Loading...
HomeMy WebLinkAboutM003.016023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. Re: The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by 84 Components - 0783. March 9,2021 Liu, Xuegang Pages or sheets covered by this seal: I45107481 thru I45107508 My license renewal date for the state of Indiana is July 31, 2022. 23748-23748A TG158 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use,the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2. 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss B01 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107481 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:02 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-5ASVxBmgQwqFmar9Razk3ZREilzXnivLLilhSQzckM7 Scale = 1:41.8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 24 23 22 21 20 17 1519 18 16 4x4 3x6 4x4 3x6 4x4 5x6 3x4 8-10-08-10-0 9-1-00-3-0 11-7-02-6-0 13-1-41-6-4 13-2-120-1-8 17-8-04-5-4 -1-0-0 1-0-0 8-10-0 8-10-0 11-7-0 2-9-0 13-1-4 1-6-4 17-8-0 4-6-12 0-8-116-7-60-8-113-4-08.00 12 8.00 12 Plate Offsets (X,Y)-- [2:0-3-4,0-0-3], [14:0-4-0,0-0-3], [17:0-3-0,0-3-0] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.13 0.13 0.33 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.02 -0.03 0.00 0.01 (loc) 16 16 14 16 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 92 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 -t 1-6-0, Right 2x4 SPF No.2 -t 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. JOINTS 1 Brace at Jt(s): 18 REACTIONS.All bearings 9-1-0 except (jt=length) 14=0-3-8. (lb) - Max Horz 2=123(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 14, 2, 20, 21, 22, 23, 24 Max Grav All reactions 250 lb or less at joint(s) 2, 20, 21, 22, 23, 24, 2 except 14=381(LC 1), 17=548(LC 3), 17=541(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 12-14=-305/66 BOT CHORD 15-17=-1/304, 14-15=-1/304, 18-19=-391/92, 16-18=-380/89, 12-16=-350/80 WEBS 17-19=-438/0 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 1-4-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 20, 21, 22, 23, 24, 2. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss B02 Truss Type Common Qty 11 Ply 1 TG158 Job Reference (optional) I45107482 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:03 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-ZM0t8XnIAEy6OjQL?HUzcnzJb9AuWDaVaMVF?szckM6 Scale = 1:41.0 1 2 3 4 5 6 716 17 4x6 4x4 4x6 4x4 6x10 8x8 8-10-0 8-10-0 17-8-0 8-10-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [4:Edge,0-3-8], [6:Edge,0-4-13] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.44 0.63 0.12 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.12 -0.23 0.03 0.12 (loc) 7-10 7-10 2 7-10 l/defl >999 >918 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 56 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 -t 1-6-0, Right 2x4 SPF No.2 -t 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)6=Mechanical, 2=0-3-8 Max Horz 2=123(LC 9) Max Uplift 6=-43(LC 11), 2=-61(LC 10) Max Grav 6=829(LC 19), 2=887(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-953/91, 4-6=-951/90 BOT CHORD 2-7=-9/738, 6-7=-9/738 WEBS 4-7=0/512 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss B03 Truss Type Common Qty 13 Ply 1 TG158 Job Reference (optional) I45107483 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:04 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-1ZaGMtowxY5z0t?XY??C8_WUaZWCFgpeo0EoXIzckM5 Scale = 1:41.5 1 2 3 4 5 6 7 817 18 4x6 4x4 6x10 8x8 4x6 4x4 8-10-0 8-10-0 17-8-0 8-10-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 18-8-0 1-0-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [4:Edge,0-3-8] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.42 0.62 0.12 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.12 -0.22 0.03 0.12 (loc) 8-11 8-11 2 8-11 l/defl >999 >952 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 58 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 -t 1-6-0, Right 2x4 SPF No.2 -t 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=127(LC 9) Max Uplift 2=-61(LC 10), 6=-61(LC 11) Max Grav 2=886(LC 18), 6=886(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-949/90, 