HomeMy WebLinkAboutDrainage Report170187000 – North End Phase 1
North End Phase 1 – Secondary Plat Construction Plans
W. Smokey Row Rd.
Carmel, IN 46032
Drainage Report
June 20, 2020
Revised: October 2, 2020
Revised: November 25, 2020
Prepared For:
Old Town Companies, LLC
1132 S. Rangeline Rd, Suite 100
Carmel, IN 46032
Prepared By:
Kimley-Horn and Associates, Inc.
Andy Taylor, PE, LEED AP, CFM
Kaleb Sondgerath, EI
250 East 96th Street, Suite 580
Indianapolis, IN 46240
Phone: (317) 218-9560
170187000 – North End Phase 1
TABLE OF CONTENTS
1.0. PROJECT SUMMARY
2.0. INTRODUCTION
3.0. EXISTING CONDITIONS
4.0. PROPOSED CONDITIONS
Appendix A: Project Site Maps & Previous Permits
Appendix B: Existing Drainage Conditions
Appendix C: Proposed Basin Conditions
Appendix D: Proposed Storm Sewer Design
Appendix E: Stormwater Quality Design
Appendix F: Channel Calculations
170187000 – North End Phase 1
1.0 Project Summary
Project Name: North End Phase 1 – Secondary Plat & Construction Plans
Location: W. Smokey Row Rd, Carmel, IN
Report Type: Drainage Report
Reviewing Agency: City of Carmel
Storm Sewer Sizing: Rational Method
Basin Runoff Calculations: USDA NRCS TR-55
Stormwater Quality: Underground Isolator Rows / Aqua-Swirl Separators
Stormwater Quantity: Underground Detention / Dry Detention Basins
Design Standards: City of Carmel Stormwater Technical Manual
2.0. Introduction
Kimley-Horn and Associates, Inc. has been retained by Old Town Companies, LLC to provide civil
engineering services for the North End Phase 1 Secondary Plat and Construction Plans located on W.
Smokey Row Road in Carmel, Indiana. The project consists of the redevelopment of approximately 13.84
acres into a mixed-use subdivision as well as road and utility infrastructure. The majority of the site will
drain to the existing creek north of the site, while the remainder of the site will drain to the existing ditch
along Smokey Row Road. Water quality will be provided by a combination of Underground Isolator rows
as well as mechanical separators.
3.0. Existing Conditions
FEMA
According to FEMA Flood Insurance Rate Maps 18057C0207G dated November 19, 2014 provided in
Appendix A, the site resides within “Zone X” which corresponds to areas determined to be outside of the
0.2% annual chance floodplain.
Soil Characteristics
Per the United States Geological Survey’s (USGS) Natural Resources Conservation Service (NRCS) Web Soil
Survey, the site soil consists of Crosby silt loam (YclA) and Miami silt loam (YmsB2). Refer to Appendix A
for the NRCS Web Soil Survey information.
Existing Site Features
The total existing site consists of approximately 13.57 acres of large residential parcels as well as grassed
and wooded areas. The northern portion of the site (5.35 acres) drains via sheet and shallow concentrated
flows to an existing channel to the north of the development. The remainder of the site (8.22 acres) drains
via sheet and shallow concentrated flows to the south of the site along Smokey Row Rd. Both the north
and south basins eventually discharge to Little Cool Creek east of the site and therefore the entire
disturbed area was used to determine the allowable release rates. The table below indicates the existing
runoff from the site for the 10-, and 100-year storm events using ICPR 4 Stormwater Modeling (Refer to
Appendix B for existing drainage calculations).
170187000 – North End Phase 1
10-year 100-year
Existing Runoff to North 11.39 cfs 23.71 cfs
Existing Runoff to South 18.58 cfs 38.51 cfs
Total Existing Runoff 29.97 cfs 61.81 cfs
4.0. Proposed Conditions
The proposed site will drain via sheet and shallow concentrated flow to proposed storm sewer on site.
The proposed development utilizes reinforced concrete piping to convey the runoff from the site to 6
interconnected detention basins. The proposed storm sewer has been designed in order to meet the
intent of the City of Carmel Stormwater Technical Standards Manual (Refer to Appendix D for proposed
storm sewer calculations). The storm sewer was designed in order to ensure no adverse impact on
adjacent landowners.
The majority of the proposed site will discharge to the existing creek north of the development while the
remaining portion of the site will discharge to the roadside ditch along Smokey Row Road, both eventually
discharging to Little Cool Creek. Per the City of Carmel’s Stormwater Technical Standards, the allowable
runoff from the post developed site will be limited to 0.10 cfs/acre for the 10-year storm and 0.30 cfs/acre
for the 100-year storm. Due to topographic constraints, it was not possible for the entire proposed site to
be collected and discharged to the proposed detention basins. This area (0.88 total acres) were accounted
for in the detention calculations but were removed from the allowable release rates determined by the
Carmel Stormwater Standards. Therefore, a total of 12.66 acres were used to determine the allowable
discharge rates. The Table below summarizes the proposed runoff from the site using the SCS Curve
Number method and ICPR4 Stormwater Modeling (Refer to Appendix C for calculations).
Proposed Release Rates
10-YEAR 100-YEAR
NORTH DISCHARGE 1.17 cfs 3.29 cfs
SOUTH DISCHARGE 0.09 cfs 0.48 cfs
TOTAL DISCHARGE 1.26 cfs 3.77 cfs
ALLOWABLE DISCHARGE 1.27 cfs 3.80 cfs
EXISTING DISCHARGE 29.97 cfs 61.81 cfs
However, per the Carmel Stormwater Technical Manual, outlet control structures are limited to use no
less than a 6-in diameter orifice. Therefore, the ICPR4 Stormwater Model was re-evaluated using 6”
orifice. Refer to the table below for the revised release rates (Refer to Appendix C for calculations).
Proposed Release Rates (6” min. orifice size)
10-YEAR 100-YEAR
NORTH DISCHARGE 1.68 cfs 4.48 cfs
SOUTH DISCHARGE 1.10 cfs 1.62 cfs
TOTAL DISCHARGE 2.78 cfs 6.10 cfs
170187000 – North End Phase 1
Stormwater Quality
Per the City of Carmel’s Stormwater Technical Standards, two Water Quality BMPs are required in series
to treat the 1” rainfall event. The first BMP in series are Isolator Rows within the underground detention
basins. Isolator rows are thermoplastic chambers wrapped in filter fabric that treat the first flush rainfall
event (1-in – 24hr storm). These isolator rows allow for sediment to settle before discharging to the
remainder of the underground detention (Please refer to Appendix E for more information and
calculations). The second BMP in series are downstream Aqua-Shield Aqua-Swirl XCelerator units that
have been sized to allow for the 100-year discharge from the site (Refer to Appendix D for Stormwater
Quality Calculations).
Smokey Row Road
To ensure the existing Smokey Row Road Right-of-way has the capacity to convey the proposed discharge
from the site to the south an analysis was done to determine the required culverts and roadside swale to
convey the 100-year storm event (Refer to Appendix C for calculations). The proposed development will
reduce the discharge to Smokey Row Road by 30.8 cfs. This, in combination of the proposed
improvements, will insure no adverse impacts on the adjacent properties.
Hunters Knoll Legal Drain
An existing channel along the northern portion of the site conveys the Hunters Knoll Legal Drain. To
determine the existing channel will have no adverse impacts on the development, an analysis was
completed and determined the proposed improvements will not negatively impact the site. Refer to
Appendix F for the channel analysis.
Conclusions
The proposed drainage design for this project has been designed to meet the intent of the City of Carmel’s
Stormwater Technical Standards. No adverse impacts are anticipated to affect any adjacent or
downstream properties.
170187000 – North End Phase 1
Appendix A: Project Site Maps &
Previous Permits
Hydrologic Soil Group—Hamilton County, Indiana
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
7/13/2020
Page 1 of 444265004426550442660044266504426700442675044268004426500442655044266004426650442670044267504426800573540573590573640573690573740573790573840573890573940573990574040
573540 573590 573640 573690 573740 573790 573840 573890 573940 573990 574040
39° 59' 17'' N 86° 8' 19'' W39° 59' 17'' N86° 7' 57'' W39° 59' 6'' N
86° 8' 19'' W39° 59' 6'' N
86° 7' 57'' WN
Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 16N WGS84
0 100 200 400 600
Feet
0 35 70 140 210
Meters
Map Scale: 1:2,410 if printed on A landscape (11" x 8.5") sheet.
Soil Map may not be valid at this scale.
MAP LEGEND MAP INFORMATION
Area of Interest (AOI)
Area of Interest (AOI)
Soils
Soil Rating Polygons
A
A/D
B
B/D
C
C/D
D
Not rated or not available
Soil Rating Lines
A
A/D
B
B/D
C
C/D
D
Not rated or not available
Soil Rating Points
A
A/D
B
B/D
C
C/D
D
Not rated or not available
Water Features
Streams and Canals
Transportation
Rails
Interstate Highways
US Routes
Major Roads
Local Roads
Background
Aerial Photography
The soil surveys that comprise your AOI were mapped at
1:15,800.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil
line placement. The maps do not show the small areas of
contrasting soils that could have been shown at a more detailed
scale.
Please rely on the bar scale on each map sheet for map
measurements.
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Albers equal-area conic projection, should be used if more
accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as
of the version date(s) listed below.
Soil Survey Area: Hamilton County, Indiana
Survey Area Data: Version 21, Jun 4, 2020
Soil map units are labeled (as space allows) for map scales
1:50,000 or larger.
Date(s) aerial images were photographed: Aug 1, 2018—Sep
30, 2018
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor
shifting of map unit boundaries may be evident.
Hydrologic Soil Group—Hamilton County, Indiana
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
7/13/2020
Page 2 of 4
Hydrologic Soil Group
Map unit symbol Map unit name Rating Acres in AOI Percent of AOI
UcfA Urban land-Crosby silt
loam complex, fine-
loamy subsoil, 0 to 2
percent slopes
0.2 1.0%
UkbB2 Urban land-Miami silt
loam complex, 2 to 6
percent slopes,
eroded
0.2 1.3%
YbvA Brookston silty clay
loam-Urban land
complex, 0 to 2
percent slopes
B/D 0.0 0.2%
YclA Crosby silt loam, fine-
loamy subsoil-Urban
land complex, 0 to 2
percent slopes
C/D 0.1 0.6%
YmsB2 Miami silt loam-Urban
land complex, 2 to 6
percent slopes,
eroded
C 11.9 74.6%
YmsC2 Miami silt loam-Urban
land complex, 6 to 12
percent slopes,
eroded
C 3.6 22.2%
YshAH Shoals silt loam-Urban
land complex, 0 to 2
percent slopes,
frequently flooded,
brief duration
B/D 0.0 0.1%
Totals for Area of Interest 16.0 100.0%
Hydrologic Soil Group—Hamilton County, Indiana
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
7/13/2020
Page 3 of 4
Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive
precipitation from long-duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when
thoroughly wet. These consist mainly of deep, well drained to excessively
drained sands or gravelly sands. These soils have a high rate of water
transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well
drained soils that have moderately fine texture to moderately coarse texture.
These soils have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of
water transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink-swell
potential, soils that have a high water table, soils that have a claypan or clay
layer at or near the surface, and soils that are shallow over nearly impervious
material. These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in
their natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Hydrologic Soil Group—Hamilton County, Indiana
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
7/13/2020
Page 4 of 4
170187000 – North End Phase 1
Appendix B: Existing Basin Conditions
EXISTING CONDITIONSNorth End
Carmel. IN
10/1/2020
Project:By:KJS Date:7/17/2020
Location:Checked:Date:
Basin:
Present X Developed -
Tc X Tt -through subarea
Sheet Flow Segment ID
Surface description (Table 3-1)Unpaved
Manning's roughness coeff., n (Table 3-1)0.24
Flow Length, L (L < 300 ft)ft 100
Rainfall Calculation Method Entity Rainfall Data
Two-year 24-hr rainfall, P2 in 2.64
Land slope, s ft/ft 0.03
Tt = .007 (nL)0.8 hr 0.22 + + = 0.22
(P2)0.5s0.4
Shallow Concentrated Flow Segment ID
Surface description, (paved or unpaved)Unpaved - -
Flow length, L ft 1107 - -
Watercourse slope, s ft/ft 0.029 - -
Average velocity, V (Figure 3-1) ft/s 2.75 - -
Tt =L hr 0.11 + - + - = 0.11
3600 V
Watershed or subarea Tc or Tt hr 0.33
min 20.07
Time of Concentration (Tc) or Travel Time (Tt)
North End
Carmel, Indiana
EXISTING BASIN
Project:By:KJS Date:10/2/2020
Location:Checked:Date:
Basin:
Present X Developed -
Tc X Tt -through subarea
Sheet Flow Segment ID
Surface description (Table 3-1)Unpaved
Manning's roughness coeff., n (Table 3-1)0.24
Flow Length, L (L < 300 ft)ft 100
Rainfall Calculation Method Entity Rainfall Data
Two-year 24-hr rainfall, P2 in 2.64
Land slope, s ft/ft 0.012
Tt = .007 (nL)0.8 hr 0.32 + + = 0.32
(P2)0.5s0.4
Shallow Concentrated Flow Segment ID
Surface description, (paved or unpaved)Unpaved - -
Flow length, L ft 525 - -
Watercourse slope, s ft/ft 0.028 - -
Average velocity, V (Figure 3-1) ft/s 2.70 - -
Tt =L hr 0.05 + - + - = 0.05
3600 V
Watershed or subarea Tc or Tt hr 0.38
min 22.51
Time of Concentration (Tc) or Travel Time (Tt)
North End
Carmel, Indiana
EX. NORTH BASIN
PROJECT:BY:DATE:Hydrologic Group%A0.0%B0.0%C97.5%D2.5%Total100.0%Soil Group Weighted Runoff CoefficientC Actual Soil GroupNext Less Impervious Soil GroupUndevelopedWooded Good Cover0.20 70 77Fully DevelopedOpen Space Good Condition (>75% Cover)0.30 74 80Fully DevelopedImpervious Paved0.85 98 98Fully DevelopedImpervious Rooftop0.90 98 98UndevelopedCultivated Land Conservation Treatment0.30 78 81WaterPond or Lake -1.00 100 100Weighted CN Weighted CNWooded - Good CoverOpen Space - Good Condition (>75% Cover)Impervious - Paved Impervious - RooftopCultivated Land - Conservation TreatmentWater - Pond or Lake TotalActual Soil GroupNext Less Impervious Soil GroupEXISTING NORTH BASIN 0.25 4.19 0.91 - - -5.350.39 7883EXISTING SOUTH BASIN 0.38 6.43 1.41 - - -8.220.39 7883NORTH ENDKJS2-Oct-20Site SoilWeighted CCover Type ConditionBasinSoil Group Weighted CNArea (ac)
EXISTING INPUTS / OUTPUTS 1
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - existing\10/2/2020 16:33
Simulation: 100YR - 24HR
Scenario:Icpr3
Run Date/Time:10/2/2020 3:37:03 PM
Program Version:ICPR4 4.07.04
General
Run Mode:Normal
Year Month Day Hour [hr]
Start Time:0 0 0 0.0000
End Time:0 0 0 30.0000
Hydrology [sec]Surface Hydraulics
[sec]
Groundwater [sec]
Min Calculation Time:60.0000 0.1000 900.0000
Max Calculation Time:60.0000
Output Time Increments
Hydrology
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
Surface Hydraulics
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
0 0 0 1.0000 10.0000
Groundwater
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 360.0000
Restart File
Save Restart:False
Resources & Lookup Tables
Resources Lookup Tables
Rainfall Folder:ICPR3 Boundary Stage Set:
Reference ET Folder:Extern Hydrograph Set:
Unit Hydrograph
Folder:
ICPR3 Curve Number Set:CN
Green-Ampt Set:
Vertical Layers Set:
Impervious Set:CN IMPERVIOUS
Roughness Set:
Crop Coef Set:
EXISTING INPUTS / OUTPUTS 2
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - existing\10/2/2020 16:33
Fillable Porosity Set:
Conductivity Set:
Leakage Set:
Tolerances & Options
Time Marching:SAOR IA Recovery Time:24.0000 hr
Max Iterations:6 ET for Manual Basins:False
Over-Relax Weight
Fact:
0.5 dec
dZ Tolerance:0.0010 ft Smp/Man Basin Rain
Opt:
Global
Max dZ:1.0000 ft OF Region Rain Opt:Global
Link Optimizer Tol:0.0001 ft Rainfall Name:Scsii-24
Rainfall Amount:6.46 in
Edge Length Option:Automatic Storm Duration:24.0000 hr
Dflt Damping (2D):0.0050 ft Dflt Damping (1D):0.0050 ft
Min Node Srf Area
(2D):
1 ft2 Min Node Srf Area
(1D):
113 ft2
Energy Switch (2D):Energy Energy Switch (1D):Energy
Comment:
Check Rainfall Depths
Simulation: 10YR - 24HR
Scenario:Icpr3
Run Date/Time:10/2/2020 3:37:45 PM
Program Version:ICPR4 4.07.04
General
Run Mode:Normal
Year Month Day Hour [hr]
Start Time:0 0 0 0.0000
End Time:0 0 0 30.0000
Hydrology [sec]Surface Hydraulics
[sec]
Groundwater [sec]
Min Calculation Time:60.0000 0.1000 900.0000
Max Calculation Time:60.0000
Output Time Increments
Hydrology
EXISTING INPUTS / OUTPUTS 3
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - existing\10/2/2020 16:33
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
Surface Hydraulics
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
0 0 0 1.0000 10.0000
Groundwater
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 360.0000
Restart File
Save Restart:False
Resources & Lookup Tables
Resources Lookup Tables
Rainfall Folder:ICPR3 Boundary Stage Set:
Reference ET Folder:Extern Hydrograph Set:
Unit Hydrograph
Folder:
ICPR3 Curve Number Set:CN
Green-Ampt Set:
Vertical Layers Set:
Impervious Set:CN IMPERVIOUS
Roughness Set:
Crop Coef Set:
Fillable Porosity Set:
Conductivity Set:
Leakage Set:
Tolerances & Options
Time Marching:SAOR IA Recovery Time:24.0000 hr
Max Iterations:6 ET for Manual Basins:False
Over-Relax Weight
Fact:
0.5 dec
dZ Tolerance:0.0010 ft Smp/Man Basin Rain
Opt:
Global
Max dZ:1.0000 ft OF Region Rain Opt:Global
Link Optimizer Tol:0.0001 ft Rainfall Name:Scsii-24
Rainfall Amount:3.83 in
Edge Length Option:Automatic Storm Duration:24.0000 hr
Dflt Damping (2D):0.0050 ft Dflt Damping (1D):0.0050 ft
Min Node Srf Area
(2D):
1 ft2 Min Node Srf Area
(1D):
113 ft2
Energy Switch (2D):Energy Energy Switch (1D):Energy
EXISTING INPUTS / OUTPUTS 4
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - existing\10/2/2020 16:33
Comment:
Check Rainfall Depths
Simple Basin: EX. NORTH BASIN
Scenario:Icpr3
Node:EX. CREEK
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:22.5100 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:5.3500 ac
Curve Number:83.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin Runoff Summary [Icpr3]
Basin
Name
Sim Name Max Flow
[cfs]
Time to
Max Flow
[hrs]
Total
Rainfall
[in]
Total
Runoff [in]
Area [ac]Equivalent
Curve
Number
% Imperv % DCIA
EX.
