4 2x4 3x4 2-7-11 2-7-11 2-9-15 0-2-4 -1-5-0 1-5-0 2-7-11 2-7-11 2-9-15 0-2-4 0-9-00-8-42-8-41-8-72-8-45.66 12 Plate Offsets (X,Y)-- [8:0-2-0,0-0-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.23 0.04 0.14 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 6-7 6-7 4 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 12 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-9-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)4=Mechanical, 5=Mechanical, 9=0-2-2 Max Horz 9=63(LC 8) Max Uplift 5=-25(LC 14), 9=-39(LC 8) Max Grav 4=49(LC 19), 5=20(LC 1), 9=207(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 9. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 82 lb up at 1-9-13 on top chord. The design/selection of such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 10=27(B) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss GE01 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867016 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:51 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-?qIW86mqvCxhIacfNxp65Ae31LVhn09G8Lm5qNzUQd2 Scale = 1:61.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 55 56 3x6 5x6 3x6 3x8 3x6 3x8 3x6 35-2-0 35-2-0 -1-0-0 1-0-0 17-7-0 17-7-0 35-2-0 17-7-0 36-2-0 1-0-0 0-6-129-4-40-6-126.00 12 Plate Offsets (X,Y)-- [2:0-3-8,Edge], [2:0-0-11,0-6-0], [2:0-0-5,0-0-11], [9:0-2-13,0-1-8], [21:0-2-13,0-1-8], [28:0-0-5,0-0-11], [28:0-0-11,0-6-0], [28:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.07 0.05 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 0.00 0.00 (loc) 28 29 28 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 205 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud *Except* 15-42,14-43,16-41: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 15-42, 14-43, 16-41 REACTIONS.All bearings 35-2-0. (lb) - Max Horz 2=-135(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 40, 39, 38, 37, 35, 34, 33, 32, 31, 30 Max Grav All reactions 250 lb or less at joint(s) 2, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 41, 40, 28, 39, 38, 37, 35, 34, 33, 32, 31, 30 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-6-3, Exterior(2N) 2-6-3 to 17-7-0, Corner(3R) 17-7-0 to 21-1-3, Exterior(2N) 21-1-3 to 36-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 40, 39, 38, 37, 35, 34, 33, 32, 31, 30. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss GE01A Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867017 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:53 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-xDQGZoo5RpBPYum1VMraAbkPQ9A6FwfZcfFCuFzUQd0 Scale = 1:60.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 53 54 3x6 5x6 3x6 3x8 3x6 3x8 3x6 35-2-0 35-2-0 17-7-0 17-7-0 35-2-0 17-7-0 0-6-129-4-40-6-126.00 12 Plate Offsets (X,Y)-- [1:0-3-8,Edge], [1:0-0-11,0-6-0], [1:0-0-5,0-0-11], [8:0-2-13,0-1-8], [20:0-2-13,0-1-8], [27:0-0-5,0-0-11], [27:0-0-11,0-6-0], [27:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.08 0.05 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 27 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 202 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud *Except* 14-40,13-41,15-39: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 14-40, 13-41, 15-39 REACTIONS.All bearings 35-2-0. (lb) - Max Horz 1=131(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 38, 37, 36, 35, 33, 32, 31, 30, 29, 28 Max Grav All reactions 250 lb or less at joint(s) 1, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 39, 38, 27, 37, 36, 35, 33, 32, 31, 30, 29, 28 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-0-0 to 3-6-3, Exterior(2N) 3-6-3 to 17-7-0, Corner(3R) 17-7-0 to 21-1-3, Exterior(2N) 21-1-3 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 38, 37, 36, 35, 33, 32, 31, 30, 29, 28. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss GE02 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867018 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:54 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-PPzem7ojC7JF91LD34MpjoGaiZWo_O7jqJ_lQhzUQd? Scale = 1:27.2 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 21 22 3x6 4x6 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 10-7-0 10-7-0 -1-0-0 1-0-0 5-3-8 5-3-8 10-7-0 5-3-8 11-7-0 1-0-0 0-9-04-3-50-9-08.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [10:0-1-3,0-1-12], [12:0-0-0,0-1-12], [12:Edge,0-3-8], [20:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.11 0.02 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.01 0.00 (loc) 11 11 12 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 45 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 10-7-0. (lb) - Max Horz 20=-79(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 20, 12, 17, 18, 19, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 20, 12, 16, 17, 18, 19, 15, 14, 13 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 5-3-8, Corner(3R) 5-3-8 to 8-3-8, Exterior(2N) 8-3-8 to 11-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 18, 19, 15, 14, 13. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss GE04 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867019 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:56 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-Mo5PBpqzkkZzPLUcAVPHoDMw?MCDSHg0IdTsUazUQcz Scale = 1:42.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 27 26 25 24 23 22 21 20 19 18 4x6 3x6 3x4 5x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 3x6 3x4 17-8-0 17-8-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 18-8-0 1-0-0 0-9-06-7-110-9-08.00 12 Plate Offsets (X,Y)-- [2:0-3-13,0-0-3], [16:0-3-13,0-0-3], [23:0-3-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.06 0.03 0.10 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 0.00 (loc) 16 17 16 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 91 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud SLIDER Left 2x4 SPF-S Stud 1-11-0, Right 2x4 SPF-S Stud 1-11-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 17-8-0. (lb) - Max Horz 2=-102(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 24, 25, 26, 27, 28, 22, 21, 20, 19, 18 Max Grav All reactions 250 lb or less at joint(s) 2, 23, 24, 25, 26, 27, 28, 22, 21, 20, 19, 18, 16 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-2-0, Exterior(2N) 2-2-0 to 8-10-0, Corner(3R) 8-10-0 to 11-10-0, Exterior(2N) 11-10-0 to 18-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 25, 26, 27, 28, 22, 21, 20, 19, 18. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss GE06 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867020 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:57 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-q_fnP9rbV2hq0V3okCwWLRu35mYtBlg9XHDP00zUQcy Scale = 1:26.3 1 2 3 4 5 6 7 8 9 16 15 14 13 12 11 10 17 18 3x4 3x4 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 -1-0-0 1-0-0 11-3-8 11-3-8 0-5-14-7-144.50 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.16 0.06 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 0.00 0.00 (loc) 1 1 10 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 46 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 11-3-8. (lb) - Max Horz 2=120(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 10, 2, 11, 13, 15 Max Grav All reactions 250 lb or less at joint(s) 10, 2, 11, 12, 13, 14, 15 except 16=251(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 11-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 2, 11, 13, 15. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss GE06A Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867021 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:58 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-IAD9cVrDGMphefe?IvRlteRGVAubwCrIlxyzZTzUQcx Scale = 1:14.2 1 2 3 4 5 8 7 6 9 3x4 3x4 3x4 2x4 2x4 2x4 2x4 -1-0-0 1-0-0 4-11-8 4-11-8 0-5-12-3-64.50 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.06 0.03 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 0.00 (loc) 1 1 6 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 17 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 4-11-8. (lb) - Max Horz 2=56(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7 Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7, 8 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-3-8, Exterior(2N) 2-3-8 to 4-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J01 Truss Type Jack-Open Qty 4 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867022 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:58 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-IAD9cVrDGMphefe?IvRlteRD5AtAwCgIlxyzZTzUQcx Scale = 1:19.9 1 2 5 6 7 3 4 3x6 3-11-4 3-11-4 -1-0-0 1-0-0 3-11-4 3-11-4 0-9-03-4-82-11-53-4-88.