4-6=-949/90 BOT CHORD 2-8=0/742, 6-8=0/742 WEBS 4-8=0/512 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss B04 Truss Type Roof Special Qty 1 Ply 1 TG158 Job Reference (optional) I45107484 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:06 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-zxi0nZpAT9LgFB8wgP1gDPbpkMD5jTMxGKjvcBzckM3 Scale = 1:44.0 1 2 3 4 5 6 7 12 11 10 9 8 17 8x12 MT18HS 4x8 3x4 4x6 4x6 4x4 1.5x4 2x4 6x10 4x4 1.5x4 8-10-0 8-10-0 12-8-8 3-10-8 13-9-12 1-1-4 17-8-0 3-10-4 -1-0-0 1-0-0 8-10-0 8-10-0 12-8-8 3-10-8 13-9-12 1-1-4 17-8-0 3-10-4 0-8-113-3-86-7-61-3-82-0-03-3-88.00 12 Plate Offsets (X,Y)-- [6:0-2-12,0-2-0], [10:0-4-0,0-2-4] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.51 0.53 0.56 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.19 -0.35 0.06 0.13 (loc) 12-15 12-15 8 12-15 l/defl >999 >602 n/a >999 L/d 360 240 n/a 240 PLATES MT20 MT18HS Weight: 76 lb FT = 20% GRIP 197/144 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E *Except* 5-11: 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 -t 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-7. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)8=Mechanical, 2=0-3-8 Max Horz 2=129(LC 7) Max Uplift 8=-51(LC 11), 2=-59(LC 10) Max Grav 8=765(LC 2), 2=859(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-848/65, 4-5=-1726/161, 5-6=-1808/102 BOT CHORD 2-12=-40/675, 9-10=-116/2142, 8-9=-123/2143 WEBS 10-12=-49/734, 4-10=-131/1233, 6-10=-799/42, 6-8=-2027/107 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4) Provide adequate drainage to prevent water ponding. 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss B05 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107485 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:08 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-vKqmCErQ?mbOUVIInq48JqhFsA1SBVfEjeD0g3zckM1 Scale = 1:41.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 27 26 25 24 23 22 21 20 19 18 17 4x4 3x6 4x4 3x6 4x4 5x6 17-8-0 17-8-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [2:0-4-0,0-0-3], [16:0-4-0,0-0-3], [22:0-3-0,0-3-0] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-SH 0.08 0.03 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 0.00 0.00 (loc) 1 1 16 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 95 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E OTHERS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 -t 1-6-14, Right 2x4 SPF No.2 -t 1-6-14 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 17-8-0. (lb) - Max Horz 2=125(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 Max Grav All reactions 250 lb or less at joint(s) 16, 2, 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 63 lb down and 68 lb up at 15-8-4 on top chord, and 22 lb down at 15-8-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Continued on page 2 March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss B05 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107485 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:08 2021 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-vKqmCErQ?mbOUVIInq48JqhFsA1SBVfEjeD0g3zckM1 LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-9=-60, 9-16=-60, 2-16=-20 Concentrated Loads (lb) Vert: 17=-22(B) 14=-63(B) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss A01 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107486 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:34:57 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-kCfcuUiXbOCygoyBe0NZMWkNokGu6WIcBR2wnCzckMC Scale = 1:33.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 26 25 24 23 22 21 20 19 18 17 16 4x4 3x4 4x8 5x6 3x4 4x8 17-10-0 17-10-0 -1-0-0 1-0-0 8-11-0 8-11-0 17-10-0 8-11-0 18-10-0 1-0-0 0-6-85-0-00-6-86.00 12 Plate Offsets (X,Y)-- [2:0-2-10,Edge], [2:Edge,0-1-1], [14:0-2-10,Edge], [14:0-0-0,0-1-1], [21:0-3-0,0-3-0] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.07 0.03 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 0.00 0.00 (loc) 14 14 14 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 80 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E OTHERS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 17-10-0. (lb) - Max Horz 2=-65(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 14, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 2 Max Grav All reactions 250 lb or less at joint(s) 14, 21, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 2 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 2. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss A02 Truss Type Common Qty 8 Ply 1 TG158 Job Reference (optional) I45107487 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:34:59 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-gbnNJ9kn7?Sgv66amRP1RxphrYraaOUvflX1s5zckMA Scale = 1:33.0 1 2 3 4 5 6 7 8 15 16 4x6 5x9 4x6 1.5x4 1.5x4 4x6 8-11-0 8-11-0 17-10-0 8-11-0 -1-0-0 1-0-0 4-5-12 4-5-12 8-11-0 4-5-4 13-4-4 4-5-4 17-10-0 4-5-12 18-10-0 1-0-0 0-6-85-0-00-6-86.00 12 Plate Offsets (X,Y)-- [8:0-4-8,0-3-0] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.23 0.46 0.19 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.09 -0.18 0.03 0.02 (loc) 8-11 8-11 6 8 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 64 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=-65(LC 13) Max Uplift 2=-68(LC 12), 6=-68(LC 13) Max Grav 2=822(LC 19), 6=822(LC 20) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1253/111, 3-4=-898/63, 4-5=-898/62, 5-6=-1253/111 BOT CHORD 2-8=-107/1072, 6-8=-43/1072 WEBS 4-8=0/490, 5-8=-402/135, 3-8=-402/135 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss A03 Truss Type ROOF SPECIAL GIRDER Qty 1 Ply 3 TG158 Job Reference (optional) I45107488 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:01 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-d_u7jrl1fdiO9QGytsSVWMuvvLSh2DMC6308wzzckM8 Scale = 1:34.6 1 2 3 4 5 6 7 12 11 10 9 8 16 17 18 19 20 21 22 23 24 25 26 8x12 4x4 4x6 4x8 2x4 3x4 8x8 6x10 2x4 2x4 8x8 6x6 5x6 1.5x4 5-8-6 5-8-6 8-11-0 3-2-10 10-11-0 2-0-0 13-11-0 3-0-0 17-10-0 3-11-0 -1-0-0 1-0-0 4-8-6 4-8-6 5-8-6 1-0-0 8-11-0 3-2-10 10-11-0 2-0-0 13-11-0 3-0-0 17-10-0 3-11-0 0-6-85-0-00-6-81-6-06.00 12 4.97 12 Plate Offsets (X,Y)-- [2:0-0-4,0-0-1], [2:0-0-13,0-8-8], [4:0-4-4,Edge], [7:0-11-10,0-0-1], [9:0-1-8,0-0-14], [10:0-2-12,0-4-0], [12:0-4-0,0-4-12] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MSH 0.71 0.80 0.48 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.39 -0.70 0.18 0.20 (loc) 8 8 7 8 l/defl >539 >298 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 300 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x6 SP DSS *Except* 5-11: 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-7-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 10-11. REACTIONS. (size)7=0-3-8, 2=0-3-8 Max Horz 2=76(LC 33) Max Uplift 7=-244(LC 13), 2=-217(LC 12) Max Grav 7=3941(LC 4), 2=2975(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-4893/360, 3-4=-4614/326, 4-5=-7893/550, 5-6=-8138/537, 6-7=-15344/970 BOT CHORD 2-12=-329/4376, 10-11=-622/13, 5-10=-258/71, 9-10=-835/13699, 7-9=-886/14473 WEBS 4-12=-113/487, 10-12=-282/5016, 4-10=-398/5883, 6-10=-6549/450, 6-9=-237/4631, 3-12=-487/128 NOTES- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-4-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc, 2x4 - 1 row at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 4) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) The Fabrication Tolerance at joint 7 = 16%, joint 7 = 16% 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=244, 2=217. Continued on page 2 March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss A03 Truss Type ROOF SPECIAL GIRDER Qty 1 Ply 3 TG158 Job Reference (optional) I45107488 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:01 2021 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-d_u7jrl1fdiO9QGytsSVWMuvvLSh2DMC6308wzzckM8NOTES- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 785 lb down and 63 lb up at 4-3-4, 785 lb down and 63 lb up at 6-3-4, 785 lb down and 63 lb up at 8-3-4, 785 lb down and 63 lb up at 10-3-4, 745 lb down and 71 lb up at 12-3-4, and 785 lb down and 63 lb up at 14-3-4, and 785 lb down and 63 lb up at 16-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 11-13=-20, 9-10=-20, 7-8=-20, 7-9=-20 Concentrated Loads (lb) Vert: 17=-72 18=-685(F) 19=-685(F) 20=-685(F) 21=-685(F) 22=-679(F) 23=-685(F) 24=-685(F) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J08 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107489 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:20 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-ZeYJjL_yAS6hwLDcUMHyoMBIh07T?wO?UW7e4NzckLr Scale = 1:12.7 1 2 3 4 6 5 1.5x4 1.5x4 3x4 3x6 1.5x4 1.5x4 -1-0-0 1-0-0 2-10-0 2-10-0 0-6-81-11-86.