NORTH
BASIN
100YR -
24HR
23.71 12.1333 6.46 4.53 5.3500 83.0 0.00 0.00
EX.
NORTH
BASIN
10YR -
24HR
11.39 12.1333 3.83 2.14 5.3500 83.0 0.00 0.00
Simple Basin: EX. SOUTH BASIN
Scenario:Icpr3
Node:SMOKEY ROW RD
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:20.0700 min
Max Allowable Q:0.00 cfs
EXISTING INPUTS / OUTPUTS 5
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - existing\10/2/2020 16:33
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:8.2200 ac
Curve Number:83.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin Runoff Summary [Icpr3]
Basin
Name
Sim Name Max Flow
[cfs]
Time to
Max Flow
[hrs]
Total
Rainfall
[in]
Total
Runoff [in]
Area [ac]Equivalent
Curve
Number
% Imperv % DCIA
EX.
SOUTH
BASIN
100YR -
24HR
38.51 12.1167 6.46 4.53 8.2200 83.0 0.00 0.00
EX.
SOUTH
BASIN
10YR -
24HR
18.58 12.1167 3.83 2.14 8.2200 83.0 0.00 0.00
Node: EX. CREEK
Scenario:Icpr3
Type:Time/Stage
Base Flow:0.00 cfs
Initial Stage:1.00 ft
Warning Stage:2.00 ft
Boundary Stage:
Year Month Day Hour Stage [ft]
0 0 0 0.0000 1.00
0 0 0 9999.0000 1.00
Comment:
Node Max Conditions [Icpr3]
Node Name Sim Name Warning
Stage [ft]
Max Stage
[ft]
Min/Max
Delta Stage
[ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
EX. CREEK 100YR - 24HR 2.00 1.00 0.0000 23.65 0.00 0
EXISTING INPUTS / OUTPUTS 6
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - existing\10/2/2020 16:33
Node Name Sim Name Warning
Stage [ft]
Max Stage
[ft]
Min/Max
Delta Stage
[ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
EX. CREEK 10YR - 24HR 2.00 1.00 0.0000 11.38 0.00 0
Node: SMOKEY ROW RD
Scenario:Icpr3
Type:Time/Stage
Base Flow:0.00 cfs
Initial Stage:1.00 ft
Warning Stage:2.00 ft
Boundary Stage:
Year Month Day Hour Stage [ft]
0 0 0 0.0000 1.00
0 0 0 99999.0000 1.00
Comment:
Node Max Conditions [Icpr3]
Node Name Sim Name Warning
Stage [ft]
Max Stage
[ft]
Min/Max
Delta Stage
[ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
SMOKEY
ROW RD
100YR - 24HR 2.00 1.00 0.0000 38.48 0.00 0
SMOKEY
ROW RD
10YR - 24HR 2.00 1.00 0.0000 18.53 0.00 0
170187000 – North End Phase 1
Appendix C: Proposed Basin
Conditions
PROPOSED CONDITIONSNorth End
Carmel. IN
10/1/2020
PROJECT:BY:DATE:Hydrologic Group%A0.0%B0.0%C97.5%D2.5%Total100.0%Soil Group Weighted Runoff CoefficientC Actual Soil GroupNext Less Impervious Soil GroupUndevelopedWooded Good Cover0.20 70 77Fully DevelopedOpen Space Good Condition (>75% Cover)0.30 74 80Fully DevelopedImpervious Paved0.85 98 98Fully DevelopedImpervious Rooftop0.90 98 98UndevelopedCultivated Land Conservation Treatment0.30 78 81WaterPond or Lake -1.00 100 100Weighted CN Weighted CNWooded - Good CoverOpen Space - Good Condition (>75% Cover)Impervious - Paved Impervious - RooftopCultivated Land - Conservation TreatmentWater - Pond or Lake TotalActual Soil GroupNext Less Impervious Soil GroupBASIN 1 - 0.18 0.97 - - -1.150.76 9495BASIN 2 - 0.62 0.72 - - -1.340.60 8790BASIN 3 - 1.00 2.49 - - -3.490.69 9193BASIN 4 - 0.77 2.48 - - -3.250.72 9294BASIN 5 - 0.92 0.82 - - -1.740.56 8588BASIN 6 - 1.28 1.29 - - -2.570.58 8689NORTH ENDKJS2-Oct-20Site SoilWeighted CCover Type ConditionBasinSoil Group Weighted CNArea (ac)
Project:
Chamber Model - MC-3500
Units -Imperial
Number of Chambers -75
Number of End Caps - 20
Voids in the stone (porosity) - 40 %
Base of Stone Elevation - 822.00 ft
Amount of Stone Above Chambers - 24 in
Amount of Stone Below Chambers - 9 in
Amount of Stone Between Chambers - 9 in
Area of system - 5419 sf Min. Area -
Height of
System
Incremental Single
Chamber
Incremental
Single End Cap
Incremental
Chambers
Incremental
End Cap
Incremental
Stone
Incremental Ch,
EC and Stone
Cumulative
System Elevation
(inches) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet)(cubic feet) (feet)
78 0.00 0.00 0.00 0.00 180.63 180.63 19216.50 828.50
77 0.00 0.00 0.00 0.00 180.63 180.63 19035.86 828.42
76 0.00 0.00 0.00 0.00 180.63 180.63 18855.23 828.33
75 0.00 0.00 0.00 0.00 180.63 180.63 18674.60 828.25
74 0.00 0.00 0.00 0.00 180.63 180.63 18493.96 828.17
73 0.00 0.00 0.00 0.00 180.63 180.63 18313.33 828.08
72 0.00 0.00 0.00 0.00 180.63 180.63 18132.70 828.00
71 0.00 0.00 0.00 0.00 180.63 180.63 17952.06 827.92
70 0.00 0.00 0.00 0.00 180.63 180.63 17771.43 827.83
69 0.00 0.00 0.00 0.00 180.63 180.63 17590.80 827.75
68 0.00 0.00 0.00 0.00 180.63 180.63 17410.16 827.67
67 0.00 0.00 0.00 0.00 180.63 180.63 17229.53 827.58
66 0.00 0.00 0.00 0.00 180.63 180.63 17048.90 827.50
65 0.00 0.00 0.00 0.00 180.63 180.63 16868.26 827.42
64 0.00 0.00 0.00 0.00 180.63 180.63 16687.63 827.33
63 0.00 0.00 0.00 0.00 180.63 180.63 16507.00 827.25
62 0.00 0.00 0.00 0.00 180.63 180.63 16326.36 827.17
61 0.00 0.00 0.00 0.00 180.63 180.63 16145.73 827.08
60 0.00 0.00 0.00 0.00 180.63 180.63 15965.10 827.00
59 0.00 0.00 0.00 0.00 180.63 180.63 15784.46 826.92
58 0.00 0.00 0.00 0.00 180.63 180.63 15603.83 826.83
57 0.00 0.00 0.00 0.00 180.63 180.63 15423.20 826.75
56 0.00 0.00 0.00 0.00 180.63 180.63 15242.56 826.67
55 0.00 0.00 0.00 0.00 180.63 180.63 15061.93 826.58
54 0.06 0.00 4.36 0.00 178.89 183.25 14881.30 826.50
53 0.19 0.02 14.56 0.48 174.62 189.65 14698.05 826.42
52 0.29 0.04 22.05 0.75 171.51 194.31 14508.39 826.33
51 0.40 0.05 30.27 1.03 168.11 199.42 14314.08 826.25
50 0.69 0.07 51.54 1.35 159.48 212.37 14114.67 826.17
49 1.03 0.09 77.12 1.76 149.08 227.97 13902.30 826.08
48 1.25 0.11 93.71 2.14 142.29 238.15 13674.33 826.00
47 1.42 0.13 106.67 2.53 136.96 246.15 13436.18 825.92
46 1.57 0.14 117.99 2.89 132.28 253.16 13190.03 825.83
45 1.71 0.16 128.04 3.26 128.12 259.41 12936.88 825.75
44 1.83 0.18 137.14 3.63 124.32 265.10 12677.47 825.67
43 1.94 0.20 145.33 4.01 120.90 270.24 12412.37 825.58
42 2.04 0.22 153.06 4.37 117.66 275.09 12142.13 825.50
41 2.13 0.23 160.10 4.70 114.71 279.51 11867.04 825.42
40 2.22 0.25 166.82 5.01 111.90 283.73 11587.53 825.33
39 2.31 0.27 173.01 5.31 109.30 287.63 11303.80 825.25
38 2.38 0.28 178.86 5.60 106.85 291.31 11016.17 825.17
37 2.46 0.29 184.43 5.88 104.51 294.82 10724.87 825.08
36 2.53 0.31 189.61 6.16 102.33 298.10 10430.05 825.00
35 2.59 0.32 194.53 6.42 100.25 301.21 10131.95 824.92
34 2.66 0.33 199.20 6.69 98.28 304.17 9830.74 824.83
33 2.72 0.35 203.63 6.94 96.40 306.98 9526.58 824.75
32 2.77 0.36 207.85 7.20 94.61 309.66 9219.60 824.67
31 2.82 0.37 211.85 7.45 92.92 312.21 8909.94 824.58
30 2.88 0.38 215.66 7.69 91.30 314.64 8597.73 824.50
29 2.92 0.40 219.31 7.92 89.74 316.97 8283.09 824.42
28 2.97 0.41 222.74 8.15 88.28 319.17 7966.11 824.33
27 3.01 0.42 225.93 8.37 86.91 321.22 7646.95 824.25
26 3.05 0.43 228.99 8.59 85.60 323.19 7325.73 824.17
25 3.09 0.44 232.07 8.81 84.28 325.16 7002.54 824.08
24 3.13 0.45 234.79 9.02 83.11 326.92 6677.38 824.00
23 3.17 0.46 237.42 9.22 81.98 328.62 6350.46 823.92
22 3.20 0.47 239.96 9.41 80.88 330.26 6021.84 823.83
21 3.23 0.48 242.33 9.60 79.86 331.79 5691.59 823.75
20 3.26 0.49 244.61 9.78 78.88 333.27 5359.79 823.67
19 3.29 0.50 246.77 9.96 77.94 334.67 5026.53 823.58
18 3.32 0.51 248.85 10.13 77.04 336.02 4691.86 823.50
17 3.34 0.51 250.81 10.29 76.19 337.29 4355.84 823.42
16 3.37 0.52 252.65 10.44 75.40 338.49 4018.54 823.33
15 3.39 0.53 254.44 10.59 74.62 339.65 3680.06 823.25
14 3.41 0.54 256.09 10.73 73.90 340.73 3340.41 823.17
13 3.44 0.54 257.78 10.86 73.18 341.82 2999.68 823.08
StormTech MC-3500 Cumulative Storage Volumes
POND 2
4225 sf min. area
Include Perimeter Stone in Calculations
Click Here for Metric
Project:
Chamber Model - MC-4500
Units -Imperial
Number of Chambers -194
Number of End Caps - 12
Voids in the stone (porosity) - 40 %
Base of Stone Elevation - 824.50 ft
Amount of Stone Above Chambers - 18 in
Amount of Stone Below Chambers - 9 in
6
Area of system - 8351 sf Min. Area -
Height of
System
Incremental Single
Chamber
Incremental
Single End Cap
Incremental
Chambers
Incremental
End Cap
Incremental
Stone
Incremental Ch,
EC and Stone
Cumulative
System Elevation
(inches) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet)(cubic feet) (feet)
87 0.00 0.00 0.00 0.00 278.37 278.37 36899.99 831.75
86 0.00 0.00 0.00 0.00 278.37 278.37 36621.62 831.67
85 0.00 0.00 0.00 0.00 278.37 278.37 36343.25 831.58
84 0.00 0.00 0.00 0.00 278.37 278.37 36064.89 831.50
83 0.00 0.00 0.00 0.00 278.37 278.37 35786.52 831.42
82 0.00 0.00 0.00 0.00 278.37 278.37 35508.15 831.33
81 0.00 0.00 0.00 0.00 278.37 278.37 35229.79 831.25
80 0.00 0.00 0.00 0.00 278.37 278.37 34951.42 831.17
79 0.00 0.00 0.00 0.00 278.37 278.37 34673.05 831.08
78 0.00 0.00 0.00 0.00 278.37 278.37 34394.69 831.00
77 0.00 0.00 0.00 0.00 278.37 278.37 34116.32 830.92
76 0.00 0.00 0.00 0.00 278.37 278.37 33837.95 830.83
75 0.00 0.00 0.00 0.00 278.37 278.37 33559.59 830.75
74 0.00 0.00 0.00 0.00 278.37 278.37 33281.22 830.67
73 0.00 0.00 0.00 0.00 278.37 278.37 33002.85 830.58
72 0.00 0.00 0.00 0.00 278.37 278.37 32724.49 830.50
71 0.00 0.00 0.00 0.00 278.37 278.37 32446.12 830.42
70 0.00 0.00 0.00 0.00 278.37 278.37 32167.75 830.33
69 0.04 0.01 7.95 0.16 275.13 283.23 31889.39 830.25
68 0.12 0.03 22.52 0.41 269.19 292.12 31606.16 830.17
67 0.16 0.05 31.96 0.62 265.33 297.91 31314.03 830.08
66 0.21 0.07 40.49 0.79 261.85 303.14 31016.12 830.00
65 0.27 0.08 52.06 1.00 257.14 310.20 30712.98 829.92
64 0.45 0.11 87.84 1.26 242.72 331.83 30402.78 829.83
63 0.67 0.13 129.06 1.59 226.11 356.76 30070.95 829.75
62 0.80 0.16 155.01 1.93 215.59 372.53 29714.20 829.67
61 0.91 0.19 176.18 2.26 206.99 385.43 29341.67 829.58
60 1.00 0.22 194.56 2.62 199.49 396.68 28956.23 829.50
59 1.09 0.25 210.94 2.96 192.80 406.71 28559.56 829.42
58 1.16 0.28 225.72 3.30 186.76 415.78 28152.85 829.33
57 1.23 0.30 239.40 3.62 181.16 424.18 27737.07 829.25
56 1.30 0.33 252.14 3.93 175.94 432.01 27312.89 829.17
55 1.36 0.35 264.04 4.25 171.05 439.34 26880.88 829.08
54 1.42 0.38 275.23 4.60 166.43 446.27 26441.54 829.00
53 1.47 0.41 285.83 4.91 162.07 452.81 25995.27 828.92
52 1.53 0.44 295.88 5.29 157.90 459.07 25542.46 828.83
51 1.57 0.47 305.45 5.63 153.94 465.01 25083.39 828.75
50 1.62 0.50 314.55 5.94 150.17 470.66 24618.38 828.67
49 1.67 0.52 323.25 6.25 146.57 476.06 24147.72 828.58
48 1.71 0.54 331.57 6.53 143.13 481.23 23671.66 828.50
47 1.75 0.57 339.52 6.80 139.84 486.16 23190.43 828.42
46 1.79 0.59 347.12 7.06 136.69 490.88 22704.27 828.33
45 1.83 0.61 354.48 7.32 133.65 495.44 22213.39 828.25
44 1.86 0.63 361.51 7.59 130.73 499.82 21717.95 828.17
43 1.90 0.64 368.27 7.72 127.97 503.96 21218.13 828.08
42 1.93 0.68 374.78 8.13 125.21 508.11 20714.16 828.00
41 1.96 0.70 381.03 8.40 122.59 512.02 20206.05 827.92
40 2.00 0.72 387.05 8.67 120.08 515.80 19694.03 827.83
39 2.03 0.74 392.85 8.92 117.66 519.43 19178.23 827.75
38 2.05 0.76 398.43 9.17 115.32 522.93 18658.80 827.67
37 2.08 0.79 403.81 9.43 113.07 526.31 18135.87 827.58
36 2.11 0.80 408.97 9.63 110.93 529.53 17609.56 827.50
35 2.13 0.82 413.97 9.84 108.84 532.65 17080.03 827.42
34 2.16 0.84 418.78 10.06 106.83 535.67 16547.38 827.33
33 2.18 0.85 423.41 10.22 104.92 538.54 16011.71 827.25
32 2.21 0.86 427.87 10.31 103.09 541.28 15473.16 827.17
31 2.23 0.89 432.16 10.67 101.23 544.07 14931.89 827.08
30 2.25 0.90 436.28 10.85 99.51 546.65 14387.82 827.00
29 2.27 0.92 440.25 11.01 97.86 549.12 13841.17 826.92
28 2.29 0.92 444.06 11.04 96.33 551.43 13292.05 826.83
27 2.31 0.94 447.72 11.32 94.75 553.79 12740.62 826.75
26 2.33 0.96 451.23 11.48 93.28 555.99 12186.83 826.67
25 2.34 0.97 454.60 11.62 91.88 558.10 11630.83 826.58
24 2.36 0.98 457.82 11.78 90.53 560.13 11072.73 826.50
23 2.38 0.97 460.90 11.65 89.34 561.90 10512.61 826.42
22 2.39 1.00 463.85 12.04 88.01 563.90 9950.71 826.33
StormTech MC-4500 Cumulative Storage Volumes
POND 3
7500 sf min. area
Include Perimeter Stone in Calculations
Click Here for Metric
Project:
Chamber Model - MC-4500
Units -Imperial
Number of Chambers -209
Number of End Caps - 12
Voids in the stone (porosity) - 40 %
Base of Stone Elevation - 822.00 ft
Amount of Stone Above Chambers - 24 in
Amount of Stone Below Chambers - 9 in
6
Area of system - 8975 sf Min. Area -
Height of
System
Incremental Single
Chamber
Incremental
Single End Cap
Incremental
Chambers
Incremental
End Cap
Incremental
Stone
Incremental Ch,
EC and Stone
Cumulative
System Elevation
(inches) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet)(cubic feet) (feet)
93 0.00 0.00 0.00 0.00 299.17 299.17 41463.15 829.75
92 0.00 0.00 0.00 0.00 299.17 299.17 41163.98 829.67
91 0.00 0.00 0.00 0.00 299.17 299.17 40864.81 829.58
90 0.00 0.00 0.00 0.00 299.17 299.17 40565.65 829.50
89 0.00 0.00 0.00 0.00 299.17 299.17 40266.48 829.42
88 0.00 0.00 0.00 0.00 299.17 299.17 39967.31 829.33
87 0.00 0.00 0.00 0.00 299.17 299.17 39668.15 829.25
86 0.00 0.00 0.00 0.00 299.17 299.17 39368.98 829.17
85 0.00 0.00 0.00 0.00 299.17 299.17 39069.81 829.08
84 0.00 0.00 0.00 0.00 299.17 299.17 38770.65 829.00
83 0.00 0.00 0.00 0.00 299.17 299.17 38471.48 828.92
82 0.00 0.00 0.00 0.00 299.17 299.17 38172.31 828.83
81 0.00 0.00 0.00 0.00 299.17 299.17 37873.15 828.75
80 0.00 0.00 0.00 0.00 299.17 299.17 37573.98 828.67
79 0.00 0.00 0.00 0.00 299.17 299.17 37274.81 828.58
78 0.00 0.00 0.00 0.00 299.17 299.17 36975.65 828.50
77 0.00 0.00 0.00 0.00 299.17 299.17 36676.48 828.42
76 0.00 0.00 0.00 0.00 299.17 299.17 36377.31 828.33
75 0.00 0.00 0.00 0.00 299.17 299.17 36078.15 828.25