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [5:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.21 0.12 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.01 -0.02 0.01 (loc) 4-5 4-5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 12 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=91(LC 12) Max Uplift 3=-34(LC 12) Max Grav 5=228(LC 1), 3=97(LC 1), 4=70(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 3-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J02 Truss Type Jack-Open Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867023 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:34:59 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-mNnXqrsr1fxYGpDBrdy_Qs_QNaEofewS_biW5vzUQcw Scale = 1:13.3 1 2 5 3 43x6 1-11-11 1-11-11 -1-0-0 1-0-0 1-11-11 1-11-11 0-9-02-0-138.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [5:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.11 0.03 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 5 5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-11-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=63(LC 12) Max Uplift 5=-11(LC 12), 3=-15(LC 12) Max Grav 5=163(LC 1), 3=39(LC 17), 4=33(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J03 Truss Type Jack-Open Qty 5 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867024 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:00 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-EZLw1BtUoz3PtyoNPKTDy3WZs_YsO5AbDFR3dLzUQcv Scale = 1:19.2 1 2 5 6 7 3 4 3x6 3-8-12 3-8-12 -1-0-0 1-0-0 3-8-12 3-8-12 0-9-03-2-132-9-103-2-138.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [5:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.19 0.11 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.01 -0.02 0.01 (loc) 4-5 4-5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 11 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-8-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=88(LC 12) Max Uplift 3=-32(LC 12) Max Grav 5=221(LC 1), 3=91(LC 1), 4=66(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 3-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J04 Truss Type Jack-Open Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867025 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:01 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-iluIEXu6ZGBGV6Naz2_SVH3mpNvT7YQlRvBd9nzUQcu Scale = 1:11.5 1 2 5 3 43x6 1-5-4 1-5-4 -1-0-0 1-0-0 1-5-4 1-5-4 0-9-01-8-81-3-51-8-88.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [5:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.12 0.02 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 -0.00 (loc) 5 5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-5-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=55(LC 12) Max Uplift 5=-16(LC 12), 3=-9(LC 9) Max Grav 5=151(LC 1), 3=18(LC 17), 4=22(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J05 Truss Type Jack-Open Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867026 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:01 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-iluIEXu6ZGBGV6Naz2_SVH3mpNvT7YQlRvBd9nzUQcu Scale = 1:11.5 1 2 5 3 43x6 1-5-4 1-5-4 -1-0-0 1-0-0 1-5-4 1-5-4 0-9-01-8-81-3-51-8-88.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [5:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.12 0.02 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 -0.00 (loc) 5 5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-5-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=55(LC 12) Max Uplift 5=-16(LC 12), 3=-9(LC 9) Max Grav 5=151(LC 1), 3=18(LC 17), 4=22(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J06 Truss Type Jack-Open Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867027 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:02 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-AySgSsvkKaK77GymXlWh2UcxFnF5s?gugZwAiEzUQct Scale = 1:12.6 1 2 5 3 4 3x4 3x6 2-8-15 2-8-15 -1-0-0 1-0-0 2-8-15 2-8-15 0-6-121-11-31-6-91-11-36.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-1-3], [2:0-1-5,0-4-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.07 0.06 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 2-4 2-4 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-8-15 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=44(LC 12) Max Uplift 3=-19(LC 12), 2=-18(LC 12) Max Grav 3=61(LC 1), 2=186(LC 1), 4=51(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 2-8-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J07 Truss Type Jack-Open Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867028 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:03 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-e802fCvM4uS_kQXy4T1wai86_BbKbSw1vDgkEgzUQcs Scale = 1:12.6 1 2 5 3 4 3x4 3x6 2-8-15 2-8-15 -1-0-0 1-0-0 2-8-15 2-8-15 0-6-121-11-31-6-91-11-36.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-1-3], [2:0-1-5,0-4-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.07 0.06 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 2-4 2-4 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 2-8-15 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=44(LC 12) Max Uplift 3=-19(LC 12), 2=-18(LC 12) Max Grav 3=61(LC 1), 2=186(LC 1), 4=51(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 2-8-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J08 Truss Type Monopitch Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867029 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:04 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-7KaQtYw_rBarMa68eAY97vhGwbwHKv9B8tPHm6zUQcr Scale = 1:16.6 1 2 3 5 4 3x4 3x4 3x4 3x6 1-10-2 1-10-2 -1-1-14 1-1-14 1-10-2 1-10-2 1-2-00-8-42-8-40-3-88.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.19 0.08 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 5 5 4 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-10-2 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. (size)4=Mechanical, 5=0-1-8 Max Horz 5=70(LC 9) Max Uplift 4=-43(LC 9), 5=-19(LC 12) Max Grav 4=54(LC 10), 5=173(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss J09 Truss Type Jack-Open Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867030 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:04 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-7KaQtYw_rBarMa68eAY97vhGzbxeKv9B8tPHm6zUQcr Scale = 1:14.4 1 2 5 3 4 3x4 3x4 -1-1-14 1-1-14 1-2-5 1-2-5 1-2-00-8-42-3-10-3-81-9-132-3-18.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.18 0.05 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 5 5 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 6 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-2-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 4=Mechanical, 5=0-1-8 Max Horz 5=67(LC 12) Max Uplift 3=-18(LC 9), 4=-25(LC 12) Max Grav 3=9(LC 10), 4=22(LC 10), 5=169(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss JG01 Truss Type Monopitch Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867031 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:05 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-bW8p4uxccVii_khLCu3Of7EQm?Bb3MPKMX9qIZzUQcq Scale = 1:19.9 1 2 34 3x4 3x4 4x6 3-11-4 3-11-4 3-11-4 3-11-4 0-9-03-4-88.00 12 Plate Offsets (X,Y)-- [1:0-0-6,0-0-8], [1:0-0-11,0-4-9] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.25 0.39 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.01 -0.03 -0.00 (loc) 1-3 1-3 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 16 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 1=0-3-8 Max Horz 1=79(LC 5) Max Grav 3=341(LC 1), 1=334(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 383 lb down at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 1-3=-20 Concentrated Loads (lb) Vert: 4=-383(F) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss JG02 Truss Type Half Hip Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867032 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:06 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-3jiBIEyENpqYbtFXmbadCKmczObUopfUbBuOr?zUQcp Scale = 1:13.2 1 2 3 4 6 57 3x4 3x4 3x4 3x6 3-11-4 3-11-4 -1-0-0 1-0-0 3-11-4 3-11-4 0-9-02-1-08.