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-1-1], [2:0-1-1,0-5-0] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.09 0.02 0.01 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 0.00 (loc) 1 1 5 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 11 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=2-10-0, 2=2-10-0, 6=2-10-0 Max Horz 2=52(LC 9) Max Uplift 5=-7(LC 9), 2=-16(LC 12), 6=-25(LC 12) Max Grav 5=54(LC 19), 2=192(LC 19), 6=135(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J09 Truss Type Monopitch Qty 9 Ply 1 TG158 Job Reference (optional) I45107490 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:21 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-1q6hwh?axmEYYUoo23oBKajTEPT4kNq8jAsCcpzckLq Scale = 1:12.7 1 2 3 4 1.5x4 3x4 1.5x4 -1-0-0 1-0-0 2-10-0 2-10-0 0-6-81-11-81-8-00-3-81-11-86.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.11 0.06 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in 0.00 -0.00 0.00 0.00 (loc) 4-7 4-7 2 4-7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 10 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 4=0-1-8 Max Horz 2=53(LC 11) Max Uplift 2=-27(LC 12), 4=-17(LC 12) Max Grav 2=252(LC 19), 4=130(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss C01 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107491 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:09 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-OWN9Pas3m4jF6etVLYbNr2DQKaMtwyANyIyZCWzckM0 Scale = 1:28.8 1 2 3 4 5 6 7 8 9 10 11 12 20 19 18 17 16 15 14 13 3x6 4x4 3x6 4x4 11-7-0 11-7-0 -1-0-0 1-0-0 5-9-8 5-9-8 11-7-0 5-9-8 12-7-0 1-0-0 0-8-114-7-00-8-118.00 12 Plate Offsets (X,Y)-- [11:0-4-0,0-0-3], [20:0-3-12,0-1-8] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.10 0.02 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 -0.00 (loc) 11 11 11 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 54 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Right 2x4 SPF No.2 -t 1-6-15 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 11-7-0. (lb) - Max Horz 20=-96(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 20, 11, 16, 17, 18, 19, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 20, 11, 16, 17, 18, 19, 15, 14, 13 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 11, 16, 17, 18, 19, 15, 14, 13. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss C02 Truss Type Common Qty 2 Ply 1 TG158 Job Reference (optional) I45107492 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:10 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-sixXcwshXOr6koShvF6cOFmZr_f3fPDXByi6lyzckM? Scale = 1:28.8 1 2 3 4 5 6 7 8 3x6 4x4 3x6 4x4 1.5x4 4x4 5-9-8 5-9-8 11-7-0 5-9-8 -1-0-0 1-0-0 5-9-8 5-9-8 11-7-0 5-9-8 12-7-0 1-0-0 0-8-114-7-00-8-118.00 12 Plate Offsets (X,Y)-- [2:0-2-4,0-0-3], [6:0-3-4,0-0-3] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.24 0.21 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.03 -0.04 0.01 (loc) 8-11 8-11 2 l/defl >999 >999 n/a L/d 240 240 n/a PLATES MT20 Weight: 40 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 -t 1-6-0, Right 2x4 SPF No.2 -t 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=88(LC 9) Max Uplift 2=-46(LC 10), 6=-46(LC 11) Max Grav 2=523(LC 1), 6=523(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-402/53, 4-6=-402/53 BOT CHORD 2-8=0/335, 6-8=0/335 WEBS 4-8=0/256 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss C03 Truss Type Common Girder Qty 1 Ply 2 TG158 Job Reference (optional) I45107493 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:12 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-o53H1cux3?5qz6c40g84TgrvpnJj7DZpeGBDoqzckLz