74 0.00 0.00 0.00 0.00 299.17 299.17 35778.98 828.17
73 0.00 0.00 0.00 0.00 299.17 299.17 35479.81 828.08
72 0.00 0.00 0.00 0.00 299.17 299.17 35180.65 828.00
71 0.00 0.00 0.00 0.00 299.17 299.17 34881.48 827.92
70 0.00 0.00 0.00 0.00 299.17 299.17 34582.31 827.83
69 0.04 0.01 8.56 0.16 295.68 304.40 34283.15 827.75
68 0.12 0.03 24.26 0.41 289.30 313.97 33978.75 827.67
67 0.16 0.05 34.43 0.62 285.15 320.20 33664.78 827.58
66 0.21 0.07 43.62 0.79 281.40 325.82 33344.58 827.50
65 0.27 0.08 56.08 1.00 276.33 333.42 33018.77 827.42
64 0.45 0.11 94.63 1.26 260.81 356.71 32685.35 827.33
63 0.67 0.13 139.04 1.59 242.92 383.54 32328.65 827.25
62 0.80 0.16 166.99 1.93 231.60 400.52 31945.10 827.17
61 0.91 0.19 189.80 2.26 222.34 414.40 31544.58 827.08
60 1.00 0.22 209.61 2.62 214.27 426.50 31130.18 827.00
59 1.09 0.25 227.25 2.96 207.08 437.30 30703.67 826.92
58 1.16 0.28 243.17 3.30 200.58 447.05 30266.38 826.83
57 1.23 0.30 257.91 3.62 194.55 456.08 29819.33 826.75
56 1.30 0.33 271.63 3.93 188.94 464.50 29363.24 826.67
55 1.36 0.35 284.45 4.25 183.68 472.39 28898.74 826.58
54 1.42 0.38 296.51 4.60 178.72 479.84 28426.35 826.50
53 1.47 0.41 307.93 4.91 174.03 486.87 27946.51 826.42
52 1.53 0.44 318.76 5.29 169.55 493.60 27459.64 826.33
51 1.57 0.47 329.07 5.63 165.29 499.98 26966.05 826.25
50 1.62 0.50 338.87 5.94 161.24 506.05 26466.06 826.17
49 1.67 0.52 348.24 6.25 157.37 511.86 25960.01 826.08
48 1.71 0.54 357.20 6.53 153.67 517.41 25448.15 826.00
47 1.75 0.57 365.77 6.80 150.14 522.71 24930.74 825.92
46 1.79 0.59 373.96 7.06 146.76 527.78 24408.03 825.83
45 1.83 0.61 381.88 7.32 143.49 532.69 23880.25 825.75
44 1.86 0.63 389.46 7.59 140.35 537.39 23347.56 825.67
43 1.90 0.64 396.75 7.72 137.38 541.85 22810.17 825.58
42 1.93 0.68 403.75 8.13 134.41 546.30 22268.32 825.50
41 1.96 0.70 410.49 8.40 131.61 550.50 21722.02 825.42
40 2.00 0.72 416.98 8.67 128.91 554.56 21171.52 825.33
39 2.03 0.74 423.23 8.92 126.31 558.46 20616.97 825.25
38 2.05 0.76 429.24 9.17 123.80 562.22 20058.51 825.17
37 2.08 0.79 435.03 9.43 121.38 565.84 19496.29 825.08
36 2.11 0.80 440.59 9.63 119.08 569.30 18930.45 825.00
35 2.13 0.82 445.97 9.84 116.84 572.65 18361.15 824.92
34 2.16 0.84 451.16 10.06 114.68 575.90 17788.50 824.83
33 2.18 0.85 456.15 10.22 112.62 578.99 17212.60 824.75
32 2.21 0.86 460.95 10.31 110.66 581.93 16633.61 824.67
31 2.23 0.89 465.58 10.67 108.67 584.92 16051.68 824.58
30 2.25 0.90 470.01 10.85 106.82 587.69 15466.76 824.50
29 2.27 0.92 474.29 11.01 105.05 590.35 14879.08 824.42
28 2.29 0.92 478.40 11.04 103.39 592.83 14288.73 824.33
StormTech MC-4500 Cumulative Storage Volumes
POND 4
8048 sf min. area
Include Perimeter Stone in Calculations
Click Here for Metric
Project:POND 5A
Chamber Model - MC-4500
Units -Imperial
Number of Chambers -46
Number of End Caps -4
Voids in the stone (porosity) - 40 %
Base of Stone Elevation -818.60 ft
Amount of Stone Above Chambers - 51 in
Amount of Stone Below Chambers -18 in
6
Area of system -2105 sf Min. Area - 1817 sf min. area
StormTech MC-4500 Cumulative Storage Volumes
Height of
System
Incremental
Single Chamber
Incremental
Single End Cap
Incremental
Chambers
Incremental
End Cap
Incremental
Stone
Incremental Ch,
EC and Stone
Cumulative
System Elevation
(inches)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(feet)
129 0.00 0.00 0.00 0.00 70.17 70.17 12085.99 829.35
128 0.00 0.00 0.00 0.00 70.17 70.17 12015.82 829.27
127 0.00 0.00 0.00 0.00 70.17 70.17 11945.66 829.18
126 0.00 0.00 0.00 0.00 70.17 70.17 11875.49 829.10
125 0.00 0.00 0.00 0.00 70.17 70.17 11805.32 829.02
124 0.00 0.00 0.00 0.00 70.17 70.17 11735.16 828.93
123 0.00 0.00 0.00 0.00 70.17 70.17 11664.99 828.85
122 0.00 0.00 0.00 0.00 70.17 70.17 11594.82 828.77
121 0.00 0.00 0.00 0.00 70.17 70.17 11524.66 828.68
120 0.00 0.00 0.00 0.00 70.17 70.17 11454.49 828.60
119 0.00 0.00 0.00 0.00 70.17 70.17 11384.32 828.52
118 0.00 0.00 0.00 0.00 70.17 70.17 11314.16 828.43
117 0.00 0.00 0.00 0.00 70.17 70.17 11243.99 828.35
116 0.00 0.00 0.00 0.00 70.17 70.17 11173.82 828.27
115 0.00 0.00 0.00 0.00 70.17 70.17 11103.66 828.18
114 0.00 0.00 0.00 0.00 70.17 70.17 11033.49 828.10
113 0.00 0.00 0.00 0.00 70.17 70.17 10963.32 828.02
112 0.00 0.00 0.00 0.00 70.17 70.17 10893.16 827.93
111 0.00 0.00 0.00 0.00 70.17 70.17 10822.99 827.85
110 0.00 0.00 0.00 0.00 70.17 70.17 10752.82 827.77
109 0.00 0.00 0.00 0.00 70.17 70.17 10682.66 827.68
108 0.00 0.00 0.00 0.00 70.17 70.17 10612.49 827.60
107 0.00 0.00 0.00 0.00 70.17 70.17 10542.32 827.52
106 0.00 0.00 0.00 0.00 70.17 70.17 10472.16 827.43
105 0.00 0.00 0.00 0.00 70.17 70.17 10401.99 827.35
104 0.00 0.00 0.00 0.00 70.17 70.17 10331.82 827.27
103 0.00 0.00 0.00 0.00 70.17 70.17 10261.66 827.18
102 0.00 0.00 0.00 0.00 70.17 70.17 10191.49 827.10
101 0.00 0.00 0.00 0.00 70.17 70.17 10121.32 827.02
100 0.00 0.00 0.00 0.00 70.17 70.17 10051.16 826.93
99 0.00 0.00 0.00 0.00 70.17 70.17 9980.99 826.85
98 0.00 0.00 0.00 0.00 70.17 70.17 9910.82 826.77
97 0.00 0.00 0.00 0.00 70.17 70.17 9840.66 826.68
96 0.00 0.00 0.00 0.00 70.17 70.17 9770.49 826.60
95 0.00 0.00 0.00 0.00 70.17 70.17 9700.32 826.52
94 0.00 0.00 0.00 0.00 70.17 70.17 9630.16 826.43
93 0.00 0.00 0.00 0.00 70.17 70.17 9559.99 826.35
92 0.00 0.00 0.00 0.00 70.17 70.17 9489.82 826.27
91 0.00 0.00 0.00 0.00 70.17 70.17 9419.66 826.18
90 0.00 0.00 0.00 0.00 70.17 70.17 9349.49 826.10
89 0.00 0.00 0.00 0.00 70.17 70.17 9279.32 826.02
88 0.00 0.00 0.00 0.00 70.17 70.17 9209.16 825.93
87 0.00 0.00 0.00 0.00 70.17 70.17 9138.99 825.85
86 0.00 0.00 0.00 0.00 70.17 70.17 9068.82 825.77
85 0.00 0.00 0.00 0.00 70.17 70.17 8998.66 825.68
84 0.00 0.00 0.00 0.00 70.17 70.17 8928.49 825.60
83 0.00 0.00 0.00 0.00 70.17 70.17 8858.32 825.52
82 0.00 0.00 0.00 0.00 70.17 70.17 8788.16 825.43
81 0.00 0.00 0.00 0.00 70.17 70.17 8717.99 825.35
80 0.00 0.00 0.00 0.00 70.17 70.17 8647.82 825.27
79 0.00 0.00 0.00 0.00 70.17 70.17 8577.66 825.18
78 0.04 0.01 1.88 0.05 69.39 71.33 8507.49 825.10
77 0.12 0.03 5.34 0.14 67.98 73.45 8436.16 825.02
76 0.16 0.05 7.58 0.21 67.05 74.84 8362.71 824.93
75 0.21 0.07 9.60 0.26 66.22 76.09 8287.87 824.85
74 0.27 0.08 12.34 0.33 65.10 77.77 8211.78 824.77
73 0.45 0.11 20.83 0.42 61.67 82.92 8134.01 824.68
72 0.67 0.13 30.60 0.53 57.71 88.85 8051.10 824.60
71 0.80 0.16 36.75 0.64 55.21 92.61 7962.25 824.52
70 0.91 0.19 41.77 0.75 53.16 95.68 7869.64 824.43
69 1.00 0.22 46.13 0.87 51.36 98.37 7773.96 824.35
68 1.09 0.25 50.02 0.99 49.76 100.77 7675.59 824.27
67 1.16 0.28 53.52 1.10 48.32 102.94 7574.82 824.18
66 1.23 0.30 56.76 1.21 46.98 104.95 7471.88 824.10
65 1.30 0.33 59.79 1.31 45.73 106.82 7366.93 824.02
64 1.36 0.35 62.61 1.42 44.56 108.58 7260.11 823.93
Include Perimeter Stone in Calculations
Click Here for Metric
Project:POND 5
Chamber Model - MC-4500
Units -Imperial
Number of Chambers -144
Number of End Caps -16
Voids in the stone (porosity) - 40 %
Base of Stone Elevation -818.20 ft
Amount of Stone Above Chambers - 24 in
Amount of Stone Below Chambers -9 in
6
Area of system -7267 sf Min. Area - 5807 sf min. area
StormTech MC-4500 Cumulative Storage Volumes
Height of
System
Incremental
Single Chamber
Incremental
Single End Cap
Incremental
Chambers
Incremental
End Cap
Incremental
Stone
Incremental Ch,
EC and Stone
Cumulative
System Elevation
(inches)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(cubic feet)(feet)
93 0.00 0.00 0.00 0.00 242.23 242.23 32109.49 825.95
92 0.00 0.00 0.00 0.00 242.23 242.23 31867.26 825.87
91 0.00 0.00 0.00 0.00 242.23 242.23 31625.03 825.78
90 0.00 0.00 0.00 0.00 242.23 242.23 31382.79 825.70
89 0.00 0.00 0.00 0.00 242.23 242.23 31140.56 825.62
88 0.00 0.00 0.00 0.00 242.23 242.23 30898.33 825.53
87 0.00 0.00 0.00 0.00 242.23 242.23 30656.09 825.45
86 0.00 0.00 0.00 0.00 242.23 242.23 30413.86 825.37
85 0.00 0.00 0.00 0.00 242.23 242.23 30171.63 825.28
84 0.00 0.00 0.00 0.00 242.23 242.23 29929.39 825.20
83 0.00 0.00 0.00 0.00 242.23 242.23 29687.16 825.12
82 0.00 0.00 0.00 0.00 242.23 242.23 29444.93 825.03
81 0.00 0.00 0.00 0.00 242.23 242.23 29202.69 824.95
80 0.00 0.00 0.00 0.00 242.23 242.23 28960.46 824.87
79 0.00 0.00 0.00 0.00 242.23 242.23 28718.23 824.78
78 0.00 0.00 0.00 0.00 242.23 242.23 28475.99 824.70
77 0.00 0.00 0.00 0.00 242.23 242.23 28233.76 824.62
76 0.00 0.00 0.00 0.00 242.23 242.23 27991.53 824.53
75 0.00 0.00 0.00 0.00 242.23 242.23 27749.29 824.45
74 0.00 0.00 0.00 0.00 242.23 242.23 27507.06 824.37
73 0.00 0.00 0.00 0.00 242.23 242.23 27264.83 824.28
72 0.00 0.00 0.00 0.00 242.23 242.23 27022.59 824.20
71 0.00 0.00 0.00 0.00 242.23 242.23 26780.36 824.12
70 0.00 0.00 0.00 0.00 242.23 242.23 26538.13 824.03
69 0.04 0.01 5.90 0.21 239.79 245.90 26295.89 823.95
68 0.12 0.03 16.72 0.54 235.33 252.59 26050.00 823.87
67 0.16 0.05 23.72 0.83 232.41 256.96 25797.41 823.78
66 0.21 0.07 30.06 1.06 229.79 260.90 25540.44 823.70
65 0.27 0.08 38.64 1.33 226.25 266.22 25279.54 823.62
64 0.45 0.11 65.20 1.69 215.48 282.37 25013.33 823.53
63 0.67 0.13 95.80 2.12 203.07 300.98 24730.96 823.45
62 0.80 0.16 115.06 2.58 195.18 312.81 24429.98 823.37
61 0.91 0.19 130.77 3.02 188.72 322.51 24117.17 823.28
60 1.00 0.22 144.42 3.50 183.07 330.98 23794.66 823.20
59 1.09 0.25 156.58 3.95 178.02 338.55 23463.68 823.12
58 1.16 0.28 167.54 4.40 173.45 345.40 23125.13 823.03
57 1.23 0.30 177.70 4.83 169.22 351.75 22779.73 822.95
56 1.30 0.33 187.15 5.24 165.28 357.67 22427.98 822.87
55 1.36 0.35 195.99 5.67 161.57 363.23 22070.31 822.78
54 1.42 0.38 204.29 6.14 158.06 368.49 21707.08 822.70
53 1.47 0.41 212.16 6.55 154.75 373.46 21338.58 822.62
52 1.53 0.44 219.62 7.05 151.56 378.24 20965.13 822.53
51 1.57 0.47 226.73 7.50 148.54 382.77 20586.89 822.45
50 1.62 0.50 233.48 7.92 145.67 387.08 20204.12 822.37
49 1.67 0.52 239.94 8.33 142.93 391.19 19817.04 822.28
48 1.71 0.54 246.11 8.71 140.30 395.13 19425.85 822.20
47 1.75 0.57 252.01 9.07 137.80 398.88 19030.72 822.12
46 1.79 0.59 257.66 9.42 135.40 402.48 18631.84 822.03
45 1.83 0.61 263.12 9.76 133.08 405.96 18229.36 821.95
44 1.86 0.63 268.34 10.11 130.85 409.30 17823.40 821.87
43 1.90 0.64 273.36 10.29 128.77 412.42 17414.10 821.78
42 1.93 0.68 278.18 10.84 126.62 415.65 17001.68 821.70
41 1.96 0.70 282.83 11.20 124.62 418.65 16586.03 821.62
40 2.00 0.72 287.30 11.56 122.69 421.55 16167.38 821.53
39 2.03 0.74 291.60 11.90 120.83 424.33 15745.84 821.45
38 2.05 0.76 295.75 12.23 119.04 427.02 15321.50 821.37
37 2.08 0.79 299.74 12.57 117.31 429.62 14894.48 821.28
36 2.11 0.80 303.56 12.84 115.67 432.08 14464.87 821.20
35 2.13 0.82 307.27 13.12 114.08 434.47 14032.79 821.12
34 2.16 0.84 310.85 13.42 112.53 436.79 13598.32 821.03
33 2.18 0.85 314.29 13.62 111.07 438.98 13161.53 820.95
32 2.21 0.86 317.60 13.75 109.69 441.04 12722.55 820.87
31 2.23 0.89 320.78 14.23 108.23 443.24 12281.51 820.78
30 2.25 0.90 323.84 14.47 106.91 445.22 11838.27 820.70
29 2.27 0.92 326.79 14.68 105.65 447.11 11393.05 820.62
28 2.29 0.92 329.61 14.72 104.50 448.83 10945.94 820.53
Include Perimeter Stone in Calculations
Click Here for Metric
Project:
Chamber Model - MC-3500
Units -Imperial
Number of Chambers -165
Number of End Caps - 22
Voids in the stone (porosity) - 40 %
Base of Stone Elevation - 817.25 ft
Amount of Stone Above Chambers - 24 in
Amount of Stone Below Chambers - 9 in
Amount of Stone Between Chambers - 9 in
Area of system - 9595 sf Min. Area -
Height of
System
Incremental Single
Chamber
Incremental
Single End Cap
Incremental
Chambers
Incremental
End Cap
Incremental
Stone
Incremental Ch,
EC and Stone
Cumulative
System Elevation
(inches) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet)(cubic feet) (feet)
78 0.00 0.00 0.00 0.00 319.83 319.83 36029.19 823.75
77 0.00 0.00 0.00 0.00 319.83 319.83 35709.36 823.67
76 0.00 0.00 0.00 0.00 319.83 319.83 35389.52 823.58
75 0.00 0.00 0.00 0.00 319.83 319.83 35069.69 823.50
74 0.00 0.00 0.00 0.00 319.83 319.83 34749.86 823.42
73 0.00 0.00 0.00 0.00 319.83 319.83 34430.02 823.33
72 0.00 0.00 0.00 0.00 319.83 319.83 34110.19 823.25
71 0.00 0.00 0.00 0.00 319.83 319.83 33790.36 823.17
70 0.00 0.00 0.00 0.00 319.83 319.83 33470.52 823.08
69 0.00 0.00 0.00 0.00 319.83 319.83 33150.69 823.00
68 0.00 0.00 0.00 0.00 319.83 319.83 32830.86 822.92
67 0.00 0.00 0.00 0.00 319.83 319.83 32511.02 822.83
66 0.00 0.00 0.00 0.00 319.83 319.83 32191.19 822.75
65 0.00 0.00 0.00 0.00 319.83 319.83 31871.36 822.67
64 0.00 0.00 0.00 0.00 319.83 319.83 31551.52 822.58
63 0.00 0.00 0.00 0.00 319.83 319.83 31231.69 822.50
62 0.00 0.00 0.00 0.00 319.83 319.83 30911.86 822.42
61 0.00 0.00 0.00 0.00 319.83 319.83 30592.02 822.33
60 0.00 0.00 0.00 0.00 319.83 319.83 30272.19 822.25
59 0.00 0.00 0.00 0.00 319.83 319.83 29952.36 822.17
58 0.00 0.00 0.00 0.00 319.83 319.83 29632.52 822.08
57 0.00 0.00 0.00 0.00 319.83 319.83 29312.69 822.00
56 0.00 0.00 0.00 0.00 319.83 319.83 28992.86 821.92
55 0.00 0.00 0.00 0.00 319.83 319.83 28673.02 821.83
54 0.06 0.00 9.58 0.00 316.00 325.58 28353.19 821.75
53 0.19 0.02 32.03 0.53 306.81 339.37 28027.61 821.67
52 0.29 0.04 48.50 0.83 300.10 349.43 27688.24 821.58
51 0.40 0.05 66.60 1.13 292.74 360.47 27338.81 821.50
50 0.69 0.07 113.38 1.49 273.88 388.76 26978.34 821.42
49 1.03 0.09 169.67 1.94 251.19 422.80 26589.58 821.33