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [3:0-2-0,0-2-3], [6:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.15 0.09 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.01 -0.01 0.00 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=Mechanical, 6=0-3-8 Max Horz 6=57(LC 9) Max Uplift 5=-18(LC 9), 6=-25(LC 12) Max Grav 5=134(LC 1), 6=224(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 80 lb down and 62 lb up at 2-0-0 on top chord, and 13 lb down and 3 lb up at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 7=3(B) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss JG03 Truss Type Half Hip Girder Qty 2 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867033 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:07 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-XvGZVayt86yPD1qjJI5slYJmooxKXGvdqrexNRzUQco Scale = 1:16.4 1 2 3 4 6 57 3x4 3x4 3x4 3x6 3-8-12 3-8-12 -1-0-0 1-0-0 3-8-12 3-8-12 0-9-02-8-68.00 12 Plate Offsets (X,Y)-- [2:0-1-3,0-1-12], [3:0-2-0,0-2-3], [6:0-0-0,0-1-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.21 0.12 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.01 -0.01 -0.00 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-8-12 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=Mechanical, 6=0-3-8 Max Horz 6=74(LC 5) Max Uplift 5=-19(LC 5), 6=-22(LC 8) Max Grav 5=195(LC 1), 6=234(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 84 lb down and 49 lb up at 2-11-1 on top chord, and 47 lb down at 2-11-1 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 3=-59(B) 7=-27(B) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss LAY01 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867034 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:08 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-?5qxiwzVvQ4GrBPwt0c5HlszLCIZGiQn2VNVvtzUQcn Scale = 1:53.7 1 2 3 4 5 6 7 12 11 10 9 83x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 14-6-2 14-6-2 7-3-1 7-3-1 14-6-2 7-3-1 0-0-48-8-100-0-414.42 12 Plate Offsets (X,Y)-- [4:Edge,0-1-14] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.10 0.06 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 67 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 4-10 REACTIONS.All bearings 14-6-2. (lb) - Max Horz 1=-164(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 11, 12, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 9 except 12=278(LC 17), 8=278(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-12 to 3-3-1, Interior(1) 3-3-1 to 7-3-1, Exterior(2R) 7-3-1 to 10-3-1, Interior(1) 10-3-1 to 14-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11, 12, 9, 8. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss LAY02 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867035 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:09 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-TINJwG_7gkC7TL_6Rj8KqzO8Xce1?AVwH972RKzUQcm Scale = 1:29.3 1 2 3 4 5 8 7 6 9 10 3x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 9-8-10 9-8-10 4-10-5 4-10-5 9-8-10 4-10-5 0-0-44-4-90-0-410.82 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.07 0.04 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 32 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 9-8-10. (lb) - Max Horz 1=-69(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-4-9 to 3-4-9, Interior(1) 3-4-9 to 4-10-5, Exterior(2R) 4-10-5 to 7-10-5, Interior(1) 7-10-5 to 9-4-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss LAY03 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867036 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:09 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-TINJwG_7gkC7TL_6Rj8KqzO7SceK?AXwH972RKzUQcm Scale = 1:22.7 1 2 3 5 43x4 3x4 3x4 2x4 2x4 3-3-1 3-3-1 0-0-43-10-1514.42 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.14 0.02 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 4 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-3-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=3-3-1, 4=3-3-1, 5=3-3-1 Max Horz 1=92(LC 9) Max Uplift 1=-50(LC 10), 4=-35(LC 9), 5=-57(LC 12) Max Grav 1=85(LC 9), 4=79(LC 17), 5=174(LC 17) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T01 Truss Type Common Qty 2 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867037 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:11 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-PgV4Lx?NCLSrif8VY8AovOTM9P9eT?8DlTc9WCzUQck Scale = 1:68.7 1 2 3 4 5 6 7 8 9 14 13 12 11 10 21 22 23 24 3x6 6x10 3x6 5x8 3x6 3x8 3x6 2x4 3x6 2x4 5x8 3x6 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 -1-0-0 1-0-0 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 36-2-0 1-0-0 0-6-129-4-40-6-126.00 12 Plate Offsets (X,Y)-- [2:0-0-5,0-0-11], [2:0-0-11,0-6-0], [2:0-3-8,Edge], [8:0-0-5,0-0-11], [8:0-0-11,0-6-0], [8:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.64 0.74 0.37 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.13 -0.33 0.11 (loc) 12-14 12-14 8 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 129 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 7-10,3-14: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 7-12, 3-12 REACTIONS. (size)2=0-3-8, 8=0-3-8 Max Horz 2=135(LC 11) Max Grav 2=1467(LC 1), 8=1467(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2440/34, 3-5=-1697/95, 5-7=-1697/95, 7-8=-2440/34 BOT CHORD 2-14=0/2091, 12-14=0/2091, 10-12=0/2091, 8-10=0/2091 WEBS 5-12=0/912, 7-12=-808/64, 7-10=0/342, 3-12=-808/64, 3-14=0/342 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-6-3, Interior(1) 2-6-3 to 17-7-0, Exterior(2R) 17-7-0 to 21-1-3, Interior(1) 21-1-3 to 36-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T01A Truss Type Common Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867038 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:12 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-ut3SYH0?zfaiKojh6sh1Sb0WupVtCSMMz7Li2fzUQcj Scale = 1:68.0 1 2 3 4 5 6 7 8 13 12 11 10 9 20 21 22 23 3x6 6x10 3x6 6x6 3x6 3x8 3x6 2x4 3x6 2x4 6x6 3x6 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 36-2-0 1-0-0 0-6-129-4-40-6-126.00 12 Plate Offsets (X,Y)-- [1:0-0-11,0-0-5], [1:0-6-0,0-0-11], [7:0-0-11,0-0-5], [7:0-6-0,0-0-11] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.64 0.74 0.37 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.13 -0.33 0.11 (loc) 9-11 9-11 7 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 128 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 6-9,2-13: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 6-11, 2-11 REACTIONS. (size)1=Mechanical, 7=0-3-8 Max Horz 1=-133(LC 10) Max Grav 1=1406(LC 1), 7=1468(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2446/41, 2-4=-1699/97, 4-6=-1699/95, 6-7=-2441/34 BOT CHORD 1-13=0/2097, 11-13=0/2097, 9-11=0/2092, 7-9=0/2092 WEBS 4-11=0/914, 6-11=-808/65, 6-9=0/342, 2-11=-814/65, 2-13=0/343 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-6-3, Interior(1) 3-6-3 to 17-7-0, Exterior(2R) 17-7-0 to 21-1-3, Interior(1) 21-1-3 to 36-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T01B Truss Type Roof Special Qty 2 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867039 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:13 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-M3dqmd1ekyiZxyItgZCG_pZixDrUxsnWCn5Fa5zUQci Scale = 1:65.0 1 2 3 4 5 6 7 8 9 10 17 16 15 12 11 14 13 24 25 26 27 3x6 5x6 3x6 6x6 3x6 6x6 3x4 3x4 6x6 6x6 3x6 3x12 5x12 5x12 3x6 3x12 8-10-3 8-10-3 16-2-0 