Scale = 1:28.7 1 2 3 41112 13 14 4x6 4x6 3x6 4x4 5-9-8 5-9-8 11-7-0 5-9-8 5-9-8 5-9-8 11-7-0 5-9-8 0-8-114-7-00-8-118.00 12 Plate Offsets (X,Y)-- [1:0-0-0,0-0-12], [3:0-0-0,0-0-12], [4:0-4-8,0-1-8] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.21 0.33 0.32 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.06 0.01 0.02 (loc) 4-7 4-7 1 4-7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 98 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x6 SP DSS WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8, 3=0-3-8 Max Horz 1=75(LC 27) Max Uplift 1=-166(LC 10), 3=-168(LC 11) Max Grav 1=2351(LC 2), 3=2385(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2678/211, 2-3=-2678/211 BOT CHORD 1-4=-128/2153, 3-4=-128/2153 WEBS 2-4=-142/2631 NOTES- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 4) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=166, 3=168. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 785 lb down and 63 lb up at 1-10-4, 785 lb down and 63 lb up at 3-10-4, 785 lb down and 63 lb up at 5-10-4, and 785 lb down and 63 lb up at 7-10-4, and 785 lb down and 63 lb up at 9-10-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard Continued on page 2 March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss C03 Truss Type Common Girder Qty 1 Ply 2 TG158 Job Reference (optional) I45107493 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:12 2021 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-o53H1cux3?5qz6c40g84TgrvpnJj7DZpeGBDoqzckLz LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 5-8=-20 Concentrated Loads (lb) Vert: 4=-685(F) 11=-685(F) 12=-685(F) 13=-685(F) 14=-685(F) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J07 Truss Type Jack-Open Qty 1 Ply 1 TG158 Job Reference (optional) I45107494 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:19 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-5R_xV?zKP9_qJBeQxemjF9e6kcm1GTKrFsN5YwzckLs Scale = 1:13.8 1 2 3 4 3x4 3-3-8 3-3-8 -1-0-0 1-0-0 3-3-8 3-3-8 0-6-82-2-41-9-102-2-46.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.17 0.09 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.01 -0.01 0.00 0.00 (loc) 4-7 4-7 2 4-7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 9 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-3-8 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=62(LC 12) Max Uplift 3=-38(LC 12), 2=-20(LC 12) Max Grav 3=123(LC 19), 2=284(LC 19), 4=59(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J06 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107495 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:18 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-dFQYIfzierrzh13DNxFUjx5z8CRsX0oi0CeY0UzckLt Scale = 1:13.8 1 2 3 4 6 5 1.5x4 1.5x4 3x4 3x6 1.5x4 1.5x4 -1-0-0 1-0-0 3-3-8 3-3-8 0-6-82-2-46.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-1-1], [2:0-1-2,0-4-15] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.10 0.02 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 0.00 (loc) 1 1 5 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-3-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=3-3-8, 2=3-3-8, 6=3-3-8 Max Horz 2=60(LC 9) Max Uplift 5=-7(LC 9), 2=-16(LC 12), 6=-32(LC 12) Max Grav 5=44(LC 19), 2=209(LC 19), 6=185(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss D01 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107496 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:13 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-GHdfFyvZqJDhbGBGaOfJ0uO6KBksslZztwwnKHzckLy Scale: 1/2"=1' 1 2 3 4 5 6 7 8 9 16 15 14 13 12 11 10 3x6 4x4 3x6 8-10-8 8-10-8 -1-0-0 1-0-0 4-5-4 4-5-4 8-10-8 4-5-4 9-10-8 1-0-0 0-8-113-8-30-8-118.00 12 Plate Offsets (X,Y)-- [10:0-3-12,0-1-8], [16:0-3-12,0-1-8] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.10 0.01 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 0.00 (loc) 9 8 10 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 38 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 8-10-8. (lb) - Max Horz 16=-84(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J01 Truss Type Monopitch Structural Gable Qty 2 Ply 1 TG158 Job Reference (optional) I45107497 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:14 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-kUB2SIwBbcLYCQlS85AYY5xE1b2lb9r66agKtjzckLx Scale = 1:17.4 1 2 3 5 4 10 11 4x6 3x4 1.5x4 1.5x4 1.5x4 1.5x4 3x6 3x4 3x4 5-10-4 5-10-4 -1-1-12 1-1-12 5-10-4 5-10-4 1-0-110-7-92-11-90-3-80-10-122-11-94.00 12 Plate Offsets (X,Y)-- [2:0-0-8,0-1-8] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.30 0.16 0.21 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.02 -0.03 0.00 0.00 (loc) 4-5 4-5 11 4-5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 23 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)5=0-1-8, 11=0-1-8 Max Horz 5=65(LC 9) Max Uplift 5=-58(LC 8), 11=-37(LC 12) Max Grav 5=427(LC 19), 11=251(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-384/96 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Bearing at joint(s) 5, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5, 11. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 11. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J02 Truss Type Monopitch Qty 6 Ply 1 TG158 Job Reference (optional) I45107498 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:15 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-CglQgewqMwTPqZKeioin5JTPn?N_Kc5GKEPtP9zckLw Scale = 1:17.4 1 2 3 5 4 6 7 4x6 3x4 3x6 3x4 3x4 5-10-4 5-10-4 -1-1-12 1-1-12 5-10-4 5-10-4 1-0-110-7-92-11-90-3-80-10-122-11-94.00 12 Plate Offsets (X,Y)-- [2:0-0-8,0-1-8] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.30 0.16 0.21 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.02 -0.03 0.00 0.00 (loc) 4-5 4-5 7 4-5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 20 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)5=0-1-8, 7=0-1-8 Max Horz 5=65(LC 9) Max Uplift 5=-58(LC 8), 7=-37(LC 12) Max Grav 5=427(LC 19), 7=251(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-384/96 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 5, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5, 7. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J03 Truss Type Monopitch Qty 4 Ply 1 TG158 Job Reference (optional) I45107499 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:15 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-CglQgewqMwTPqZKeioin5JTRT?OBKerGKEPtP9zckLw Scale = 1:13.9 1 2 3 5 4 6 7 4x6 2x4 2x4 3x4 3x4 4-6-4 4-6-4 -1-1-12 1-1-12 4-6-4 4-6-4 0-8-110-7-92-6-40-3-80-10-122-6-44.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.19 0.09 0.10 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.01 -0.01 0.00 -0.00 (loc) 4-5 4-5 7 5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 16 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)5=0-1-8, 7=0-1-8 Max Horz 5=56(LC 9) Max Uplift 5=-55(LC 8), 7=-27(LC 12) Max Grav 5=359(LC 19), 7=176(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-321/83 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 5, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5, 7. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J04 Truss Type GABLE Qty 1 Ply 1 TG158 Job Reference (optional) I45107500 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:17 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-93sA4Jy4tXj63tU1pDkFAkZnTo5doZfZoYu_T2zckLu Scale = 1:13.2 1 2 3 4 7 6 5 8 1.5x4 1.5x4 4x6 1.5x4 3x4 1.5x4 1.5x4 -1-1-12 1-1-12 3-1-12 3-1-12 1-0-32-0-124.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.15 0.02 0.01 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 -0.00 (loc) 1 1 5 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-1-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. (size)7=3-1-12, 5=3-1-12, 6=3-1-12 Max Horz 7=58(LC 9) Max Uplift 7=-54(LC 8), 5=-12(LC 9), 6=-17(LC 12) Max Grav 7=229(LC 19), 5=42(LC 19), 6=118(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5, 6. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss J05 Truss Type Monopitch Qty 6 Ply 1 TG158 Job Reference (optional) I45107501 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:17 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-93sA4Jy4tXj63tU1pDkFAkZnTo5FoZVZoYu_T2zckLu Scale = 1:11.7 1 2 3 5 4 6 7 4x6 1.5x4 1.5x4 1.5x4 3x4 3-1-12 3-1-12 -1-1-12 1-1-12 3-1-12 3-1-12 0-8-110-7-92-0-120-3-80-10-122-0-124.