48 1.25 0.11 206.17 2.36 236.42 444.95 26166.78 821.25
47 1.42 0.13 234.67 2.78 224.85 462.30 25721.83 821.17
46 1.57 0.14 259.57 3.18 214.74 477.48 25259.53 821.08
45 1.71 0.16 281.68 3.58 205.73 490.99 24782.05 821.00
44 1.83 0.18 301.70 4.00 197.55 503.25 24291.06 820.92
43 1.94 0.20 319.73 4.41 190.18 514.32 23787.80 820.83
42 2.04 0.22 336.74 4.80 183.22 524.76 23273.48 820.75
41 2.13 0.23 352.22 5.17 176.88 534.27 22748.73 820.67
40 2.22 0.25 367.00 5.51 170.83 543.34 22214.46 820.58
39 2.31 0.27 380.62 5.84 165.25 551.71 21671.12 820.50
38 2.38 0.28 393.49 6.16 159.97 559.62 21119.41 820.42
37 2.46 0.29 405.75 6.47 154.95 567.16 20559.79 820.33
36 2.53 0.31 417.15 6.77 150.26 574.19 19992.62 820.25
35 2.59 0.32 427.97 7.07 145.82 580.85 19418.44 820.17
34 2.66 0.33 438.25 7.36 141.59 587.20 18837.58 820.08
33 2.72 0.35 447.99 7.63 137.58 593.21 18250.39 820.00
32 2.77 0.36 457.26 7.92 133.76 598.94 17657.18 819.92
31 2.82 0.37 466.07 8.19 130.13 604.39 17058.24 819.83
30 2.88 0.38 474.45 8.45 126.67 609.58 16453.85 819.75
29 2.92 0.40 482.48 8.71 123.36 614.55 15844.27 819.67
28 2.97 0.41 490.03 8.97 120.23 619.23 15229.72 819.58
27 3.01 0.42 497.05 9.21 117.33 623.59 14610.49 819.50
26 3.05 0.43 503.79 9.45 114.54 627.78 13986.89 819.42
25 3.09 0.44 510.56 9.69 111.74 631.98 13359.12 819.33
24 3.13 0.45 516.54 9.92 109.25 635.71 12727.14 819.25
23 3.17 0.46 522.33 10.14 106.84 639.32 12091.43 819.17
22 3.20 0.47 527.91 10.35 104.53 642.79 11452.11 819.08
21 3.23 0.48 533.13 10.56 102.35 646.05 10809.32 819.00
20 3.26 0.49 538.13 10.76 100.28 649.17 10163.27 818.92
19 3.29 0.50 542.89 10.96 98.29 652.14 9514.10 818.83
18 3.32 0.51 547.46 11.14 96.39 655.00 8861.96 818.75
17 3.34 0.51 551.78 11.32 94.59 657.69 8206.96 818.67
16 3.37 0.52 555.82 11.49 92.91 660.22 7549.27 818.58
15 3.39 0.53 559.76 11.65 91.27 662.68 6889.05 818.50
14 3.41 0.54 563.40 11.80 89.75 664.96 6226.37 818.42
13 3.44 0.54 567.11 11.95 88.21 667.27 5561.41 818.33
StormTech MC-3500 Cumulative Storage Volumes
POND 6
8885 sf min. area
Include Perimeter Stone in Calculations
Click Here for Metric
PROPOSED INPUTS 1
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Simulation: 100YR - 24HR
Scenario:Icpr3
Run Date/Time:11/18/2020 7:31:03 PM
Program Version:ICPR4 4.07.04
General
Run Mode:Normal
Year Month Day Hour [hr]
Start Time:0 0 0 0.0000
End Time:0 0 0 30.0000
Hydrology [sec]Surface Hydraulics [sec]Groundwater [sec]
Min Calculation Time:60.0000 0.1000 900.0000
Max Calculation Time:60.0000
Output Time Increments
Hydrology
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
Surface Hydraulics
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
0 0 0 1.0000 10.0000
Groundwater
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 360.0000
Restart File
Save Restart:False
Resources & Lookup Tables
Resources Lookup Tables
Rainfall Folder:ICPR3 Boundary Stage Set:
Reference ET Folder:Extern Hydrograph Set:
Unit Hydrograph Folder:ICPR3 Curve Number Set:CN
Green-Ampt Set:
Vertical Layers Set:
Impervious Set:CN IMPERVIOUS
Roughness Set:
Crop Coef Set:
Fillable Porosity Set:
Conductivity Set:
Leakage Set:
Tolerances & Options
Time Marching:SAOR IA Recovery Time:24.0000 hr
Max Iterations:6 ET for Manual Basins:False
Over-Relax Weight Fact:0.5 dec
PROPOSED INPUTS 2
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
dZ Tolerance:0.0010 ft Smp/Man Basin Rain Opt:Global
Max dZ:1.0000 ft OF Region Rain Opt:Global
Link Optimizer Tol:0.0001 ft Rainfall Name:Scsii-24
Rainfall Amount:6.46 in
Edge Length Option:Automatic Storm Duration:24.0000 hr
Dflt Damping (2D):0.0050 ft Dflt Damping (1D):0.0050 ft
Min Node Srf Area (2D):1 ft2 Min Node Srf Area (1D):113 ft2
Energy Switch (2D):Energy Energy Switch (1D):Energy
Comment:
Check Rainfall Depths
Simulation: 10YR - 24HR
Scenario:Icpr3
Run Date/Time:11/18/2020 7:32:33 PM
Program Version:ICPR4 4.07.04
General
Run Mode:Normal
Year Month Day Hour [hr]
Start Time:0 0 0 0.0000
End Time:0 0 0 30.0000
Hydrology [sec]Surface Hydraulics [sec]Groundwater [sec]
Min Calculation Time:60.0000 0.1000 900.0000
Max Calculation Time:60.0000
Output Time Increments
Hydrology
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
Surface Hydraulics
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 5.0000
0 0 0 1.0000 10.0000
Groundwater
Year Month Day Hour [hr]Time Increment [min]
0 0 0 0.0000 360.0000
Restart File
Save Restart:False
Resources & Lookup Tables
Resources Lookup Tables
Rainfall Folder:ICPR3 Boundary Stage Set:
PROPOSED INPUTS 3
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Reference ET Folder:Extern Hydrograph Set:
Unit Hydrograph Folder:ICPR3 Curve Number Set:CN
Green-Ampt Set:
Vertical Layers Set:
Impervious Set:CN IMPERVIOUS
Roughness Set:
Crop Coef Set:
Fillable Porosity Set:
Conductivity Set:
Leakage Set:
Tolerances & Options
Time Marching:SAOR IA Recovery Time:24.0000 hr
Max Iterations:6 ET for Manual Basins:False
Over-Relax Weight Fact:0.5 dec
dZ Tolerance:0.0010 ft Smp/Man Basin Rain Opt:Global
Max dZ:1.0000 ft OF Region Rain Opt:Global
Link Optimizer Tol:0.0001 ft Rainfall Name:Scsii-24
Rainfall Amount:3.83 in
Edge Length Option:Automatic Storm Duration:24.0000 hr
Dflt Damping (2D):0.0050 ft Dflt Damping (1D):0.0050 ft
Min Node Srf Area (2D):1 ft2 Min Node Srf Area (1D):113 ft2
Energy Switch (2D):Energy Energy Switch (1D):Energy
Comment:
Check Rainfall Depths
Simple Basin: BASIN 1
Scenario:Icpr3
Node:POND 1
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:5.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.1500 ac
Curve Number:95.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 2
Scenario:Icpr3
Node:POND 2
PROPOSED INPUTS 4
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:5.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.3400 ac
Curve Number:90.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 3
Scenario:Icpr3
Node:POND 3
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:6.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:3.4900 ac
Curve Number:93.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 4
Scenario:Icpr3
Node:POND 4
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:7.5000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:3.2500 ac
Curve Number:94.0
% Impervious:0.00
% DCIA:0.00
PROPOSED INPUTS 5
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 5
Scenario:Icpr3
Node:POND 5
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:7.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.7400 ac
Curve Number:88.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 6
Scenario:Icpr3
Node:POND 6
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:8.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:2.5700 ac
Curve Number:89.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Node: N. OUTFALL
Scenario:Icpr3
Type:Time/Stage
Base Flow:0.00 cfs
Initial Stage:815.00 ft
Warning Stage:816.00 ft
Boundary Stage:
PROPOSED INPUTS 6
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Year Month Day Hour Stage [ft]
0 0 0 0.0000 815.00
0 0 0 999999.0000 815.00
Comment:
Node: POND 1
Scenario:Icpr3
Type:Stage/Area
Base Flow:0.00 cfs
Initial Stage:843.33 ft
Warning Stage:845.00 ft
Stage [ft]Area [ac]Area [ft2]
843.33 0.0010 44
847.00 0.0200 871
Comment:
Node: POND 2
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:822.00 ft
Warning Stage:831.50 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
822.08 0.00 181
822.17 0.01 361
822.25 0.01 542
822.33 0.02 723
822.42 0.02 903
822.50 0.02 1084
822.58 0.03 1264
822.67 0.03 1445
822.75 0.04 1626
822.83 0.05 1971
822.92 0.05 2315
823.00 0.06 2658
823.08 0.07 3000
823.17 0.08 3340
823.25 0.08 3680
823.33 0.09 4019
823.42 0.10 4356
823.50 0.11 4692
823.58 0.12 5027
823.67 0.12 5360
823.75 0.13 5692
823.83 0.14 6022
823.92 0.15 6350
824.00 0.15 6677
PROPOSED INPUTS 7
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
824.08 0.16 7003
824.17 0.17 7326
824.25 0.18 7647
824.33 0.18 7966
824.42 0.19 8283
824.50 0.20 8598
824.58 0.20 8910
824.67 0.21 9220
824.75 0.22 9527
824.83 0.23 9831
824.92 0.23 10132
825.00 0.24 10430
825.08 0.25 10725
825.17 0.25 11016
825.25 0.26 11304
825.33 0.27 11588
825.42 0.27 11867
825.50 0.28 12142
825.58 0.28 12412
825.67 0.29 12677
825.75 0.30 12937
825.83 0.30 13190
825.92 0.31 13436
826.00 0.31 13674
826.08 0.32 13902
826.17 0.32 14115
826.25 0.33 14314
826.33 0.33 14508
826.42 0.34 14698
826.50 0.34 14881
826.58 0.35 15062
826.67 0.35 15243
826.75 0.35 15423
826.83 0.36 15604
826.92 0.36 15784
827.00 0.37 15965
827.08 0.37 16146
827.17 0.37 16326
827.25 0.38 16507
827.33 0.38 16688
827.42 0.39 16868
827.50 0.39 17049
827.58 0.40 17230
827.67 0.40 17410
827.75 0.40 17591
827.83 0.41 17771
827.92 0.41 17952
828.00 0.42 18133
828.08 0.42 18313
828.17 0.42 18494
828.25 0.43 18675
828.33 0.43 18855
828.42 0.44 19036
828.49 0.44 19216
829.00 0.44 19216
833.50 0.72 31500
PROPOSED INPUTS 8
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Comment:
Node: POND 3
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:824.50 ft
Warning Stage:832.15 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
824.58 0.01 278
824.67 0.01 557
824.75 0.02 835
824.83 0.03 1113
824.92 0.03 1392
825.00 0.04 1670
825.08 0.04 1949
825.17 0.05 2227
825.25 0.06 2505
825.33 0.07 3086
825.42 0.08 3665
825.50 0.10 4243
825.58 0.11 4819
825.67 0.12 5395
825.75 0.14 5969
825.83 0.15 6543
825.92 0.16 7115
826.00 0.18 7685
826.08 0.19 8254
826.17 0.20 8821
826.25 0.22 9387
826.33 0.23 9951
826.42 0.24 10513
826.50 0.25 11073
826.58 0.27 11631
826.67 0.28 12187
826.75 0.29 12741
826.83 0.31 13292
826.92 0.32 13841
827.00 0.33 14388
827.08 0.34 14932
827.17 0.36 15473
827.25 0.37 16012
827.33 0.38 16547
827.42 0.39 17080
827.50 0.40 17610
827.58 0.42 18136
827.67 0.43 18659
827.75 0.44 19178
827.83 0.45 19694
827.92 0.46 20206
828.00 0.48 20714
828.08 0.49 21218
828.17 0.50 21718
PROPOSED INPUTS 9
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
828.25 0.51 22213
828.33 0.52 22704
828.42 0.53 23190
828.50 0.54 23672
828.58 0.55 24148
828.67 0.57 24618
828.75 0.58 25083
828.83 0.59 25542
828.92 0.60 25995
829.00 0.61 26442
829.08 0.62 26881
829.17 0.63 27313
829.25 0.64 27737
829.33 0.65 28153
829.42 0.66 28560
829.50 0.66 28956
829.58 0.67 29342
829.67 0.68 29714
829.75 0.69 30071
829.83 0.70 30403
829.92 0.71 30713
830.00 0.71 31016
830.08 0.72 31314
830.17 0.73 31606
830.25 0.73 31889
830.33 0.74 32168
830.42 0.74 32446
830.50 0.75 32724
830.58 0.76 33003
830.67 0.76 33281
830.75 0.77 33560
830.83 0.78 33838
830.92 0.78 34116
831.00 0.79 34395
831.08 0.80 34673
831.17 0.80 34951
831.25 0.81 35230
831.33 0.82 35508
831.42 0.82 35787
831.50 0.83 36065
831.58 0.83 36343
831.67 0.84 36622
831.75 0.85 36900
Comment:
Node: POND 4
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:822.00 ft
Warning Stage:830.75 ft
PROPOSED INPUTS 10
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
822.08 0.01 299
822.17 0.01 598
822.25 0.02 898
822.33 0.03 1197
822.42 0.03 1496
822.50 0.04 1795
822.58 0.05 2094
822.67 0.05 2393
822.75 0.06 2693
822.83 0.08 3317
822.92 0.09 3939
823.00 0.10 4560
823.08 0.12 5180
823.17 0.13 5799
823.25 0.15 6417
823.33 0.16 7033
823.42 0.18 7648
823.50 0.19 8261
823.58 0.20 8872
823.67 0.22 9482
823.75 0.23 10090
823.83 0.25 10697
823.92 0.26 11301
824.00 0.27 11903
824.08 0.29 12503
824.17 0.30 13101
824.25 0.31 13696
824.33 0.33 14289
824.42 0.34 14879
824.50 0.36 15467
824.58 0.37 16052
824.67 0.38 16634
824.75 0.40 17213
824.83 0.41 17788
824.92 0.42 18361
825.00 0.43 18930
825.08 0.45 19496
825.17 0.46 20059
825.25 0.47 20617
825.33 0.49 21172
825.42 0.50 21722
825.50 0.51 22268
825.58 0.52 22810
825.67 0.54 23348
825.75 0.55 23880
825.83 0.56 24408
825.92 0.57 24931
826.00 0.58 25448
826.08 0.60 25960
826.17 0.61 26466
826.25 0.62 26966
826.33 0.63 27460
826.42 0.64 27947
826.50 0.65 28426
826.58 0.66 28899
826.67 0.67 29363
PROPOSED INPUTS 11
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
826.75 0.68 29819
826.83 0.69 30266
826.92 0.70 30704
827.00 0.71 31130
827.08 0.72 31545
827.17 0.73 31945
827.25 0.74 32329
827.33 0.75 32685
827.42 0.76 33019
827.50 0.77 33345
827.58 0.77 33665
827.67 0.78 33979
827.75 0.79 34283
827.83 0.79 34582
827.92 0.80 34881
828.00 0.81 35181
828.08 0.81 35480
828.17 0.82 35779
828.25 0.83 36078
828.33 0.84 36377
828.42 0.84 36676
828.50 0.85 36976
828.58 0.86 37275
828.67 0.86 37574
828.75 0.87 37873
828.83 0.88 38172
828.92 0.88 38471
829.00 0.89 38771
829.08 0.90 39070
829.17 0.90 39369
829.25 0.91 39668
829.33 0.92 39967
829.42 0.92 40266
829.50 0.93 40566
829.58 0.94 40865
829.67 0.94 41164
829.75 0.95 41463
Comment:
Node: POND 5
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:818.20 ft
Warning Stage:828.95 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
818.28 0.01 242
818.37 0.01 484
818.45 0.02 727
818.53 0.02 969
818.62 0.03 1211
818.70 0.03 1453
PROPOSED INPUTS 12
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
818.78 0.04 1696
818.87 0.04 1938
818.95 0.05 2180
819.03 0.06 2651
819.12 0.07 3121
819.20 0.08 3590
819.28 0.09 4059
819.37 0.10 4526
819.45 0.11 4993
819.53 0.13 5458
819.62 0.14 5923
819.70 0.15 6386
819.78 0.16 6848
819.87 0.17 7309
819.95 0.18 7769