7-3-13 19-8-0 3-6-0 26-3-13 6-7-13 35-2-0 8-10-3 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 36-2-0 1-0-0 0-6-129-4-40-6-122-0-06.00 12 Plate Offsets (X,Y)-- [1:0-0-11,0-0-5], [1:0-6-0,0-0-11], [9:0-0-11,0-0-5], [9:0-6-0,0-0-11], [11:0-3-8,0-1-8], [12:0-2-8,Edge], [13:0-5-4,0-2-4], [14:0-4-4,0-2-8], [15:0-2-8,Edge], [16:0-2-9,0-1-8], [17:0-3-8,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.55 0.65 0.55 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.16 -0.32 0.14 (loc) 13-14 13-14 9 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 159 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 6-12,12-15: 2x4 SPF-S Stud WEBS 2x4 SPF-S Stud *Except* 14-17,11-13: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. Except: 10-0-0 oc bracing: 14-15, 12-13 JOINTS 1 Brace at Jt(s): 14, 13 REACTIONS. (size)1=Mechanical, 9=0-3-8 Max Horz 1=-133(LC 10) Max Grav 1=1406(LC 1), 9=1468(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2433/41, 2-4=-2315/64, 4-5=-2237/107, 5-6=-2334/104, 6-8=-2405/54, 8-9=-2424/34 BOT CHORD 1-17=0/2082, 9-11=0/2073, 4-14=-269/116, 13-14=0/1752 WEBS 2-17=-401/80, 14-17=0/2102, 5-14=-66/998, 5-13=-54/1009, 8-11=-465/74, 11-13=0/2122 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-6-3, Interior(1) 3-6-3 to 17-7-0, Exterior(2R) 17-7-0 to 21-1-3, Interior(1) 21-1-3 to 36-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. DOTTED MEMBERS TO BE REMOVED. CONNECTOR PLATES TO BE CUT CLEANLY AND ACCURATELY AND THE REMAINING PLATES MUST BE FULLY EMBEDDED AND UNDISTURBED. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T01C Truss Type ROOF SPECIAL Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867040 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:15 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-ISlbAJ3uGayHBGRGn_Ek3Ee2G1XyPmGpf4aMf_zUQcg Scale: 3/16"=1' 1 2 3 4 5 6 7 8 9 16 15 14 11 10 13 12 23 24 25 26 3x6 5x6 3x6 6x6 3x6 5x6 3x4 3x4 5x6 5x8 3x6 3x12 5x12 5x12 3x6 3x12 8-10-3 8-10-3 16-2-0 7-3-13 19-8-0 3-6-0 26-3-13 6-7-13 35-2-0 8-10-3 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 0-6-129-4-40-6-122-0-06.00 12 Plate Offsets (X,Y)-- [1:0-0-11,0-0-5], [1:0-6-0,0-0-11], [9:0-0-5,0-0-11], [9:0-0-11,0-6-0], [9:0-3-8,Edge], [10:0-3-8,0-1-8], [11:0-3-0,0-3-0], [12:0-5-4,0-2-4], [13:0-4-4,0-2-8], [14:0-2-8,0-3-0], [15:0-2-9,0-1-8], [16:0-3-8,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.56 0.65 0.55 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.16 -0.32 0.14 (loc) 12-13 12-13 9 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 158 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 6-11,11-14: 2x4 SPF-S Stud WEBS 2x4 SPF-S Stud *Except* 13-16,10-12: 2x4 SPF No.2 WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. Except: 10-0-0 oc bracing: 13-14, 11-12 JOINTS 1 Brace at Jt(s): 13, 12 REACTIONS. (size)1=Mechanical, 9=Mechanical Max Horz 1=-127(LC 10) Max Grav 1=1407(LC 1), 9=1407(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2434/41, 2-4=-2317/68, 4-5=-2239/117, 5-6=-2337/108, 6-8=-2408/66, 8-9=-2431/41 BOT CHORD 1-16=0/2084, 9-10=0/2079, 4-13=-269/115, 12-13=0/1754 WEBS 2-16=-401/86, 13-16=0/2103, 5-13=-69/998, 5-12=-56/1011, 8-10=-465/77, 10-12=0/2129 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-6-3, Interior(1) 3-6-3 to 17-7-0, Exterior(2R) 17-7-0 to 21-1-3, Interior(1) 21-1-3 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. DOTTED MEMBERS TO BE REMOVED. CONNECTOR PLATES TO BE CUT CLEANLY AND ACCURATELY AND THE REMAINING PLATES MUST BE FULLY EMBEDDED AND UNDISTURBED. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T01D Truss Type Common Qty 7 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867041 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:16 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-meIzOf3W1t48oQ0SLhmzcRBCxQsq8GMyukJwBQzUQcf Scale = 1:67.2 1 2 3 4 5 6 7 12 11 10 9 8 19 20 21 22 3x6 6x10 3x6 6x6 3x6 3x8 3x6 2x4 3x6 2x4 6x6 3x6 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 8-10-3 8-10-3 17-7-0 8-8-13 26-3-13 8-8-13 35-2-0 8-10-3 0-6-129-4-40-6-126.00 12 Plate Offsets (X,Y)-- [1:0-0-11,0-0-5], [1:0-6-0,0-0-11], [7:0-0-11,0-0-5], [7:0-6-0,0-0-11] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.63 0.73 0.37 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.13 -0.33 0.10 (loc) 8-10 8-10 7 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 127 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Except* 6-8,2-12: 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 6-10, 2-10 REACTIONS. (size)1=Mechanical, 7=Mechanical Max Horz 1=127(LC 11) Max Grav 1=1407(LC 1), 7=1407(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2448/41, 2-4=-1701/97, 4-6=-1701/97, 6-7=-2448/41 BOT CHORD 1-12=0/2099, 10-12=0/2099, 8-10=0/2099, 7-8=0/2099 WEBS 4-10=0/916, 6-10=-814/65, 6-8=0/343, 2-10=-814/65, 2-12=0/343 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=35ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-6-3, Interior(1) 3-6-3 to 17-7-0, Exterior(2R) 17-7-0 to 21-1-3, Interior(1) 21-1-3 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T02 Truss Type Common Qty 2 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867042 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:17 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-EqsLb?48nBD?QabevPHC9fjQuqKLtmf57O3TjszUQce Scale = 1:27.3 1 2 3 4 5 8 7 6 9 10 4x6 3x8 3x8 2x4 5-3-8 5-3-8 10-7-0 5-3-8 -1-0-0 1-0-0 5-3-8 5-3-8 10-7-0 5-3-8 11-7-0 1-0-0 0-9-04-3-50-9-08.00 12 Plate Offsets (X,Y)-- [6:0-4-2,0-1-8], [8:0-4-2,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.43 0.20 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.03 0.00 (loc) 6-7 6-7 6 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 34 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)8=0-3-8, 6=0-3-8 Max Horz 8=-79(LC 10) Max Uplift 8=-18(LC 12), 6=-18(LC 12) Max Grav 8=480(LC 1), 6=480(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-438/69, 3-4=-438/69, 2-8=-430/120, 4-6=-430/120 BOT CHORD 7-8=0/285, 6-7=0/285 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-3-8, Exterior(2R) 5-3-8 to 8-3-8, Interior(1) 8-3-8 to 11-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T02A Truss Type Common Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867043 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:17 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-EqsLb?48nBD?QabevPHC9fjQwqKRtmh57O3TjszUQce Scale = 1:27.3 1 2 3 4 7 6 5 8 9 3x8 4x6 3x8 2x4 5-3-8 5-3-8 10-7-0 5-3-8 5-3-8 5-3-8 10-7-0 5-3-8 11-7-0 1-0-0 0-9-04-3-50-9-08.00 12 Plate Offsets (X,Y)-- [1:0-4-2,0-1-8], [5:0-4-2,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.43 0.20 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.04 0.00 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 33 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)7=0-3-8, 5=0-3-8 Max Horz 7=-76(LC 10) Max Uplift 5=-19(LC 12) Max Grav 7=408(LC 1), 5=484(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-437/70, 2-3=-443/70, 1-7=-353/77, 3-5=-432/120 BOT CHORD 6-7=0/290, 5-6=0/290 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-3-8, Exterior(2R) 5-3-8 to 8-3-8, Interior(1) 8-3-8 to 11-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T02B Truss Type Common Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867044 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:18 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-i1QjpL5mYVLs2jArT6oRhsGbrEhscD_FM2o0GIzUQcd Scale = 1:27.3 1 2 3 4 7 6 5 8 9 3x8 4x6 3x8 2x4 5-2-0 5-2-0 10-5-8 5-3-8 5-2-0 5-2-0 10-5-8 5-3-8 11-5-8 1-0-0 0-10-04-3-50-9-08.00 12 Plate Offsets (X,Y)-- [5:0-4-2,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.41 0.19 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.04 0.00 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 32 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)7=Mechanical, 5=0-3-8 Max Horz 7=-77(LC 10) Max Uplift 5=-19(LC 12) Max Grav 7=403(LC 1), 5=479(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-426/70, 2-3=-432/70, 1-7=-346/77, 3-5=-427/121 BOT CHORD 6-7=0/281, 5-6=0/281 