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MR 0.15 0.05 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.00 -0.00 -0.00 0.00 (loc) 5 4-5 7 5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 12 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-1-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. (size)5=0-1-8, 7=0-1-8 Max Horz 5=46(LC 9) Max Uplift 5=-54(LC 8), 7=-16(LC 12) Max Grav 5=283(LC 19), 7=92(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 5, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5, 7. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss V04 Truss Type Valley Qty 1 Ply 1 TG158 Job Reference (optional) I45107502 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:24 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-RPnpYj1TEhc7PyWNjBMuyCL?ddTBxkZbP85sD8zckLn Scale = 1:9.4 1 2 3 2x4 3x4 2x4 3-11-10 3-11-10 4-0-0 0-0-6 2-0-0 2-0-0 4-0-0 2-0-0 0-0-41-4-00-0-48.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.03 0.09 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=3-11-4, 3=3-11-4 Max Horz 1=-20(LC 6) Max Uplift 1=-8(LC 10), 3=-8(LC 11) Max Grav 1=121(LC 1), 3=121(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss V05 Truss Type Valley Qty 1 Ply 1 TG158 Job Reference (optional) I45107503 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:25 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-wbLCm225??k_165ZHvt7VQu7o1pEgBPkdnqPlazckLm Scale = 1:18.1 1 2 3 4 2x4 4x4 2x4 1.5x4 0-0-6 0-0-6 8-0-0 7-11-10 4-0-0 4-0-0 8-0-0 4-0-0 0-0-42-8-00-0-48.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.20 0.11 0.03 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 21 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=7-11-4, 3=7-11-4, 4=7-11-4 Max Horz 1=-45(LC 8) Max Uplift 1=-25(LC 10), 3=-31(LC 11) Max Grav 1=151(LC 1), 3=151(LC 1), 4=261(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss V01 Truss Type Valley Qty 1 Ply 1 TG158 Job Reference (optional) I45107504 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:22 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-V0g3810Di4MPAeN?cmKQtnGeNpmRTq4Ixqcl9FzckLp Scale = 1:11.1 1 2 3 2x4 3x4 2x4 0-0-8 0-0-8 5-4-0 5-3-8 2-8-0 2-8-0 5-4-0 2-8-0 0-0-41-4-00-0-46.00 12 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.08 0.18 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 11 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-4-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=5-3-0, 3=5-3-0 Max Horz 1=13(LC 12) Max Uplift 1=-12(LC 12), 3=-12(LC 13) Max Grav 1=181(LC 18), 3=181(LC 19) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss V02 Truss Type Valley Qty 1 Ply 1 TG158 Job Reference (optional) I45107505 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:23 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-zDERLN0rTNUGnoxBAUrfQ?ojSD62CHmRAULIhizckLo Scale = 1:17.8 1 2 3 5 4 6 2x4 4x4 1.5x4 1.5x4 1.5x4 8-3-8 8-3-8 5-4-0 5-4-0 8-3-8 2-11-8 0-0-42-8-01-2-46.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.51 0.15 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a -0.00 (loc) - - 4 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 23 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=8-3-0, 4=8-3-0, 5=8-3-0 Max Horz 1=43(LC 9) Max Uplift 1=-26(LC 12), 4=-31(LC 13) Max Grav 1=219(LC 18), 4=143(LC 19), 5=343(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss V03 Truss Type Valley Qty 1 Ply 1 TG158 Job Reference (optional) I45107506 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:23 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-zDERLN0rTNUGnoxBAUrfQ?onYD7zCHYRAULIhizckLo Scale = 1:24.8 1 2 3 4 7 6 53x4 4x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 11-3-8 11-3-8 8-0-0 8-0-0 11-3-8 3-3-8 0-0-44-0-02-4-46.