820.03 0.19 8228
820.12 0.20 8685
820.20 0.21 9140
820.28 0.22 9594
820.37 0.23 10046
820.45 0.24 10497
820.53 0.25 10946
820.62 0.26 11393
820.70 0.27 11838
820.78 0.28 12282
820.87 0.29 12723
820.95 0.30 13162
821.03 0.31 13598
821.12 0.32 14033
821.20 0.33 14465
821.28 0.34 14894
821.37 0.35 15322
821.45 0.36 15746
821.53 0.37 16167
821.62 0.38 16586
821.70 0.39 17002
821.78 0.40 17414
821.87 0.41 17823
821.95 0.42 18229
822.03 0.43 18632
822.12 0.44 19031
822.20 0.45 19426
822.28 0.45 19817
822.37 0.46 20204
822.45 0.47 20587
822.53 0.48 20965
822.62 0.49 21339
822.70 0.50 21707
822.78 0.51 22070
822.87 0.51 22428
822.95 0.52 22780
823.03 0.53 23125
823.12 0.54 23464
823.20 0.55 23795
823.28 0.55 24117
823.37 0.56 24430
PROPOSED INPUTS 13
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
823.45 0.57 24731
823.53 0.57 25013
823.62 0.58 25280
823.70 0.59 25540
823.78 0.59 25797
823.87 0.60 26050
823.95 0.60 26296
824.03 0.61 26538
824.12 0.61 26780
824.20 0.62 27023
824.28 0.63 27265
824.37 0.63 27507
824.45 0.64 27749
824.53 0.64 27992
824.62 0.65 28234
824.70 0.65 28476
824.78 0.66 28718
824.87 0.66 28960
824.95 0.67 29203
825.03 0.68 29445
825.12 0.68 29687
825.20 0.69 29929
825.28 0.69 30172
825.37 0.70 30414
825.45 0.70 30656
825.53 0.71 30898
825.62 0.71 31141
825.70 0.72 31383
825.78 0.73 31625
825.87 0.73 31867
825.95 0.74 32109
826.45 0.74 32109
830.95 1.15 49969
Comment:
Node: POND 5A
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:818.60 ft
Warning Stage:830.00 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
818.68 0.00 70
818.77 0.00 140
818.85 0.00 210
818.93 0.01 281
819.02 0.01 351
819.10 0.01 421
819.18 0.01 491
819.27 0.01 561
819.35 0.01 631
819.43 0.02 702
PROPOSED INPUTS 14
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
819.52 0.02 772
819.60 0.02 842
819.68 0.02 912
819.77 0.02 982
819.85 0.02 1052
819.93 0.03 1123
820.02 0.03 1193
820.10 0.03 1263
820.18 0.03 1406
820.27 0.04 1548
820.35 0.04 1690
820.43 0.04 1831
820.52 0.05 1973
820.60 0.05 2114
820.68 0.05 2255
820.77 0.05 2395
820.85 0.06 2535
820.93 0.06 2675
821.02 0.06 2814
821.10 0.07 2953
821.18 0.07 3092
821.27 0.07 3230
821.35 0.08 3368
821.43 0.08 3505
821.52 0.08 3642
821.60 0.09 3778
821.68 0.09 3913
821.77 0.09 4048
821.85 0.10 4183
821.93 0.10 4316
822.02 0.10 4450
822.10 0.11 4582
822.18 0.11 4714
822.27 0.11 4845
822.35 0.11 4975
822.43 0.12 5105
822.52 0.12 5233
822.60 0.12 5361
822.68 0.13 5488
822.77 0.13 5614
822.85 0.13 5739
822.93 0.13 5863
823.02 0.14 5986
823.10 0.14 6108
823.18 0.14 6229
823.27 0.15 6349
823.35 0.15 6468
823.43 0.15 6585
823.52 0.15 6701
823.60 0.16 6816
823.68 0.16 6929
823.77 0.16 7041
823.85 0.16 7152
823.93 0.17 7260
824.02 0.17 7367
824.10 0.17 7472
PROPOSED INPUTS 15
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
824.18 0.17 7575
824.27 0.18 7676
824.35 0.18 7774
824.43 0.18 7870
824.52 0.18 7962
824.60 0.18 8051
824.68 0.19 8134
824.77 0.19 8212
824.85 0.19 8288
824.93 0.19 8363
825.02 0.19 8436
825.10 0.20 8507
825.18 0.20 8578
825.27 0.20 8648
825.35 0.20 8718
825.43 0.20 8788
825.52 0.20 8858
825.60 0.20 8928
825.68 0.21 8999
825.77 0.21 9069
825.85 0.21 9139
825.93 0.21 9209
826.02 0.21 9279
826.10 0.21 9349
826.18 0.22 9420
826.27 0.22 9490
826.35 0.22 9560
826.43 0.22 9630
826.52 0.22 9700
826.60 0.22 9770
826.68 0.23 9841
826.77 0.23 9911
826.85 0.23 9981
826.93 0.23 10051
827.02 0.23 10121
827.10 0.23 10191
827.18 0.24 10262
827.27 0.24 10332
827.35 0.24 10402
827.43 0.24 10472
827.52 0.24 10542
827.60 0.24 10612
827.68 0.25 10683
827.77 0.25 10753
827.85 0.25 10823
827.93 0.25 10893
828.02 0.25 10963
828.10 0.25 11033
828.18 0.25 11104
828.27 0.26 11174
828.35 0.26 11244
828.43 0.26 11314
828.52 0.26 11384
828.60 0.26 11454
828.68 0.26 11525
828.77 0.27 11595
PROPOSED INPUTS 16
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
828.85 0.27 11665
828.93 0.27 11735
829.02 0.27 11805
829.10 0.27 11875
829.18 0.27 11946
829.27 0.28 12016
829.35 0.28 12086
Comment:
Node: POND 6
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:817.25 ft
Warning Stage:824.00 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
817.33 0.01 320
817.42 0.01 640
817.50 0.02 959
817.58 0.03 1279
817.67 0.04 1599
817.75 0.04 1919
817.83 0.05 2239
817.92 0.06 2559
818.00 0.07 2878
818.08 0.08 3553
818.17 0.10 4225
818.25 0.11 4894
818.33 0.13 5561
818.42 0.14 6226
818.50 0.16 6889
818.58 0.17 7549
818.67 0.19 8207
818.75 0.20 8862
818.83 0.22 9514
818.92 0.23 10163
819.00 0.25 10809
819.08 0.26 11452
819.17 0.28 12091
819.25 0.29 12727
819.33 0.31 13359
819.42 0.32 13987
819.50 0.34 14610
819.58 0.35 15230
819.67 0.36 15844
819.75 0.38 16454
819.83 0.39 17058
819.92 0.41 17657
820.00 0.42 18250
820.08 0.43 18838
820.17 0.45 19418
820.25 0.46 19993
PROPOSED INPUTS 17
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Stage [ft]Volume [ac-ft]Volume [ft3]
820.33 0.47 20560
820.42 0.48 21119
820.50 0.50 21671
820.58 0.51 22214
820.67 0.52 22749
820.75 0.53 23273
820.83 0.55 23788
820.92 0.56 24291
821.00 0.57 24782
821.08 0.58 25260
821.17 0.59 25722
821.25 0.60 26167
821.33 0.61 26590
821.42 0.62 26978
821.50 0.63 27339
821.58 0.64 27688
821.67 0.64 28028
821.75 0.65 28353
821.83 0.66 28673
821.92 0.67 28993
822.00 0.67 29313
822.08 0.68 29633
822.17 0.69 29952
822.25 0.69 30272
822.33 0.70 30592
822.42 0.71 30912
822.50 0.72 31232
822.58 0.72 31552
822.67 0.73 31871
822.75 0.74 32191
822.83 0.75 32511
822.92 0.75 32831
823.00 0.76 33151
823.08 0.77 33471
823.17 0.78 33790
823.25 0.78 34110
823.33 0.79 34430
823.42 0.80 34750
823.50 0.81 35070
823.58 0.81 35390
823.67 0.82 35709
823.75 0.83 36029
Comment:
Node: S. OUTFALL
Scenario:Icpr3
Type:Time/Stage
Base Flow:0.00 cfs
Initial Stage:815.00 ft
Warning Stage:816.00 ft
Boundary Stage:
PROPOSED INPUTS 18
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Year Month Day Hour Stage [ft]
0 0 0 0.0000 815.00
0 0 0 9999.0000 815.00
Comment:
Drop Structure Link: 2-4 OCS
Scenario:Icpr3
From Node:POND 2
To Node:POND 4
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:10.00 ft
FHWA Code:0
Entr Loss Coef:0.00
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:822.00 ft Invert:822.00 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:822.00 ft
Control Elevation:822.00 ft
Max Depth:0.08 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:827.30 ft
Control Elevation:827.30 ft
Max Depth:0.17 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
PROPOSED INPUTS 19
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Weir Comment:
Drop Structure Comment:
Drop Structure Link: 3-4 OCS
Scenario:Icpr3
From Node:POND 3
To Node:POND 4
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:92.00 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:824.50 ft Invert:822.00 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:824.50 ft
Control Elevation:824.50 ft
Max Depth:0.25 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:826.76 ft
Control Elevation:826.76 ft
Max Depth:0.67 ft
Max Width:1.00 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
PROPOSED INPUTS 20
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Drop Structure Comment:
Drop Structure Link: 4-5 OCS
Scenario:Icpr3
From Node:POND 4
To Node:POND 5A
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:25.04 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:822.00 ft Invert:818.20 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:822.00 ft
Control Elevation:822.00 ft
Max Depth:0.50 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:827.60 ft
Control Elevation:827.60 ft
Max Depth:1.25 ft
Max Width:1.50 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
PROPOSED INPUTS 21
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Drop Structure Link: 5-OUT OCS
Scenario:Icpr3
From Node:POND 5
To Node:N. OUTFALL
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:240.00 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:1.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:818.20 ft Invert:817.63 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:818.20 ft
Control Elevation:818.20 ft
Max Depth:0.36 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:823.84 ft
Control Elevation:823.84 ft
Max Depth:0.31 ft
Max Width:0.50 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
Drop Structure Link: 6-OUT OCS
Scenario:Icpr3
Upstream Pipe Downstream Pipe
Invert:817.25 ft Invert:816.64 ft
PROPOSED INPUTS 22
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
From Node:POND 6
To Node:S. OUTFALL
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:205.00 ft
FHWA Code:0
Entr Loss Coef:0.00
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:1.25 ft Max Depth:1.25 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:817.25 ft
Control Elevation:817.25 ft
Max Depth:0.12 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:823.25 ft
Control Elevation:823.25 ft
Max Depth:0.25 ft
Max Width:0.50 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
Pipe Link: PIPE 1-4
Scenario:Icpr3
From Node:POND 1
To Node:POND 4
Upstream Downstream
Invert:843.33 ft Invert:822.00 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
PROPOSED INPUTS 23
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:48
Link Count:1
Flow Direction:Both
Damping:0.0000 ft
Length:810.00 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:1.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Max Depth:1.25 ft Max Depth:1.25 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Comment:
Pipe Link: PIPE 5A-5
Scenario:Icpr3
From Node:POND 5A
To Node:POND 5
Link Count:1
Flow Direction:Both
Damping:0.0000 ft
Length:20.00 ft
FHWA Code:0
Entr Loss Coef:0.00
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Downstream
Invert:818.60 ft Invert:818.20 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Comment:
PROPOSED OUTPUTS 1
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:49
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
N. OUTFALL 100YR - 24HR 816.00 815.00 0.0000 3.29 0.00 0
N. OUTFALL 10YR - 24HR 816.00 815.00 0.0000 1.17 0.00 0
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 1 100YR - 24HR 845.00 844.51 0.0010 8.50 9.72 771
POND 1 10YR - 24HR 845.00 844.44 0.0010 4.92 4.88 769
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 2 100YR - 24HR 831.50 830.27 0.0010 9.64 0.20 4279
POND 2 10YR - 24HR 831.50 826.01 0.0010 5.24 0.04 4279
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 3 100YR - 24HR 832.15 831.44 0.0010 25.17 4.73 7217
POND 3 10YR - 24HR 832.15 827.79 0.0010 14.27 2.99 7217
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 4 100YR - 24HR 830.75 830.05 0.0010 36.51 14.82 8214
POND 4 10YR - 24HR 830.75 827.15 0.0010 20.14 2.06 8213
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 5 100YR - 24HR 828.95 829.34 0.0010 17.40 3.29 5879
POND 5 10YR - 24HR 828.95 823.94 0.0010 6.39 1.17 5878
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 5A 100YR - 24HR 830.00 829.35 -0.0010 14.60 10.13 1780
POND 5A 10YR - 24HR 830.00 823.94 0.0010 2.02 2.29 1780
PROPOSED OUTPUTS 2
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL\11/24/2020 16:49
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 6 100YR - 24HR 824.00 823.71 0.0010 17.32 0.48 8354
POND 6 10YR - 24HR 824.00 820.36 0.0010 9.34 0.09 8354
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
S. OUTFALL 100YR - 24HR 816.00 815.00 0.0000 0.48 0.00 0
S. OUTFALL 10YR - 24HR 816.00 815.00 0.0000 0.09 0.00 0
PROPOSED INPUTS (6" MIN)1
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Simple Basin: BASIN 1
Scenario:Icpr3
Node:POND 1
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:5.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.1500 ac
Curve Number:95.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 2
Scenario:Icpr3
Node:POND 2
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:5.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.3400 ac
Curve Number:90.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 3
Scenario:Icpr3
Node:POND 3
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:6.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:3.4900 ac
PROPOSED INPUTS (6" MIN)2
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Curve Number:93.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 4
Scenario:Icpr3
Node:POND 4
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:7.5000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:3.2500 ac
Curve Number:94.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 5
Scenario:Icpr3
Node:POND 5
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:7.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.7400 ac
Curve Number:88.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin: BASIN 6
Scenario:Icpr3
Node:POND 6
Hydrograph Method:NRCS Unit Hydrograph
PROPOSED INPUTS (6" MIN)3
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Infiltration Method:Curve Number
Time of Concentration:8.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:2.5700 ac
Curve Number:89.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Node: N. OUTFALL
Scenario:Icpr3
Type:Time/Stage
Base Flow:0.00 cfs
Initial Stage:815.00 ft
Warning Stage:816.00 ft
Boundary Stage:
Year Month Day Hour Stage [ft]