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-2-0, Exterior(2R) 5-2-0 to 8-2-0, Interior(1) 8-2-0 to 11-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T03 Truss Type Hip Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867045 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:19 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-AD_50g6OJoTiftl10qJgE4pmueriLanOaiYaolzUQcc Scale = 1:40.7 1 2 3 4 5 6 7 8 9 12 11 10 21 22 23 24 25 26 4x8 4x8 3x8 3x4 3x6 3x6 3x6 3x6 3x8 3x4 5-11-4 5-11-4 16-7-12 10-8-8 22-7-0 5-11-4 -1-0-0 1-0-0 5-11-4 5-11-4 11-3-8 5-4-4 16-7-12 5-4-4 22-7-0 5-11-4 23-7-0 1-0-0 0-9-04-6-114-8-80-9-04-6-118.00 12 Plate Offsets (X,Y)-- [2:0-4-13,Edge], [4:0-4-0,0-1-9], [6:0-4-0,0-1-9], [8:0-4-13,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MS 0.40 0.85 0.45 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.35 -0.71 0.05 (loc) 10-12 10-12 8 l/defl >785 >380 n/a L/d 240 180 n/a PLATES MT20 Weight: 82 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud SLIDER Left 2x4 SPF-S Stud 1-11-0, Right 2x4 SPF-S Stud 1-11-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-7-10 oc purlins, except 2-0-0 oc purlins (5-8-7 max.): 4-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 8=0-3-8 Max Horz 2=71(LC 11) Max Uplift 2=-6(LC 12), 8=-6(LC 12) Max Grav 2=963(LC 1), 8=963(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1230/0, 4-5=-950/16, 5-6=-950/16, 6-8=-1230/0 BOT CHORD 2-12=0/961, 10-12=0/1195, 8-10=0/961 WEBS 4-12=0/445, 5-12=-378/58, 5-10=-378/58, 6-10=0/445 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-11-4, Exterior(2R) 5-11-4 to 10-2-3, Interior(1) 10-2-3 to 16-7-12, Exterior(2R) 16-7-12 to 20-10-11, Interior(1) 20-10-11 to 23-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T04 Truss Type Common Qty 2 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867046 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:20 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-fPYUE06146bZH1KDaXqvmHLpD2BL44?YpMH7KBzUQcb Scale = 1:41.6 1 2 3 4 5 6 7 8 17 18 19 20 21 22 4x8 3x4 5x12 5x8 4x8 3x4 8-10-0 8-10-0 17-8-0 8-10-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 18-8-0 1-0-0 0-9-06-7-110-9-08.00 12 Plate Offsets (X,Y)-- [2:0-3-8,Edge], [4:0-5-4,0-2-8], [6:0-4-13,Edge], [8:0-6-0,0-3-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MS 0.93 0.89 0.26 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.21 -0.34 0.07 (loc) 8-11 8-11 2 l/defl >999 >626 n/a L/d 240 180 n/a PLATES MT20 Weight: 57 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud SLIDER Left 2x4 SPF-S Stud 1-11-0, Right 2x4 SPF-S Stud 1-11-0 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=102(LC 11) Max Uplift 2=-9(LC 12), 6=-9(LC 12) Max Grav 2=874(LC 17), 6=874(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-908/141, 4-6=-908/141 BOT CHORD 2-8=0/720, 6-8=0/720 WEBS 4-8=0/524 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 8-10-0, Exterior(2R) 8-10-0 to 11-10-0, Interior(1) 11-10-0 to 18-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T05 Truss Type Hip Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867047 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:21 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-7b6sRM7frQjQvBvQ8FL8JVu4dRdnpZ5h201htdzUQca Scale = 1:37.5 1 2 3 4 5 6 9 8 7 16 17 18 19 20 21 22 23 4x8 3x8 3x6 2x4 3x6 6x8 3x8 8-0-3 8-0-3 12-7-13 4-7-11 20-8-0 8-0-3 -1-0-0 1-0-0 8-0-3 8-0-3 12-7-13 4-7-11 20-8-0 8-0-3 21-8-0 1-0-0 0-6-124-5-04-6-130-6-124-5-06.00 12 Plate Offsets (X,Y)-- [2:0-0-5,0-0-11], [2:0-0-11,0-6-0], [2:0-3-8,Edge], [3:0-4-6,Edge], [4:0-4-0,0-1-15], [5:0-0-5,0-0-11], [5:0-0-11,0-6-0], [5:0-3-8,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.57 0.49 0.15 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.08 -0.18 0.02 (loc) 9-12 9-12 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 67 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (5-6-2 max.): 3-4. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-3-8, 5=0-3-8 Max Horz 2=-57(LC 10) Max Uplift 2=-7(LC 12), 5=-7(LC 12) Max Grav 2=887(LC 1), 5=887(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1240/71, 3-4=-1023/99, 4-5=-1240/71 BOT CHORD 2-9=0/1027, 7-9=0/1022, 5-7=0/1028 WEBS 3-9=0/251, 4-7=0/251 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 8-0-3, Exterior(2R) 8-0-3 to 12-3-1 , Interior(1) 12-3-1 to 12-7-13, Exterior(2R) 12-7-13 to 16-10-12, Interior(1) 16-10-12 to 21-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T06 Truss Type Monopitch Qty 5 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867048 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:22 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-bogEei8HcjrHWLUciysNriRJNr0zYxkqGgmEP4zUQcZ Scale = 1:28.7 1 2 3 4 7 6 5 8 9 10 4x6 3x8 3x4 3x4 2x4 3x6 5-8-14 5-8-14 11-3-8 5-6-10 -1-0-0 1-0-0 5-8-14 5-8-14 11-3-8 5-6-10 0-5-14-7-140-9-44-7-144.50 12 Plate Offsets (X,Y)-- [8:0-2-8,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.32 0.30 0.51 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.03 -0.07 0.01 (loc) 2-7 2-7 9 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 42 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud OTHERS 2x3 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 9=0-1-8 Max Horz 2=93(LC 12) Max Uplift 2=-1(LC 12), 9=-6(LC 12) Max Grav 2=515(LC 1), 9=421(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-740/29, 6-8=-23/310, 4-8=-23/310 BOT CHORD 2-7=-133/634, 6-7=-133/634 WEBS 3-6=-640/125, 4-9=-423/77 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T06A Truss Type MONOPITCH Qty 8 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867049 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:23 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-3_Ecs29vN1z88V3oFfOcOwzU9FNRHVs_VKWnxWzUQcY Scale = 1:14.2 1 2 3 4 5 3x4 3x4 3x4 4-11-8 4-11-8 -1-0-0 1-0-0 4-10-0 4-10-0 4-11-8 0-1-8 0-5-12-3-61-11-140-3-82-3-64.50 12 Plate Offsets (X,Y)-- [4:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.31 0.22 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.03 -0.06 0.00 (loc) 2-4 2-4 4 l/defl >999 >984 n/a L/d 240 180 n/a PLATES MT20 Weight: 15 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 4=0-1-8 Max Horz 2=56(LC 9) Max Uplift 2=-23(LC 12) Max Grav 2=264(LC 1), 4=178(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 4-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T07 Truss Type MONOPITCH Qty 2 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867050 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:23 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-3_Ecs29vN1z88V3oFfOcOwzTJFNMHVs_VKWnxWzUQcY Scale = 1:27.6 1 2 3 5 4 6 7 3x4 3x6 3x8 MT18HS 3x6 5-2-10 5-2-10 -1-1-14 1-1-14 5-1-2 5-1-2 5-2-10 0-1-8 1-2-00-8-44-11-40-3-84-7-120-3-84-11-48.00 12 Plate Offsets (X,Y)-- [4:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.37 0.23 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.05 0.00 (loc) 4-5 4-5 4 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 MT18HS Weight: 20 lb FT = 20% GRIP 169/123 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-1-8, 4=0-1-8 Max Horz 5=131(LC 9) Max Uplift 5=-15(LC 12), 4=-38(LC 9) Max Grav 5=286(LC 1), 4=201(LC 17) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-1-14 to 1-10-2, Interior(1) 1-10-2 to 5-0-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) All plates are MT20 plates unless otherwise indicated. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Bearing at joint(s) 5, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5, 4. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss T07A Truss Type HALF HIP Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867051 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:24 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-XAn_3OAX8L5?med_pNvrx7WeQfkG0y67k_FLTyzUQcX Scale = 1:23.2 1 2 3 4 6 5 7 8 3x4 3x4 3x4 3x8 3x6 5-2-10 5-2-10 -1-1-14 1-1-14 5-1-2 5-1-2 5-2-10 0-1-8 1-2-00-8-43-10-74-0-40-3-83-6-150-3-83-10-78.00 12 Plate Offsets (X,Y)-- [3:0-2-0,Edge], [5:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.34 0.19 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.05 0.00 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 19 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-10 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)6=0-1-8, 5=0-1-8 Max Horz 6=106(LC 11) Max Uplift 6=-19(LC 12), 5=-31(LC 9) Max Grav 6=286(LC 1), 5=187(LC 17) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-1-14 to 1-10-2, Interior(1) 1-10-2 to 3-10-2, Exterior(2E) 3-10-2 to 5-0-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Bearing at joint(s) 6, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6, 5. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG03 Truss Type Hip Girder Qty 1 Ply 3 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867052 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:26 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-TZvlU4BngyLj?ynNxoxJ0YbzdSFAUkbQBIkSYrzUQcV Scale = 1:38.4 1 2 3 4 5 8 7 6 9 10 11 12 13 14 15 16 17 18 19 20 4x8 5x8 5x8 4x8 5x6 8x8 3x6 8x8 6-9-8 6-9-8 15-9-8 9-0-0 22-7-0 6-9-8 6-9-8 6-9-8 11-3-8 4-6-0 15-9-8 4-6-0 22-7-0 6-9-8 0-9-05-1-85-3-50-9-05-1-88.00 12 Plate Offsets (X,Y)-- [1:0-8-0,0-0-9], [5:0-8-0,0-0-9], [6:0-3-8,0-4-12], [8:0-3-8,0-4-12] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.43 0.80 0.51 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.18 -0.35 0.05 (loc) 6-8 6-8 5 l/defl >999 >759 n/a L/d 240 180 n/a PLATES MT20 Weight: 346 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x6 SPF No.2 *Except* 2-4: 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 *Except* 3-8,3-6: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 2-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8, 5=0-3-8 Max Horz 1=74(LC 26) Max Grav 1=8095(LC 1), 5=8944(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-11435/0, 2-3=-9443/0, 3-4=-9446/0, 4-5=-11438/0 BOT CHORD 1-8=0/9252, 6-8=0/9575, 5-6=0/9255 WEBS 2-8=0/6274, 3-8=-265/53, 3-6=-260/55, 4-6=0/6274 NOTES- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1387 lb down at 1-11-4, 1387 lb down at 3-11-4, 1387 lb down at 5-11-4, 1387 lb down at 7-11-4, 1387 lb down at 9-11-4, 1387 lb down at 11-11-4, 1387 lb down at 13-11-4, 1387 lb down at 15-11-4, 1386 lb down at 17-11-4, and 1386 lb down at 19-11-4, and 1391 lb down at 21-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard Continued on page 2 April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG03 Truss Type Hip Girder Qty 1 Ply 3 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867052 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:26 2020 Page 2 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-TZvlU4BngyLj?ynNxoxJ0YbzdSFAUkbQBIkSYrzUQcV LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-4=-60, 4-5=-60, 1-5=-20 Concentrated Loads (lb) Vert: 6=-1387(B) 11=-1387(B) 12=-1387(B) 13=-1387(B) 14=-1387(B) 15=-1387(B) 16=-1387(B) 17=-1387(B) 18=-1386(B) 19=-1386(B) 20=-1391(B) 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG03A Truss Type Hip Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867053 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:27 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-xlT7iQCQRGTad6MZUVSYYm8?PscfD8EaQyU?4HzUQcU Scale = 1:40.7 1 2 3 4 5 6 7 11 10 9 8 12 13 14 15 16 17 18 19 4x8 4x8 4x8 5x6 4x8 2x4 4x8 5x12 4x8 3-11-4 3-11-4 11-3-8 7-4-4 18-7-12 7-4-4 22-7-0 3-11-4 -1-0-0 1-0-0 3-11-4 3-11-4 11-3-8 7-4-4 18-7-12 7-4-4 22-7-0 3-11-4 23-7-0 1-0-0 0-9-03-2-113-4-80-9-03-2-118.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-1], [2:0-0-11,0-4-9], [2:0-0-6,0-0-8], [3:0-4-0,0-1-9], [5:0-4-0,0-1-9], [6:Edge,0-1-1], [6:0-0-11,0-4-9], [6:0-0-6,0-0-8], [8:0-3-8,0-2-0], [11:0-3-8 ,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-S 1.00 0.72 0.74 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.12 -0.23 0.05 (loc) 8-9 8-9 6 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 94 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF-S Stud WEDGE Left: 2x4 SPF-S Stud, Right: 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-13 oc purlins, except 2-0-0 oc purlins (2-4-4 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 4-11, 4-8 REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=50(LC 26) Max Uplift 2=-34(LC 8) Max Grav 2=1376(LC 1), 6=1214(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1956/0, 3-4=-1476/25, 4-5=-1330/0, 5-6=-1784/0 BOT CHORD 2-11=0/1511, 9-11=0/2799, 8-9=0/2799, 6-8=0/1366 WEBS 3-11=0/757, 4-11=-1447/0, 4-9=0/543, 4-8=-1611/0, 5-8=0/758 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 66 lb down and 58 lb up at 3-11-4, 73 lb down and 55 lb up at 6-0-12, and 73 lb down and 55 lb up at 8-0-12, and 73 lb down and 55 lb up at 10-0-12 on top chord, and 114 lb down and 38 lb up at 2-0-12, 30 lb down at 4-0-12, 30 lb down at 6-0-12, 30 lb down at 8-0-12, and 30 lb down at 10-0-12, and 321 lb down at 12-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG03A Truss Type Hip Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867053 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:27 2020 Page 2 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-xlT7iQCQRGTad6MZUVSYYm8?PscfD8EaQyU?4HzUQcU LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-7=-60, 2-6=-20 Concentrated Loads (lb) Vert: 3=-37(F) 11=-21(F) 12=-37(F) 13=-37(F) 14=-37(F) 15=-114(F) 16=-21(F) 17=-21(F) 18=-21(F) 19=-321(F) 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG04 Truss Type Common Girder Qty 1 Ply 2 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867054 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:28 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-Qy1VvlD2CZbREGxm2Dzn5zhAgGzdydOjfcDYcjzUQcT Scale = 1:40.0 1 2 3 6 5 4789 10 11 4x10 5x12 4x10 5x10 MT18HS 3x12 3x12 5-11-0 5-11-0 11-9-0 5-9-15 17-8-0 5-11-0 8-10-0 8-10-0 17-8-0 8-10-0 0-9-06-7-110-9-08.00 12 Plate Offsets (X,Y)-- [1:0-10-0,0-0-13], [3:0-10-0,0-0-13], [4:0-6-7,Edge], [6:0-4-10,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.90 0.67 0.62 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.09 -0.19 0.04 (loc) 4-6 4-6 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 MT18HS Weight: 190 lb FT = 20% GRIP 197/144 244/190 LUMBER- TOP CHORD 2x6 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-2-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8, 3=0-3-8 Max Horz 1=-96(LC 25) Max Grav 1=6290(LC 1), 3=6193(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-8470/0, 2-3=-8484/0 BOT CHORD 1-6=0/6846, 4-6=0/4615, 3-4=0/6858 WEBS 2-4=0/5075, 2-6=0/5049 NOTES- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1387 lb down at 1-8-12, 1387 lb down at 3-8-12, 1387 lb down at 5-8-12, 1387 lb down at 7-8-12, 1387 lb down at 9-8-12, 1387 lb down at 11-8-12, and 1387 lb down at 13-8-12, and 1387 lb down at 15-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20 Continued on page 2 April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG04 Truss Type Common Girder Qty 1 Ply 2 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867054 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:28 2020 Page 2 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-Qy1VvlD2CZbREGxm2Dzn5zhAgGzdydOjfcDYcjzUQcT LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 5=-1387(B) 4=-1387(B) 6=-1387(B) 7=-1387(B) 8=-1387(B) 9=-1387(B) 10=-1387(B) 11=-1387(B) 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG05 Truss Type Hip Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867055 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:29 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-u8bt65DgztjIsQWycwV0eBDTBgKTh6wstGz69AzUQcS Scale = 1:37.5 1 2 3 4 5 6 7 10 9 8 11 12 13 14 15 16 17 18 19 20 21 22 23 4x6 4x6 3x6 4x6 3x6 3x6 3x6 3x6 5-4-3 5-4-3 15-3-13 9-11-11 20-8-0 5-4-3 -1-0-0 1-0-0 5-4-3 5-4-3 10-4-0 4-11-13 15-3-13 4-11-13 20-8-0 5-4-3 21-8-0 1-0-0 0-6-123-1-03-2-130-6-123-1-06.00 12 Plate Offsets (X,Y)-- [2:0-0-12,0-1-8], [6:0-0-12,0-1-8] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.41 0.63 0.48 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.11 -0.26 0.04 (loc) 8-10 8-10 6 l/defl >999 >952 n/a L/d 240 180 n/a PLATES MT20 