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.24 0.09 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a -0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 34 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 11-3-0. (lb) - Max Horz 1=80(LC 9) Max Uplift All uplift 100 lb or less at joint(s) 5, 7 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=276(LC 19), 7=429(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-7=-347/136 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss V07 Truss Type Valley Qty 1 Ply 1 TG158 Job Reference (optional) I45107507 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:26 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-OnvazO3jmIsrfGgmrcOM1dQLHQAyPe3tsRazI1zckLl Scale = 1:7.6 1 2 3 2x4 5x6 1-11-0 1-11-0 0-0-40-11-86.00 12 Plate Offsets (X,Y)-- [2:Edge,0-1-13] LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.02 0.01 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 4 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 1-11-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=1-10-8, 3=1-10-8 Max Horz 1=18(LC 9) Max Uplift 1=-3(LC 12), 3=-8(LC 12) Max Grav 1=55(LC 18), 3=55(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 23748-23748A Truss V06 Truss Type Valley Qty 1 Ply 1 TG158 Job Reference (optional) I45107508 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Mar 9 06:35:26 2021 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-OnvazO3jmIsrfGgmrcOM1dQGGQ8sPe3tsRazI1zckLl Scale = 1:14.2 1 2 3 2x4 1.5x4 1.5x4 4-7-0 4-7-0 0-0-42-3-86.00 12 LOADING (psf) TCLL (Roof Snow=20.0) TCDL BCLL BCDL 20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.34 0.14 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 12 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-7-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=4-6-8, 3=4-6-8 Max Horz 1=59(LC 9) Max Uplift 1=-11(LC 12), 3=-26(LC 12) Max Grav 1=208(LC 18), 3=208(LC 18) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. March 9,2021 PRODUCT CODE APPROVALSLATERAL BRACING LOCATIONIndicates location where bearings(supports) occur. Icons vary butreaction section indicates jointnumber where bearings occur.Min size shown is for crushing only.Indicated by symbol shown and/orby text in the bracing section of theoutput. Use T or I bracingif indicated.The first dimension is the plate width measured perpendicular to slots. Second dimension isthe length parallel to slots.Center plate on joint unless x, yoffsets are indicated.Dimensions are in ft-in-sixteenths.Apply plates to both sides of trussand fully embed teeth.1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.5. Cut members to bear tightly against each other.6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.13. Top chords must be sheathed or purlins provided at spacing indicated on design.14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.15. Connections not shown are the responsibility of others.16. Do not cut or alter truss member or plate without prior approval of an engineer.17. Install and load vertically unless indicated otherwise.18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.21.The design does not take into account any dynamic or other loads other than those expressly stated.Failure to Follow Could Cause PropertyDamage or Personal Injury (Drawings not to scale)© 2012 MiTek® All Rights ReservedMiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020edge of truss.from outside"16/1-0ICC-ES Reports:ESR-1311, ESR-1352, ESR1988ER-3907, ESR-2362, ESR-1397, ESR-3282JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISEAROUND THE TRUSS STARTING AT THE JOINT FARTHEST TOTHE LEFT.CHORDS AND WEBS ARE IDENTIFIED BY END JOINTNUMBERS/LETTERS.W 4 - 6 W3-6W3- 7 W2-7W1-7C1-8 C5-6C6-7C7-8C4-5 C3-4C2-3C1-2TOP CHORD TOP CHORD 87654321BOTTOM CHORDSTOP CHORDSBEARING4 x 4PLATE SIZEThis symbol indicates the required direction of slots inconnector plates."16/1For 4 x 2 orientation, locateplates 0- 1"4/3PLATE LOCATION AND ORIENTATIONSymbolsNumbering SystemGeneral Safety Notes *Plate location details available in MiTek 20/20software or upon request.Industry Standards:ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.DSB-89: Design Standard for Bracing.BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.6-4-8WEBSTrusses are designed for wind loads in the plane of the truss unless otherwise shown.Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.dimensions shown in ft-in-sixteenths