0 0 0 0.0000 815.00
0 0 0 999999.0000 815.00
Comment:
Node: POND 1
Scenario:Icpr3
Type:Stage/Area
Base Flow:0.00 cfs
Initial Stage:843.33 ft
Warning Stage:845.00 ft
Stage [ft]Area [ac]Area [ft2]
843.33 0.0010 44
847.00 0.0200 871
Comment:
Node: POND 2
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:822.00 ft
Warning Stage:831.50 ft
PROPOSED INPUTS (6" MIN)4
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
822.08 0.00 181
822.17 0.01 361
822.25 0.01 542
822.33 0.02 723
822.42 0.02 903
822.50 0.02 1084
822.58 0.03 1264
822.67 0.03 1445
822.75 0.04 1626
822.83 0.05 1971
822.92 0.05 2315
823.00 0.06 2658
823.08 0.07 3000
823.17 0.08 3340
823.25 0.08 3680
823.33 0.09 4019
823.42 0.10 4356
823.50 0.11 4692
823.58 0.12 5027
823.67 0.12 5360
823.75 0.13 5692
823.83 0.14 6022
823.92 0.15 6350
824.00 0.15 6677
824.08 0.16 7003
824.17 0.17 7326
824.25 0.18 7647
824.33 0.18 7966
824.42 0.19 8283
824.50 0.20 8598
824.58 0.20 8910
824.67 0.21 9220
824.75 0.22 9527
824.83 0.23 9831
824.92 0.23 10132
825.00 0.24 10430
825.08 0.25 10725
825.17 0.25 11016
825.25 0.26 11304
825.33 0.27 11588
825.42 0.27 11867
825.50 0.28 12142
825.58 0.28 12412
825.67 0.29 12677
825.75 0.30 12937
825.83 0.30 13190
825.92 0.31 13436
826.00 0.31 13674
826.08 0.32 13902
826.17 0.32 14115
826.25 0.33 14314
826.33 0.33 14508
826.42 0.34 14698
826.50 0.34 14881
826.58 0.35 15062
826.67 0.35 15243
PROPOSED INPUTS (6" MIN)5
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
826.75 0.35 15423
826.83 0.36 15604
826.92 0.36 15784
827.00 0.37 15965
827.08 0.37 16146
827.17 0.37 16326
827.25 0.38 16507
827.33 0.38 16688
827.42 0.39 16868
827.50 0.39 17049
827.58 0.40 17230
827.67 0.40 17410
827.75 0.40 17591
827.83 0.41 17771
827.92 0.41 17952
828.00 0.42 18133
828.08 0.42 18313
828.17 0.42 18494
828.25 0.43 18675
828.33 0.43 18855
828.42 0.44 19036
828.49 0.44 19216
829.00 0.44 19216
833.50 0.72 31500
Comment:
Node: POND 3
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:824.50 ft
Warning Stage:832.15 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
824.58 0.01 278
824.67 0.01 557
824.75 0.02 835
824.83 0.03 1113
824.92 0.03 1392
825.00 0.04 1670
825.08 0.04 1949
825.17 0.05 2227
825.25 0.06 2505
825.33 0.07 3086
825.42 0.08 3665
825.50 0.10 4243
825.58 0.11 4819
825.67 0.12 5395
825.75 0.14 5969
825.83 0.15 6543
825.92 0.16 7115
826.00 0.18 7685
826.08 0.19 8254
PROPOSED INPUTS (6" MIN)6
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
826.17 0.20 8821
826.25 0.22 9387
826.33 0.23 9951
826.42 0.24 10513
826.50 0.25 11073
826.58 0.27 11631
826.67 0.28 12187
826.75 0.29 12741
826.83 0.31 13292
826.92 0.32 13841
827.00 0.33 14388
827.08 0.34 14932
827.17 0.36 15473
827.25 0.37 16012
827.33 0.38 16547
827.42 0.39 17080
827.50 0.40 17610
827.58 0.42 18136
827.67 0.43 18659
827.75 0.44 19178
827.83 0.45 19694
827.92 0.46 20206
828.00 0.48 20714
828.08 0.49 21218
828.17 0.50 21718
828.25 0.51 22213
828.33 0.52 22704
828.42 0.53 23190
828.50 0.54 23672
828.58 0.55 24148
828.67 0.57 24618
828.75 0.58 25083
828.83 0.59 25542
828.92 0.60 25995
829.00 0.61 26442
829.08 0.62 26881
829.17 0.63 27313
829.25 0.64 27737
829.33 0.65 28153
829.42 0.66 28560
829.50 0.66 28956
829.58 0.67 29342
829.67 0.68 29714
829.75 0.69 30071
829.83 0.70 30403
829.92 0.71 30713
830.00 0.71 31016
830.08 0.72 31314
830.17 0.73 31606
830.25 0.73 31889
830.33 0.74 32168
830.42 0.74 32446
830.50 0.75 32724
830.58 0.76 33003
830.67 0.76 33281
830.75 0.77 33560
PROPOSED INPUTS (6" MIN)7
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
830.83 0.78 33838
830.92 0.78 34116
831.00 0.79 34395
831.08 0.80 34673
831.17 0.80 34951
831.25 0.81 35230
831.33 0.82 35508
831.42 0.82 35787
831.50 0.83 36065
831.58 0.83 36343
831.67 0.84 36622
831.75 0.85 36900
Comment:
Node: POND 4
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:822.00 ft
Warning Stage:830.75 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
822.08 0.01 299
822.17 0.01 598
822.25 0.02 898
822.33 0.03 1197
822.42 0.03 1496
822.50 0.04 1795
822.58 0.05 2094
822.67 0.05 2393
822.75 0.06 2693
822.83 0.08 3317
822.92 0.09 3939
823.00 0.10 4560
823.08 0.12 5180
823.17 0.13 5799
823.25 0.15 6417
823.33 0.16 7033
823.42 0.18 7648
823.50 0.19 8261
823.58 0.20 8872
823.67 0.22 9482
823.75 0.23 10090
823.83 0.25 10697
823.92 0.26 11301
824.00 0.27 11903
824.08 0.29 12503
824.17 0.30 13101
824.25 0.31 13696
824.33 0.33 14289
824.42 0.34 14879
824.50 0.36 15467
824.58 0.37 16052
PROPOSED INPUTS (6" MIN)8
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
824.67 0.38 16634
824.75 0.40 17213
824.83 0.41 17788
824.92 0.42 18361
825.00 0.43 18930
825.08 0.45 19496
825.17 0.46 20059
825.25 0.47 20617
825.33 0.49 21172
825.42 0.50 21722
825.50 0.51 22268
825.58 0.52 22810
825.67 0.54 23348
825.75 0.55 23880
825.83 0.56 24408
825.92 0.57 24931
826.00 0.58 25448
826.08 0.60 25960
826.17 0.61 26466
826.25 0.62 26966
826.33 0.63 27460
826.42 0.64 27947
826.50 0.65 28426
826.58 0.66 28899
826.67 0.67 29363
826.75 0.68 29819
826.83 0.69 30266
826.92 0.70 30704
827.00 0.71 31130
827.08 0.72 31545
827.17 0.73 31945
827.25 0.74 32329
827.33 0.75 32685
827.42 0.76 33019
827.50 0.77 33345
827.58 0.77 33665
827.67 0.78 33979
827.75 0.79 34283
827.83 0.79 34582
827.92 0.80 34881
828.00 0.81 35181
828.08 0.81 35480
828.17 0.82 35779
828.25 0.83 36078
828.33 0.84 36377
828.42 0.84 36676
828.50 0.85 36976
828.58 0.86 37275
828.67 0.86 37574
828.75 0.87 37873
828.83 0.88 38172
828.92 0.88 38471
829.00 0.89 38771
829.08 0.90 39070
829.17 0.90 39369
829.25 0.91 39668
PROPOSED INPUTS (6" MIN)9
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
829.33 0.92 39967
829.42 0.92 40266
829.50 0.93 40566
829.58 0.94 40865
829.67 0.94 41164
829.75 0.95 41463
Comment:
Node: POND 5
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:818.20 ft
Warning Stage:828.95 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
818.28 0.01 242
818.37 0.01 484
818.45 0.02 727
818.53 0.02 969
818.62 0.03 1211
818.70 0.03 1453
818.78 0.04 1696
818.87 0.04 1938
818.95 0.05 2180
819.03 0.06 2651
819.12 0.07 3121
819.20 0.08 3590
819.28 0.09 4059
819.37 0.10 4526
819.45 0.11 4993
819.53 0.13 5458
819.62 0.14 5923
819.70 0.15 6386
819.78 0.16 6848
819.87 0.17 7309
819.95 0.18 7769
820.03 0.19 8228
820.12 0.20 8685
820.20 0.21 9140
820.28 0.22 9594
820.37 0.23 10046
820.45 0.24 10497
820.53 0.25 10946
820.62 0.26 11393
820.70 0.27 11838
820.78 0.28 12282
820.87 0.29 12723
820.95 0.30 13162
821.03 0.31 13598
821.12 0.32 14033
821.20 0.33 14465
821.28 0.34 14894
PROPOSED INPUTS (6" MIN)10
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
821.37 0.35 15322
821.45 0.36 15746
821.53 0.37 16167
821.62 0.38 16586
821.70 0.39 17002
821.78 0.40 17414
821.87 0.41 17823
821.95 0.42 18229
822.03 0.43 18632
822.12 0.44 19031
822.20 0.45 19426
822.28 0.45 19817
822.37 0.46 20204
822.45 0.47 20587
822.53 0.48 20965
822.62 0.49 21339
822.70 0.50 21707
822.78 0.51 22070
822.87 0.51 22428
822.95 0.52 22780
823.03 0.53 23125
823.12 0.54 23464
823.20 0.55 23795
823.28 0.55 24117
823.37 0.56 24430
823.45 0.57 24731
823.53 0.57 25013
823.62 0.58 25280
823.70 0.59 25540
823.78 0.59 25797
823.87 0.60 26050
823.95 0.60 26296
824.03 0.61 26538
824.12 0.61 26780
824.20 0.62 27023
824.28 0.63 27265
824.37 0.63 27507
824.45 0.64 27749
824.53 0.64 27992
824.62 0.65 28234
824.70 0.65 28476
824.78 0.66 28718
824.87 0.66 28960
824.95 0.67 29203
825.03 0.68 29445
825.12 0.68 29687
825.20 0.69 29929
825.28 0.69 30172
825.37 0.70 30414
825.45 0.70 30656
825.53 0.71 30898
825.62 0.71 31141
825.70 0.72 31383
825.78 0.73 31625
825.87 0.73 31867
825.95 0.74 32109
PROPOSED INPUTS (6" MIN)11
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
826.45 0.74 32109
830.95 1.15 49969
Comment:
Node: POND 5A
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:818.60 ft
Warning Stage:830.00 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
818.68 0.00 70
818.77 0.00 140
818.85 0.00 210
818.93 0.01 281
819.02 0.01 351
819.10 0.01 421
819.18 0.01 491
819.27 0.01 561
819.35 0.01 631
819.43 0.02 702
819.52 0.02 772
819.60 0.02 842
819.68 0.02 912
819.77 0.02 982
819.85 0.02 1052
819.93 0.03 1123
820.02 0.03 1193
820.10 0.03 1263
820.18 0.03 1406
820.27 0.04 1548
820.35 0.04 1690
820.43 0.04 1831
820.52 0.05 1973
820.60 0.05 2114
820.68 0.05 2255
820.77 0.05 2395
820.85 0.06 2535
820.93 0.06 2675
821.02 0.06 2814
821.10 0.07 2953
821.18 0.07 3092
821.27 0.07 3230
821.35 0.08 3368
821.43 0.08 3505
821.52 0.08 3642
821.60 0.09 3778
821.68 0.09 3913
821.77 0.09 4048
821.85 0.10 4183
821.93 0.10 4316
822.02 0.10 4450
PROPOSED INPUTS (6" MIN)12
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
822.10 0.11 4582
822.18 0.11 4714
822.27 0.11 4845
822.35 0.11 4975
822.43 0.12 5105
822.52 0.12 5233
822.60 0.12 5361
822.68 0.13 5488
822.77 0.13 5614
822.85 0.13 5739
822.93 0.13 5863
823.02 0.14 5986
823.10 0.14 6108
823.18 0.14 6229
823.27 0.15 6349
823.35 0.15 6468
823.43 0.15 6585
823.52 0.15 6701
823.60 0.16 6816
823.68 0.16 6929
823.77 0.16 7041
823.85 0.16 7152
823.93 0.17 7260
824.02 0.17 7367
824.10 0.17 7472
824.18 0.17 7575
824.27 0.18 7676
824.35 0.18 7774
824.43 0.18 7870
824.52 0.18 7962
824.60 0.18 8051
824.68 0.19 8134
824.77 0.19 8212
824.85 0.19 8288
824.93 0.19 8363
825.02 0.19 8436
825.10 0.20 8507
825.18 0.20 8578
825.27 0.20 8648
825.35 0.20 8718
825.43 0.20 8788
825.52 0.20 8858
825.60 0.20 8928
825.68 0.21 8999
825.77 0.21 9069
825.85 0.21 9139
825.93 0.21 9209
826.02 0.21 9279
826.10 0.21 9349
826.18 0.22 9420
826.27 0.22 9490
826.35 0.22 9560
826.43 0.22 9630
826.52 0.22 9700
826.60 0.22 9770
826.68 0.23 9841
PROPOSED INPUTS (6" MIN)13
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
826.77 0.23 9911
826.85 0.23 9981
826.93 0.23 10051
827.02 0.23 10121
827.10 0.23 10191
827.18 0.24 10262
827.27 0.24 10332
827.35 0.24 10402
827.43 0.24 10472
827.52 0.24 10542
827.60 0.24 10612
827.68 0.25 10683
827.77 0.25 10753
827.85 0.25 10823
827.93 0.25 10893
828.02 0.25 10963
828.10 0.25 11033
828.18 0.25 11104
828.27 0.26 11174
828.35 0.26 11244
828.43 0.26 11314
828.52 0.26 11384
828.60 0.26 11454
828.68 0.26 11525
828.77 0.27 11595
828.85 0.27 11665
828.93 0.27 11735
829.02 0.27 11805
829.10 0.27 11875
829.18 0.27 11946
829.27 0.28 12016
829.35 0.28 12086
Comment:
Node: POND 6
Scenario:Icpr3
Type:Stage/Volume
Base Flow:0.00 cfs
Initial Stage:817.25 ft
Warning Stage:824.00 ft
Stage [ft]Volume [ac-ft]Volume [ft3]
817.33 0.01 320
817.42 0.01 640
817.50 0.02 959
817.58 0.03 1279
817.67 0.04 1599
817.75 0.04 1919
817.83 0.05 2239
817.92 0.06 2559
818.00 0.07 2878
818.08 0.08 3553
818.17 0.10 4225
PROPOSED INPUTS (6" MIN)14
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
818.25 0.11 4894
818.33 0.13 5561
818.42 0.14 6226
818.50 0.16 6889
818.58 0.17 7549
818.67 0.19 8207
818.75 0.20 8862
818.83 0.22 9514
818.92 0.23 10163
819.00 0.25 10809
819.08 0.26 11452
819.17 0.28 12091
819.25 0.29 12727
819.33 0.31 13359
819.42 0.32 13987
819.50 0.34 14610
819.58 0.35 15230
819.67 0.36 15844
819.75 0.38 16454
819.83 0.39 17058
819.92 0.41 17657
820.00 0.42 18250
820.08 0.43 18838
820.17 0.45 19418
820.25 0.46 19993
820.33 0.47 20560
820.42 0.48 21119
820.50 0.50 21671
820.58 0.51 22214
820.67 0.52 22749
820.75 0.53 23273
820.83 0.55 23788
820.92 0.56 24291
821.00 0.57 24782
821.08 0.58 25260
821.17 0.59 25722
821.25 0.60 26167
821.33 0.61 26590
821.42 0.62 26978
821.50 0.63 27339
821.58 0.64 27688
821.67 0.64 28028
821.75 0.65 28353
821.83 0.66 28673
821.92 0.67 28993
822.00 0.67 29313
822.08 0.68 29633
822.17 0.69 29952
822.25 0.69 30272
822.33 0.70 30592
822.42 0.71 30912
822.50 0.72 31232
822.58 0.72 31552
822.67 0.73 31871
822.75 0.74 32191
822.83 0.75 32511
PROPOSED INPUTS (6" MIN)15
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Stage [ft]Volume [ac-ft]Volume [ft3]
822.92 0.75 32831
823.00 0.76 33151
823.08 0.77 33471
823.17 0.78 33790
823.25 0.78 34110
823.33 0.79 34430
823.42 0.80 34750
823.50 0.81 35070
823.58 0.81 35390
823.67 0.82 35709
823.75 0.83 36029
Comment:
Node: S. OUTFALL
Scenario:Icpr3
Type:Time/Stage
Base Flow:0.00 cfs
Initial Stage:815.00 ft
Warning Stage:816.00 ft
Boundary Stage:
Year Month Day Hour Stage [ft]
0 0 0 0.0000 815.00
0 0 0 9999.0000 815.00
Comment:
Drop Structure Link: 2-4 OCS
Scenario:Icpr3
From Node:POND 2
To Node:POND 4
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:10.00 ft
FHWA Code:0
Entr Loss Coef:0.00
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:822.00 ft Invert:822.00 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Bottom Clip
Default:0.00 ft
Op Table:
PROPOSED INPUTS (6" MIN)16
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:822.00 ft
Control Elevation:822.00 ft
Max Depth:0.50 ft
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:827.30 ft
Control Elevation:827.30 ft
Max Depth:0.17 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
Drop Structure Link: 3-4 OCS
Scenario:Icpr3
From Node:POND 3
To Node:POND 4
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:92.00 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:824.50 ft Invert:822.00 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
PROPOSED INPUTS (6" MIN)17
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:824.50 ft