Weight: 80 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-8-15 oc purlins, except 2-0-0 oc purlins (4-2-6 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=40(LC 7) Max Uplift 2=-75(LC 8), 6=-75(LC 8) Max Grav 2=1183(LC 1), 6=1183(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2039/72, 3-4=-1700/83, 4-5=-1700/83, 5-6=-2039/72 BOT CHORD 2-10=-7/1730, 8-10=-128/2136, 6-8=-7/1730 WEBS 3-10=0/647, 4-10=-563/144, 4-8=-563/144, 5-8=0/647 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 69 lb down and 52 lb up at 6-4-0, 69 lb down and 52 lb up at 8-4-0, 69 lb down and 52 lb up at 10-4-0, and 69 lb down and 52 lb up at 12-4-0, and 69 lb down and 52 lb up at 14-4-0 on top chord, and 175 lb down and 39 lb up at 4-4-0, 26 lb down at 6-4-0, 26 lb down at 8-4-0, 26 lb down at 10-4-0, 26 lb down at 12-4-0, and 26 lb down at 14-4-0, and 175 lb down and 39 lb up at 16-4-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-7=-60, 2-6=-20 Continued on page 2 April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG05 Truss Type Hip Girder Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867055 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:29 2020 Page 2 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-u8bt65DgztjIsQWycwV0eBDTBgKTh6wstGz69AzUQcS LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 4=-31(F) 11=-31(F) 12=-31(F) 15=-31(F) 16=-31(F) 17=-175(F) 18=-19(F) 19=-19(F) 20=-19(F) 21=-19(F) 22=-19(F) 23=-175(F) 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss TG07 Truss Type HALF HIP GIRDER Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867056 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:30 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-MK9FKREIjBr9UZ58Ae0FAOmgg4nAQgb06wifhczUQcR Scale = 1:15.5 1 2 3 4 6 578 3x4 3x4 3x4 3x4 3x6 5-2-10 5-2-10 -1-1-14 1-1-14 5-1-2 5-1-2 5-2-10 0-1-8 1-2-00-8-42-6-72-8-40-3-82-2-150-3-82-6-78.00 12 Plate Offsets (X,Y)-- [3:0-2-0,Edge], [5:Edge,0-2-0] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.30 0.15 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.03 -0.03 -0.00 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 17 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-10 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)6=0-1-8, 5=0-1-8 Max Horz 6=70(LC 7) Max Uplift 6=-69(LC 8), 5=-73(LC 5) Max Grav 6=284(LC 1), 5=190(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Bearing at joint(s) 6, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6, 5. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 3 lb down and 55 lb up at 1-10-2, and 42 lb down and 56 lb up at 3-2-10 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 7=8(B) 8=-9(B) April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V01 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867057 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:31 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-qXieXnFwUUz?5jgLjLXUjcIrcT6M95p9LaSCD2zUQcQ Scale = 1:36.7 1 2 3 4 5 6 7 8 9 15 14 13 12 11 10 16 17 18 19 20 21 3x4 3x6 3x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 21-8-3 21-8-3 7-5-13 7-5-13 14-2-5 6-8-8 21-8-3 7-5-13 0-0-44-10-14-11-140-0-44-10-18.00 12 Plate Offsets (X,Y)-- [4:0-3-5,Edge], [6:0-3-5,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.28 0.22 0.13 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 9 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 64 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 4-6: 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 *Except* 1-13: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 21-8-3. (lb) - Max Horz 1=-72(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 12, 15, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 9 except 12=407(LC 26), 14=382(LC 17), 15=336(LC 17), 11=374(LC 18), 10=336(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 7-5-13, Exterior(2R) 7-5-13 to 11-8-12, Interior(1) 11-8-12 to 14-2-5, Exterior(2R) 14-2-5 to 18-5-4, Interior(1) 18-5-4 to 21-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 15, 10. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V02 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867058 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:32 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-IjG0l7GYFo5sjtFXH22jFpr1ytPauZUJaEBmlUzUQcP Scale = 1:33.4 1 2 3 4 5 6 7 11 10 9 8 12 13 14 153x4 3x6 3x6 3x4 3x6 2x4 2x4 2x4 2x4 2x4 2x4 18-8-3 18-8-3 7-11-13 7-11-13 10-8-5 2-8-8 18-8-3 7-11-13 0-0-45-2-15-3-140-0-45-2-18.00 12 Plate Offsets (X,Y)-- [3:0-3-5,Edge], [5:0-3-5,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.25 0.35 0.10 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 54 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 3-5: 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 *Except* 1-10: 2x4 SPF-S Stud OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 18-8-3. (lb) - Max Horz 1=-77(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 11, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 9=300(LC 17), 11=500(LC 17), 8=498(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-11=-302/112, 6-8=-299/109 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 7-11-13, Exterior(2E) 7-11-13 to 10-8-5, Exterior(2R) 10-8-5 to 14-11-4, Interior(1) 14-11-4 to 18-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V03 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867059 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:33 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-mvqOyTHA06EjL1pjrmZyo1ODtHprd0mSouxJIxzUQcO Scale = 1:33.4 1 2 3 4 5 8 7 6 9 10 11 12 3x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 15-7-13 15-7-13 15-8-3 0-0-6 7-10-1 7-10-1 15-8-3 7-10-1 0-0-45-2-120-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.17 0.09 0.10 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 46 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 15-7-7. (lb) - Max Horz 1=77(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=348(LC 23), 6=348(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-262/106, 4-6=-262/106 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 7-10-1, Exterior(2R) 7-10-1 to 10-10-1, Interior(1) 10-10-1 to 15-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V04 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867060 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:34 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-E6OmApHpnPMayBOvPT4BLEwMZh9uMTYc1YgtqNzUQcN Scale = 1:27.0 1 2 3 4 5 7 6 8 9 3x4 3x6 3x4 2x4 2x4 2x4 2x4 12-8-3 12-8-3 6-4-1 6-4-1 12-8-3 6-4-1 0-0-44-2-120-0-48.00 12 Plate Offsets (X,Y)-- [3:0-3-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.30 0.10 0.07 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 33 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 12-8-3. (lb) - Max Horz 1=-61(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 7, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=325(LC 23), 6=325(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 6-4-1, Exterior(2R) 6-4-1 to 9-4-1, Interior(1) 9-4-1 to 12-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V05 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867061 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:35 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-iIy8N9IRYjURaLz6yBbQtSTVH5UC5wmlGCQQMpzUQcM Scale = 1:21.6 1 2 3 4 3x4 4x6 3x4 2x4 0-0-6 0-0-6 9-8-3 9-7-13 4-10-1 4-10-1 9-8-3 4-10-1 0-0-43-2-120-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.43 0.16 0.07 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 24 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=9-7-7, 3=9-7-7, 4=9-7-7 Max Horz 1=45(LC 11) Max Uplift 1=-6(LC 12), 3=-6(LC 12) Max Grav 1=172(LC 1), 3=172(LC 1), 4=354(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-10-1, Exterior(2R) 4-10-1 to 7-10-1, Interior(1) 7-10-1 to 9-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V06 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867062 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:36 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-BUWXaVJ3J1cICUYIWu7fQf0jsUhqqN4uUs9zuGzUQcL Scale: 3/4"=1' 1 2 3 3x4 3x4 3x4 6-7-13 6-7-13 6-8-3 0-0-6 3-4-1 3-4-1 6-8-3 3-4-1 0-0-42-2-120-0-48.