Control Elevation:824.50 ft
Max Depth:0.50 ft
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:826.76 ft
Control Elevation:826.76 ft
Max Depth:0.67 ft
Max Width:1.00 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
Drop Structure Link: 4-5 OCS
Scenario:Icpr3
From Node:POND 4
To Node:POND 5A
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:25.04 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:822.00 ft Invert:818.20 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
PROPOSED INPUTS (6" MIN)18
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Geometry Type:Circular
Invert:822.00 ft
Control Elevation:822.00 ft
Max Depth:0.50 ft
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:827.60 ft
Control Elevation:827.60 ft
Max Depth:1.25 ft
Max Width:1.50 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
Drop Structure Link: 5-OUT OCS
Scenario:Icpr3
From Node:POND 5
To Node:N. OUTFALL
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:240.00 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:1.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:818.20 ft Invert:817.63 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
PROPOSED INPUTS (6" MIN)19
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Invert:818.20 ft
Control Elevation:818.20 ft
Max Depth:0.50 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:823.84 ft
Control Elevation:823.84 ft
Max Depth:0.31 ft
Max Width:0.50 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
Drop Structure Link: 6-OUT OCS
Scenario:Icpr3
From Node:POND 6
To Node:S. OUTFALL
Link Count:1
Flow Direction:Both
Solution:Combine
Increments:0
Pipe Count:1
Damping:0.0000 ft
Length:205.00 ft
FHWA Code:0
Entr Loss Coef:0.00
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Pipe Downstream Pipe
Invert:817.25 ft Invert:816.64 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:1.25 ft Max Depth:1.25 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Pipe Comment:
Weir Component
Weir:1
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Circular
Invert:817.25 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
PROPOSED INPUTS (6" MIN)20
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
Control Elevation:817.25 ft
Max Depth:0.50 ft Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Weir Component
Weir:2
Weir Count:1
Weir Flow Direction:Both
Damping:0.0000 ft
Weir Type:Sharp Crested Vertical
Geometry Type:Rectangular
Invert:823.25 ft
Control Elevation:823.25 ft
Max Depth:0.25 ft
Max Width:0.50 ft
Fillet:0.00 ft
Bottom Clip
Default:0.00 ft
Op Table:
Ref Node:
Top Clip
Default:0.00 ft
Op Table:
Ref Node:
Discharge Coefficients
Weir Default:3.200
Weir Table:
Orifice Default:0.600
Orifice Table:
Weir Comment:
Drop Structure Comment:
Pipe Link: PIPE 1-4
Scenario:Icpr3
From Node:POND 1
To Node:POND 4
Link Count:1
Flow Direction:Both
Damping:0.0000 ft
Length:810.00 ft
FHWA Code:0
Entr Loss Coef:0.50
Exit Loss Coef:1.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Upstream Downstream
Invert:843.33 ft Invert:822.00 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:1.25 ft Max Depth:1.25 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Comment:
Pipe Link: PIPE 5A-5
Scenario:Icpr3
From Node:POND 5A
To Node:POND 5
Link Count:1
Flow Direction:Both
Damping:0.0000 ft
Length:20.00 ft
Upstream Downstream
Invert:818.60 ft Invert:818.20 ft
Manning's N:0.0130 Manning's N:0.0130
Geometry: Circular Geometry: Circular
Max Depth:2.00 ft Max Depth:2.00 ft
Bottom Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
PROPOSED INPUTS (6" MIN)21
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:32
FHWA Code:0
Entr Loss Coef:0.00
Exit Loss Coef:0.00
Bend Loss Coef:0.00
Bend Location:0.00 dec
Energy Switch:Energy
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Top Clip
Default:0.00 ft Default:0.00 ft
Op Table:Op Table:
Ref Node:Ref Node:
Manning's N:0.0000 Manning's N:0.0000
Comment:
PROPOSED OUTPUT (6" MIN)1
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:31
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
N. OUTFALL 100YR - 24HR 816.00 815.00 0.0000 4.48 0.00 0
N. OUTFALL 10YR - 24HR 816.00 815.00 0.0000 1.68 0.00 0
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 1 100YR - 24HR 845.00 844.51 0.0010 8.50 9.66 771
POND 1 10YR - 24HR 845.00 844.44 0.0010 4.92 4.88 769
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 2 100YR - 24HR 831.50 829.58 0.0010 10.80 0.89 4279
POND 2 10YR - 24HR 831.50 826.64 0.0010 5.96 0.37 4279
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 3 100YR - 24HR 832.15 830.51 0.0010 25.17 4.43 7217
POND 3 10YR - 24HR 832.15 827.40 0.0010 14.27 2.75 7216
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 4 100YR - 24HR 830.75 829.88 0.0010 35.51 15.31 8213
POND 4 10YR - 24HR 830.75 826.60 0.0010 19.77 2.80 8214
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 5 100YR - 24HR 828.95 828.60 0.0010 17.68 4.48 5879
POND 5 10YR - 24HR 828.95 821.99 0.0010 7.51 1.68 5879
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 5A 100YR - 24HR 830.00 828.61 -0.0010 14.02 10.01 1780
POND 5A 10YR - 24HR 830.00 821.99 -0.0010 1.90 5.42 1780
PROPOSED OUTPUT (6" MIN)2
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\- North End ICPR\170187000 - North End.2020-11-18 - FINAL - 6in Min\11/24/2020 18:31
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
POND 6 100YR - 24HR 824.00 820.82 0.0010 17.32 1.62 8354
POND 6 10YR - 24HR 824.00 819.12 -0.0010 9.34 1.10 8354
Node Max Conditions [Icpr3]
Node Name Sim Name Warning Stage
[ft]
Max Stage [ft]Min/Max Delta
Stage [ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
S. OUTFALL 100YR - 24HR 816.00 815.00 0.0000 1.62 0.00 0
S. OUTFALL 10YR - 24HR 816.00 815.00 0.0000 1.10 0.00 0
Description:North End
Reviewing Entity:
Job #:
Date:10/02/20
*Emergency spillway must carry the peak 100 yr flow rate to the pond
9.64 (From ICPR output)
12.05
3.00
12.05
30.00
0.26
100 yr Flood Elev. =829.84
832.25
832.51
833.50
L =
H =
Spillway Elev. =
Overflow Elev. =
Berm Elevation =
*OVERFLOW SPILLWAY WIDTH OF 30 FEET HAS SUFFICIENT CAPACITY TO CARRY 125% OF
THE 100 YR FLOW RATE
170187000
Peak inflow to Pond
125% of Peak inflow
Weir Formula→ Q=Cweir*(L)*H3/2
Cweir =
Q =
PROPOSED STORMWATER SYSTEM
EMERGENCY SPILLWAY CALCULATIONS
POND 2
Job Information
Kaleb Sondgerath
Description:North End
Reviewing Entity:
Job #:
Date:10/02/20
*Emergency spillway must carry the peak 100 yr flow rate to the pond
22.87 (From ICPR output)
28.59
3.00
28.59
30.00
0.47
100 yr Flood Elev. =829.26
829.26
829.73
830.95
PROPOSED STORMWATER SYSTEM
EMERGENCY SPILLWAY CALCULATIONS
Job Information
Kaleb Sondgerath
POND 5
*OVERFLOW SPILLWAY WIDTH OF 30 FEET HAS SUFFICIENT CAPACITY TO CARRY 125% OF
THE 100 YR FLOW RATE
170187000
Peak inflow to Pond
125% of Peak inflow
Weir Formula→ Q=Cweir*(L)*H3/2
Cweir =
Q =
L =
H =
Spillway Elev. =
Overflow Elev. =
Berm Elevation =
SMOKEY ROW RD 1
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - FINAL\10/2/2020 17:25
Simple Basin: DIRECT DISCH
Scenario:Icpr3
Node:SMOKEY RD
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:6.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:0.8800 ac
Curve Number:89.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin Runoff Summary [Icpr3]
Basin
Name
Sim Name Max Flow
[cfs]
Time to
Max Flow
[hrs]
Total
Rainfall
[in]
Total
Runoff [in]
Area [ac]Equivalent
Curve
Number
% Imperv % DCIA
DIRECT
DISCH
100YR -
24HR
6.09 12.0000 6.46 5.18 0.8800 89.0 0.00 0.00
DIRECT
DISCH
10YR -
24HR
3.29 12.0000 3.83 2.66 0.8800 89.0 0.00 0.00
Simple Basin: OFFSITE BASIN
Scenario:Icpr3
Node:SMOKEY RD
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:18.6500 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.6000 ac
Curve Number:83.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
SMOKEY ROW RD 2
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-10-02 - FINAL\10/2/2020 17:25
Comment:
Node: SMOKEY RD
Scenario:Icpr3
Type:Time/Stage
Base Flow:0.00 cfs
Initial Stage:1.00 ft
Warning Stage:2.00 ft
Boundary Stage:
Year Month Day Hour Stage [ft]
0 0 0 0.0000 1.00
0 0 0 99999.0000 1.00
Comment:
Node Max Conditions [Icpr3]
Node Name Sim Name Warning
Stage [ft]
Max Stage
[ft]
Min/Max
Delta Stage
[ft]
Max Total
Inflow [cfs]
Max Total
Outflow [cfs]
Max Surface
Area [ft2]
SMOKEY RD 100YR - 24HR 2.00 1.00 0.0000 12.70 0.00 0
SMOKEY RD 10YR - 24HR 2.00 1.00 0.0000 3.29 0.00 0
HY-8 Culvert Analysis Report
Crossing Discharge Data
Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 10 cfs
Design Flow: 14.32 cfs
Maximum Flow: 15 cfs
Table 2 - Culvert Summary Table: Culvert 1
Total
Discharge
(cfs)
Culvert
Discharge
(cfs)
Headwater
Elevation (ft)
Inlet Control
Depth (ft)
Outlet
Control
Depth (ft)
Flow
Type
Normal
Depth (ft)
Critical
Depth (ft)
Outlet Depth
(ft)
Tailwater
Depth (ft)
Outlet
Velocity
(ft/s)
Tailwater
Velocity
(ft/s)
10.00 10.00 813.58 1.379 1.424 7-M2c 1.250 0.904 0.904 0.229 5.264 2.593
10.50 10.50 813.64 1.430 1.475 7-M2c 1.250 0.926 0.926 0.236 5.389 2.639
11.00 11.00 813.69 1.481 1.530 7-M2c 1.250 0.947 0.947 0.242 5.516 2.683
11.50 11.50 813.74 1.534 1.584 7-M2c 1.250 0.967 0.967 0.248 5.644 2.724
12.00 12.00 813.80 1.589 1.642 7-M2c 1.250 0.987 0.987 0.255 5.775 2.767
12.50 12.50 813.86 1.646 1.704 7-M2c 1.250 1.006 1.006 0.261 5.907 2.806
13.00 13.00 813.94 1.704 1.779 7-M2c 1.250 1.024 1.024 0.267 6.043 2.844
13.50 13.50 814.01 1.764 1.851 7-M2c 1.250 1.041 1.041 0.273 6.181 2.882
14.00 14.00 814.09 1.827 1.934 7-M2c 1.250 1.057 1.057 0.278 6.322 2.918
14.32 14.32 814.14 1.867 1.985 7-M2c 1.250 1.067 1.067 0.282 6.415 2.942
15.00 15.00 814.25 1.957 2.093 7-M2c 1.250 1.088 1.088 0.290 6.616 2.988
Table 3 - Downstream Channel Rating Curve (Crossing: OFFSITE DRIVE CULVERT)
Flow (cfs)Water Surface
Elev (ft)
Depth (ft)Velocity (ft/s)Shear (psf)Froude Number
10.00 812.23 0.23 2.59 0.14 1.01
10.50 812.24 0.24 2.64 0.15 1.01
11.00 812.24 0.24 2.68 0.15 1.01
11.50 812.25 0.25 2.72 0.16 1.02
12.00 812.25 0.25 2.77 0.16 1.02
12.50 812.26 0.26 2.81 0.16 1.03
13.00 812.27 0.27 2.84 0.17 1.03
13.50 812.27 0.27 2.88 0.17 1.03
14.00 812.28 0.28 2.92 0.17 1.04
14.32 812.28 0.28 2.94 0.18 1.04
15.00 812.29 0.29 2.99 0.18 1.04
Tailwater Channel Data - OFFSITE DRIVE CULVERT
Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 15.00 ft
Side Slope (H:V): 8.00 (_:1)
Channel Slope: 0.0100
Channel Manning's n: 0.0200
Channel Invert Elevation: 812.00 ft
Roadway Data for Crossing: OFFSITE DRIVE CULVERT
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 15.00 ft
Crest Elevation: 815.00 ft
Roadway Surface: Paved
Roadway Top Width: 15.00 ft
Worksheet for Smokey Rd Swale
Project Description
Manning
FormulaFriction Method
Normal DepthSolve For
Input Data
0.020Roughness Coefficient
ft/ft0.010Channel Slope
H:V3.000Left Side Slope
H:V3.000Right Side Slope
cfs14.32Discharge
Results
in12.2Normal Depth
ft²3.1Flow Area
ft6.5Wetted Perimeter
in5.8Hydraulic Radius
ft6.12Top Width
in12.9Critical Depth
ft/ft0.008Critical Slope
ft/s4.58Velocity
ft0.33Velocity Head
ft1.35Specific Energy
1.131Froude Number
SupercriticalFlow Type
GVF Input Data
in0.0Downstream Depth
ft0.0Length
0Number Of Steps
GVF Output Data
in0.0Upstream Depth
N/AProfile Description
ft0.00Profile Headloss
ft/sInfinityDownstream Velocity
ft/sInfinityUpstream Velocity
in12.2Normal Depth
in12.9Critical Depth
ft/ft0.010Channel Slope
ft/ft0.008Critical Slope
Page 1 of 127 Siemon Company Drive Suite 200 W
Watertown, CT 06795 USA +1-203-755-1666
10/2/2020
FlowMaster
[10.02.00.01]
Bentley Systems, Inc. Haestad Methods Solution
Centersmokey swale.fm8
170187000 – North End Phase 1
Appendix D: Proposed Storm Sewer
Design
STORM SEWER BASINSNorth End
Carmel. IN
10/1/2020
PROJECT: North End
BY:KJS
DATE:19-Jul-20
ENTITY: Carmel
Duration Duration
BIN (min)(hr)2-Year 5-Year 10-Year 25-Year 50-Year 100-Year
1 5 0.083 4.63 5.43 6.12 7.17 8.09 9.12
2 10 0.167 3.95 4.63 5.22 6.12 6.90 7.78
3 30 0.5 2.46 2.88 3.25 3.81 4.29 4.84
4 60 1 1.54 1.80 2.03 2.38 2.68 3.03
5 120 2 0.83 0.95 1.11 1.37 1.60 1.87
6 180 3 0.59 0.72 0.84 1.04 1.22 1.42
7 360 6 0.35 0.43 0.50 0.62 0.72 0.85
8 720 12 0.20 0.24 0.29 0.35 0.41 0.48
9 1440 24 0.11 0.14 0.16 0.20 0.23 0.27
1 2 3 4 5 6
Duration Duration
(min) (hr) 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year
5 0.083 0.39 0.45 0.51 0.60 0.67 0.76
10 0.167 0.66 0.77 0.87 1.02 1.15 1.30
30 0.5 1.23 1.44 1.63 1.91 2.15 2.42
60 1 1.54 1.80 2.03 2.38 2.68 3.03
120 2 1.66 1.90 2.22 2.74 3.20 3.74
180 3 1.77 2.16 2.52 3.12 3.66 4.26
360 6 2.10 2.58 3.00 3.72 4.32 5.10
720 12 2.40 2.88 3.48 4.20 4.92 5.76
1440 24 2.64 3.36 3.84 4.80 5.52 6.48
Intensity (in/hr)
BIN
Rainfall Depth (in)
Frequency
Frequency
croof0.9cgrass0.3cpavement0.85AroofAgrassApavementArea(ac)(ac)(ac)(ac)203A100-0.0700.0100.08-0.020.010.37320101-0.1600.1500.31-0.050.130.57520102-0.2100.3400.55-0.060.290.64640103-0.1700.4500.62-0.050.380.70700111-0.0800.3600.44-0.020.310.75PROPOSED STORM SEWER SYSTEM RUNOFF COEFFICIENT CALCULATIONBasin Str. No.(c*A)roof(c*A)grass(c*A)pavementComposite c
PROJECT:
BY:
DATE:
Entity:
10-Year
10-Year
Invert Drop
0.1
5
(dc+D)/2
10-Year
-
50%
CASTING SEWER HGL CASTING SEWER HGL
AREA AREA 10-Year 10-Year 10-Year 10-Year 10-Year 10-Year U.S. D.S. U.S. D.S.