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.25 0.71 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=6-7-7, 3=6-7-7 Max Horz 1=30(LC 11) Max Grav 1=229(LC 1), 3=229(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V07 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867063 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:36 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-BUWXaVJ3J1cICUYIWu7fQf0m?UqgqN4uUs9zuGzUQcL Scale = 1:8.9 1 2 3 3x4 3x4 3x4 3-7-13 3-7-13 3-8-3 0-0-6 1-10-1 1-10-1 3-8-3 1-10-1 0-0-41-2-120-0-48.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.05 0.15 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-8-3 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=3-7-7, 3=3-7-7 Max Horz 1=-14(LC 10) Max Grav 1=109(LC 1), 3=109(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V08 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867064 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:37 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-fg4voqKh4Kk9qe7U4ceuytYv2uBlZpo2jWvXRizUQcK Scale = 1:32.4 1 2 3 4 5 8 7 6 9 10 3x4 4x6 3x4 2x4 2x4 2x4 2x4 2x4 0-0-6 0-0-6 15-5-1 15-4-11 7-8-8 7-8-8 15-5-1 7-8-8 0-0-45-1-110-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.16 0.09 0.10 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 46 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 15-4-5. (lb) - Max Horz 1=75(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=342(LC 23), 6=342(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-258/107, 4-6=-258/107 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-8-8, Interior(1) 3-8-8 to 7-8-8, Exterior(2R) 7-8-8 to 10-8-8, Interior(1) 10-8-8 to 14-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V09 Truss Type GABLE Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867065 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:38 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-7teH?AKJres0RoiheJ97V452vIWsIGaBy9e4z8zUQcJ Scale = 1:26.5 1 2 3 4 5 7 6 8 9 3x4 3x6 3x4 2x4 2x4 2x4 2x4 12-5-1 12-5-1 6-2-8 6-2-8 12-5-1 6-2-8 0-0-44-1-110-0-48.00 12 Plate Offsets (X,Y)-- [3:0-3-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.28 0.10 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 32 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 12-5-1. (lb) - Max Horz 1=-60(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 7, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=316(LC 23), 6=316(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 6-2-8, Exterior(2R) 6-2-8 to 9-2-8, Interior(1) 9-2-8 to 11-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V10 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867066 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:39 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-b3BfDWLxcy_t3yHtB1gM2IeBiirG1jpLBpOeVazUQcI Scale = 1:21.1 1 2 3 4 3x4 4x6 3x4 2x4 0-0-6 0-0-6 9-5-1 9-4-11 4-8-8 4-8-8 9-5-1 4-8-8 0-0-43-1-110-0-48.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.40 0.15 0.07 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 23 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=9-4-5, 3=9-4-5, 4=9-4-5 Max Horz 1=-44(LC 10) Max Uplift 1=-6(LC 12), 3=-6(LC 12) Max Grav 1=166(LC 1), 3=166(LC 1), 4=344(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-8-8, Exterior(2R) 4-8-8 to 7-8-8, Interior(1) 7-8-8 to 8-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V11 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867067 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:40 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-3Fl1QsMZNF6kh6s3lkBbaVAPE63qmB4UPT7B21zUQcH Scale = 1:15.5 1 2 3 3x4 3x4 3x4 6-4-11 6-4-11 6-5-1 0-0-6 3-2-8 3-2-8 6-5-1 3-2-8 0-0-42-1-110-0-48.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.23 0.65 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=6-4-5, 3=6-4-5 Max Horz 1=28(LC 11) Max Grav 1=218(LC 1), 3=218(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V12 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867068 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:40 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-3Fl1QsMZNF6kh6s3lkBbaVAS86C2mB4UPT7B21zUQcH Scale = 1:8.4 1 2 3 3x4 3x4 3x4 0-0-6 0-0-6 3-5-1 3-4-11 1-8-8 1-8-8 3-5-1 1-8-8 0-0-41-1-110-0-48.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.04 0.12 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 6 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 3-5-1 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=3-4-5, 3=3-4-5 Max Horz 1=-13(LC 10) Max Grav 1=98(LC 1), 3=98(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 16023 Swingley Ridge Rd Chesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Job B20000974 Truss V13 Truss Type Valley Qty 1 Ply 1 Pyatt - 71 TG - Patel/Sharma Job Reference (optional) I40867069 8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 12:35:41 2020 Page 1 ProBuild (Carter-Lee), Mooresville, IN - 46158, ID:EKGe1ShqMTieYCdi2p21__zUUXP-XSJQeCNC8ZEbIGRGJRiq7jjd0VZqVeKde7tkaTzUQcG Scale = 1:8.6 1 2 3 3x4 3x4 3x4 1-8-15 1-8-15 0-0-41-2-08.00 12 LOADING (psf) TCLL TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.03 0.02 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 4 lb FT = 20% GRIP 169/123 LUMBER- TOP CHORD 2x4 SPF-S Stud BOT CHORD 2x4 SPF-S Stud WEBS 2x4 SPF-S Stud BRACING- TOP CHORD Structural wood sheathing directly applied or 1-8-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=1-8-9, 3=1-8-9 Max Horz 1=20(LC 9) Max Uplift 3=-2(LC 9) Max Grav 1=45(LC 1), 3=45(LC 17) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. April 3,2020 PRODUCT CODE APPROVALSLATERAL BRACING LOCATIONIndicates location where bearings(supports) occur. Icons vary butreaction section indicates jointnumber where bearings occur.Min size shown is for crushing only.Indicated by symbol shown and/orby text in the bracing section of theoutput. Use T or I bracingif indicated.The first dimension is the plate width measured perpendicular to slots. Second dimension isthe length parallel to slots.Center plate on joint unless x, yoffsets are indicated.Dimensions are in ft-in-sixteenths.Apply plates to both sides of trussand fully embed teeth.1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.5. Cut members to bear tightly against each other.6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.13. Top chords must be sheathed or purlins provided at spacing indicated on design.14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.15. Connections not shown are the responsibility of others.16. Do not cut or alter truss member or plate without prior approval of an engineer.17. Install and load vertically unless indicated otherwise.18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.Failure to Follow Could Cause PropertyDamage or Personal Injury (Drawings not to scale)© 2012 MiTek® All Rights ReservedMiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015edge of truss.from outside"16/1-0ICC-ES Reports:ESR-1311, ESR-1352, ESR1988ER-3907, ESR-2362, ESR-1397, ESR-3282JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISEAROUND THE TRUSS STARTING AT THE JOINT FARTHEST TOTHE LEFT.CHORDS AND WEBS ARE IDENTIFIED BY END JOINTNUMBERS/LETTERS.W 4 - 6 W3-6W3 - 7 W2-7W1-7C1-8 C5-6C6-7C7-8C4-5 C3-4C2-3C1-2TOP CHORD TOP CHORD 87654321BOTTOM CHORDSTOP CHORDSBEARING4 x 4PLATE SIZEThis symbol indicates the required direction of slots inconnector plates."16/1For 4 x 2 orientation, locateplates 0- 1"4/3PLATE LOCATION AND ORIENTATIONSymbolsNumbering SystemGeneral Safety Notes *Plate location details available in MiTek 20/20software or upon request.Industry Standards:ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.DSB-89: Design Standard for Bracing.BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.6-4-8WEBSTrusses are designed for wind loads in the plane of the truss unless otherwise shown.Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.dimensions shown in ft-in-sixteenths