(ft)(deg) (acres) (acres) (min)(min) (in/hr) (in/hr) (in/hr) (cfs) (cfs) (cfs) (in) (%) (cfs) (ft/sec) (ft/sec) (ft/sec) (ft) (ft) (ft) (ft)(ft) (ft) (ft)
100 101 69.30 RCP Paved - 180 YES 0.85 1.00 - - 6.82 0.85 0.85 0.85 6.82 5.79 5.79 5.79 4.92 4.92 4.92 15 0.85 0.013 5.96 4.85 5.42 5.42 844.50 846.97 839.98 839.39 OCS - - - 0.00
101 102 162.26 RCP Paved Sag 180 YES 0.85 0.38 - - 5.00 0.32 0.32 1.17 7.06 6.12 5.75 5.75 1.98 6.74 6.74 15 1.45 0.013 7.78 6.34 7.14 7.14 846.97 847.12 839.29 836.94 TYPE ''C'' MANHOLE R-3287-SB10 0.30 0.39 0.19
102 103 163.84 RCP Paved Flow-by 180 YES 0.85 0.01 - - 5.00 0.01 0.01 1.18 7.48 6.12 5.67 5.67 0.05 6.70 6.70 15 1.50 0.013 7.91 6.45 7.23 7.23 847.12 843.09 836.84 834.38 TYPE ''C'' MANHOLE R-3287-10V 0.00 0.04 0.04
103 113 119.89 RCP Paved Flow-by 180 YES 0.85 0.29 - - 5.00 0.25 0.25 1.43 7.91 6.12 5.60 5.60 1.51 7.99 7.99 18 1.00 0.013 10.50 5.94 6.54 6.54 843.09 837.95 834.28 833.08 TYPE ''C'' MANHOLE R-3287-10V 0.09 0.33 0.33
111 112 113.14 RCP Paved - 180 YES 0.85 0.44 - - 5.00 0.37 0.37 0.37 5.00 6.12 6.12 6.12 2.29 2.29 2.29 12 0.50 0.013 2.52 3.21 3.63 3.63 832.51 833.46 828.77 828.20 TYPE ''J'' INLET R-3455-C 0.13 0.29 0.15
112 113 148.49 RCP Paved - 180 YES 0.85 0.25 - - 5.00 0.21 0.21 0.59 5.59 6.12 6.01 6.01 1.30 3.53 3.53 15 0.35 0.013 3.82 3.11 3.53 3.53 833.46 837.95 828.10 827.58 TYPE ''C'' MANHOLE R-3472 0.17 0.25 0.25
113 203 102.03 RCP Paved Flow-by 180 YES 0.85 0.18 - - 5.00 0.15 0.15 2.17 8.24 6.12 5.54 5.54 0.94 12.00 12.00 18 1.50 0.013 12.87 7.28 8.27 8.27 837.95 837.54 827.48 825.95 TYPE ''C'' MANHOLE R-3287-10V 0.03 0.24 0.24
201 202 91.70 RCP Paved Sag 180 YES 0.85 0.24 0.90 0.16 5.00 0.20 0.35 0.35 5.00 6.12 6.12 6.12 1.25 2.13 2.13 12 0.50 0.013 2.52 3.21 3.60 3.60 836.89 836.90 832.64 832.18 TYPE ''J'' INLET R-3287-SB10 0.12 0.29 0.14
202 203 91.70 RCP Paved Sag 180 YES 0.85 0.26 0.90 0.20 5.00 0.22 0.40 0.75 5.48 6.12 6.03 6.03 1.35 4.52 4.52 15 0.80 0.013 5.78 4.71 5.21 5.21 836.90 837.54 832.08 831.35 TYPE ''M'' INLET R-3287-SB10 0.14 0.30 0.15
203A 203 84.45 RCP Unpaved - 180 YES 0.37 0.08 - - 5.00 0.03 0.03 0.03 5.00 6.12 6.12 6.12 0.18 0.18 0.18 12 0.32 0.013 2.02 2.57 1.59 1.59 836.50 837.54 832.68 832.41 TYPE ''E'' INLET R-4215-C 0.00 0.06 0.06
203 211 92.34 RCP Paved Flow-by 180 YES 0.85 0.16 - - 5.00 0.14 0.14 3.08 8.48 6.12 5.49 5.49 0.83 16.93 16.93 24 0.75 0.013 19.59 6.24 7.02 7.02 837.54 835.27 825.54 824.85 TYPE ''C'' MANHOLE R-3287-10V 0.03 0.22 0.22
211 212 23.76 RCP Paved Flow-by 180 YES 0.85 0.29 - - 5.00 0.25 0.25 3.33 8.72 6.12 5.45 5.45 1.51 18.14 18.14 30 0.50 0.013 29.00 5.91 6.24 6.24 835.27 - 823.77 823.65 TYPE ''J'' MANHOLE R-3287-10V 0.09 0.33 0.33
300 301 108.01 RCP Paved Flow-by 180 YES 0.85 0.15 - - 5.00 0.13 0.13 0.13 5.00 6.12 6.12 6.12 0.78 0.78 0.78 12 2.50 0.013 5.63 7.17 5.04 5.04 845.89 842.53 840.99 838.29 TYPE ''J'' INLET R-3287-10V 0.02 0.22 0.22
301 302 65.48 RCP Paved Flow-by 180 YES 0.85 0.22 0.90 0.18 5.00 0.19 0.35 0.48 5.25 6.12 6.07 6.07 1.14 2.89 2.89 12 1.00 0.013 3.56 4.54 5.05 5.05 842.53 840.04 832.48 831.82 TYPE ''C'' MANHOLE R-3287-10V 0.05 0.27 0.27
302 312 20.00 RCP Paved Roll 180 NO 0.85 0.04 - - 5.00 0.03 0.03 0.51 5.49 6.12 6.03 6.03 0.21 3.08 3.08 12 1.00 0.013 3.56 4.54 5.10 5.10 840.04 840.04 831.72 831.52 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
310 311 49.04 RCP Paved Flow-by 180 YES 0.85 0.10 - - 5.00 0.09 0.09 0.09 5.00 6.12 6.12 6.12 0.52 0.52 0.52 12 1.00 0.013 3.56 4.54 3.24 3.24 840.10 840.57 835.81 835.32 TYPE ''J'' INLET R-3287-10V 0.01 0.17 0.17
311 312 55.57 RCP Paved Flow-by 180 YES 0.85 0.08 - - 5.00 0.07 0.07 0.15 5.18 6.12 6.09 6.09 0.42 0.93 0.93 12 1.00 0.013 3.56 4.54 3.82 3.82 840.57 840.04 832.08 831.52 TYPE ''C'' MANHOLE R-3287-10V 0.01 0.15 0.15
312 331 148.67 RCP Paved Roll 180 NO 0.85 0.02 - - 5.00 0.02 0.02 0.68 5.57 6.12 6.02 6.02 0.10 4.10 4.10 12 2.30 0.013 5.40 6.88 7.56 7.56 840.04 837.36 831.42 828.01 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
320 331 97.93 RCP Unpaved - 180 NO 0.57 0.31 - - 5.00 0.18 0.18 0.18 5.00 6.12 6.12 6.12 1.08 1.08 1.08 12 0.32 0.013 2.02 2.57 2.61 2.61 832.10 837.36 828.31 828.00 TYPE ''A'' INLET R-4342 0.05 0.25 0.25
330 331 20.00 RCP Paved Roll 180 NO 0.85 0.06 - - 5.00 0.05 0.05 0.05 5.00 6.12 6.12 6.12 0.31 0.31 0.31 12 0.50 0.013 2.52 3.21 2.18 2.18 837.36 837.36 833.43 833.33 TYPE ''A'' INLET R-3501-TR - - 0.00
331 352 150.00 RCP Paved - 180 YES 0.85 0.11 - - 5.00 0.09 0.09 1.00 5.93 6.12 5.95 5.95 0.57 5.96 5.96 15 1.50 0.013 7.91 6.45 7.08 7.08 837.36 834.55 827.90 825.65 TYPE ''C'' MANHOLE R-3472 0.03 0.15 0.15
340 341 20.00 RCP Paved Roll 180 NO 0.85 0.25 - - 5.00 0.21 0.21 0.21 5.00 6.12 6.12 6.12 1.30 1.30 1.30 12 0.50 0.013 2.52 3.21 3.23 3.23 831.68 831.68 827.40 827.30 TYPE ''A'' INLET R-3501-TR - - 0.00
341 351 81.62 RCP Paved Roll 180 NO 0.85 0.07 - - 5.00 0.06 0.06 0.27 5.10 6.12 6.10 6.10 0.36 1.66 1.66 12 0.50 0.013 2.52 3.21 3.42 3.42 831.68 832.14 827.20 826.80 TYPE ''A'' INLET R-3501-TR - - 0.00
350 351 20.01 RCP Paved Roll 180 NO 0.85 0.05 - - 5.00 0.04 0.04 0.04 5.00 6.12 6.12 6.12 0.26 0.26 0.26 12 0.50 0.013 2.52 3.21 2.07 2.07 832.14 832.14 827.90 827.80 TYPE ''A'' INLET R-3501-TR - - 0.00
351 352 76.22 RCP Paved Roll 180 NO 0.85 0.06 - - 5.00 0.05 0.05 0.37 5.53 6.12 6.02 6.02 0.31 2.20 2.20 12 0.50 0.013 2.52 3.21 3.62 3.62 832.14 834.55 826.70 826.32 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
352 353 20.00 RCP Paved Flow-by 180 YES 0.85 0.13 - - 5.00 0.11 0.11 1.48 6.31 6.12 5.88 5.88 0.68 8.69 8.69 18 0.80 0.013 9.40 5.32 6.04 6.04 834.55 834.55 825.55 825.39 TYPE ''C'' MANHOLE R-3287-10V 0.02 0.20 0.20
353 354 17.58 RCP Paved Roll 180 NO 0.85 0.29 - - 5.00 0.25 0.25 1.72 6.38 6.12 5.87 5.87 1.51 10.13 10.13 24 0.20 0.013 10.12 3.22 - -834.55 - 825.29 825.25 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
403 POIND 4 2.40 RCP Paved Sag 180 YES 0.85 0.09 - - 5.00 0.08 0.08 0.08 5.00 6.12 6.12 6.12 0.47 0.47 0.47 15 1.00 0.013 6.46 5.26 3.06 3.06 832.87 - 822.77 822.75 TYPE ''C'' MANHOLE R-3287-SB10 0.02 0.16 0.16
404 POND 4 2.14 RCP Paved Sag 180 YES 0.85 0.10 - - 5.00 0.09 0.09 0.09 5.00 6.12 6.12 6.12 0.52 0.52 0.52 15 1.00 0.013 6.46 5.26 3.16 3.16 831.41 - 822.77 822.75 TYPE ''C'' MANHOLE R-3287-SB10 0.02 0.17 0.17
405 POND 4 2.43 RCP Paved Sag 180 YES 0.85 0.36 - - 5.00 0.31 0.31 0.31 5.00 6.12 6.12 6.12 1.87 1.87 1.87 15 1.00 0.013 6.46 5.26 4.56 4.56 831.22 - 822.77 822.75 TYPE ''C'' MANHOLE R-3287-SB10 0.27 0.37 0.37
510 511 17.01 RCP Paved Flow-by 180 YES 0.85 0.32 - - 5.00 0.27 0.27 0.27 5.00 6.12 6.12 6.12 1.66 1.66 1.66 12 0.50 0.013 2.52 3.21 3.43 3.43 830.12 - 826.09 826.00 TYPE ''J'' INLET R-3287-10V 0.11 0.35 0.35
520 521 68.96 RCP Paved Roll 180 NO 0.64 0.55 - - 5.00 0.35 0.35 0.35 5.00 6.12 6.12 6.12 2.15 2.15 2.15 12 0.75 0.013 3.09 3.93 4.25 4.25 830.47 830.72 826.70 826.19 TYPE ''A'' INLET R-3501-TR - - 0.00
521 522 87.56 RCP Paved Roll 180 YES 0.85 0.01 - - 5.00 0.01 0.01 0.36 5.29 6.12 6.07 6.07 0.05 2.19 2.19 12 1.00 0.013 3.56 4.54 4.77 4.77 830.72 830.28 826.09 825.21 TYPE ''M'' INLET - - - 0.00
522 523 6.10 RCP Paved Flow-by 180 YES 0.85 0.28 - - 5.00 0.24 0.24 0.60 5.61 6.12 6.01 6.01 1.46 3.60 3.60 18 0.20 0.013 4.70 2.66 2.93 2.93 830.28 - 825.11 825.10 TYPE ''C'' MANHOLE R-3287-10V 0.08 0.32 0.32
600 611 41.44 RCP Paved Roll 180 YES 0.85 0.11 - - 5.00 0.09 0.09 0.09 5.00 6.12 6.12 6.12 0.57 0.57 0.57 12 0.32 0.013 2.02 2.57 2.21 2.21 829.26 828.26 824.55 824.41 TYPE ''J'' INLET - - - 0.00
610 611 107.19 RCP Unpaved - 180 NO 0.85 0.09 - - 5.00 0.08 0.08 0.08 5.00 6.12 6.12 6.12 0.47 0.47 0.47 12 0.32 0.013 2.02 2.57 2.09 2.09 824.10 828.26 820.36 820.01 TYPE ''A'' INLET R-4342 0.01 0.15 0.15
611 621 45.24 RCP Paved Roll 180 YES 0.85 0.03 - - 5.00 0.03 0.03 0.20 5.70 6.12 5.99 5.99 0.16 1.17 1.17 12 0.32 0.013 2.02 2.57 2.66 2.66 828.26 827.09 819.91 819.77 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
620 621 102.50 RCP Unpaved - 180 NO 0.85 0.09 - - 5.00 0.08 0.08 0.08 5.00 6.12 6.12 6.12 0.47 0.47 0.47 12 0.32 0.013 2.02 2.57 2.09 2.09 824.10 827.09 820.10 819.77 TYPE ''A'' INLET R-4342 0.01 0.15 0.15
621 631 45.00 RCP Paved Roll 180 YES 0.85 0.06 - - 5.00 0.05 0.05 0.32 5.99 6.12 5.94 5.94 0.31 1.92 1.92 12 0.32 0.013 2.02 2.57 2.92 2.92 827.09 826.70 819.67 819.53 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
630 631 98.03 RCP Unpaved - 180 NO 0.85 0.09 - - 5.00 0.08 0.08 0.08 5.00 6.12 6.12 6.12 0.47 0.47 0.47 12 0.32 0.013 2.02 2.57 2.09 2.09 824.03 826.70 819.84 819.53 TYPE ''A'' INLET R-4342 0.01 0.15 0.15
631 632 74.66 RCP Paved Roll 180 YES 0.85 0.14 - - 5.00 0.12 0.12 0.52 6.28 6.12 5.89 5.89 0.73 3.05 3.05 15 0.40 0.013 4.09 3.33 3.65 3.65 826.70 825.70 819.43 819.13 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
632 633 6.79 RCP Paved Roll 180 YES 0.85 0.16 - - 5.00 0.14 0.14 0.65 6.66 6.12 5.82 5.82 0.83 3.81 3.81 15 0.40 0.013 4.09 3.33 3.78 3.78 825.70 - 819.03 819.00 TYPE ''C'' MANHOLE R-3501-TR - - 0.00
640 641 103.70 RCP - - 180 NO 0.70 0.62 - - 5.00 0.43 0.43 0.43 5.00 6.12 6.12 6.12 2.66 2.66 2.66 15 0.25 0.013 3.23 2.63 2.94 2.94 824.00 824.25 820.03 819.77 TYPE ''C'' MANHOLE - - - 0.00
641 642 68.75 RCP Unpaved - 180 NO - - - - 5.00 - - 0.43 5.66 6.12 6.00 6.00 - 2.60 2.60 15 0.25 0.013 3.23 2.63 2.93 2.93 824.25 824.77 819.67 819.50 TYPE ''F'' INLET R-1772 - - 0.00
642 643 24.87 RCP Paved Flow-by 180 YES 0.85 0.25 - - 5.00 0.21 0.21 0.65 6.09 6.12 5.92 5.92 1.30 3.83 3.83 18 0.20 0.013 4.70 2.66 2.96 2.96 824.77 - 819.40 819.35 TYPE ''C'' MANHOLE R-3287-10V 0.07 0.30 0.30
653A 653 31.11 RCP Unpaved - 180 NO 0.70 0.26 - - 5.00 0.18 0.18 0.18 5.00 6.12 6.12 6.12 1.11 1.11 1.11 12 0.32 0.013 2.02 2.57 2.63 2.63 820.52 821.47 816.97 816.87 TYPE ''A'' INLET R-4342 0.05 0.26 0.26
653 654 63.24 RCP Paved Flow-by 180 YES - - - - 5.00 - - 0.18 5.20 6.12 6.08 6.08 -1.61 1.11 12 0.23 0.013 1.71 2.18 2.47 2.31 821.47 819.98 816.77 816.62 TYPE ''M'' INLET R-1772 - - 0.00
654 655 61.81 RCP Paved Flow-by 180 NO 0.85 0.14 - - 5.00 0.12 0.12 0.30 5.69 6.12 6.00 6.00 0.73 2.30 1.80 15 0.20 0.013 2.89 2.35 2.61 2.48 819.98 - 816.52 816.40 TYPE ''M'' INLET R-3287-10V 0.02 0.21 0.21
700 701 64.82 RCP Unpaved - 180 NO 0.75 0.49 - - 5.00 0.37 0.37 0.37 5.00 6.12 6.12 6.12 2.25 2.25 2.25 12 0.45 0.013 2.39 3.04 3.46 3.46 840.00 - 836.54 836.25 TYPE ''A'' INLET R-4342 0.22 0.40 0.40
ORIFICE
FLOW DEPTH
WEIR FLOW
DEPTH
CASTING CAPACITYSTRUCTURE DATAINVERTRIM
ELEV.ELEV.FULL
FLOW
CLOGGING (%)
INVERT DROP
DRAINAGE AREAUPSTREAM
STRUCTURE
DOWNSTREAM
STRUCTURE
PIPE
LENGTH
c
Tc
HGL STARTING ELEVATION
DIRECT TO INLET
PIPE
MATERIAL
PAVEMENT
CONDITION
CURB
CONDITION
STORM SEWER FREQUENCY
CASTING
North End
Kaleb Sondgerath
25-Nov-20
Carmel
STORM CASTING DESIGN REQUIREMENTS
HYDRAULIC GRADELINE FREQUENCY
INVERT CONNECTIVITY
OUTLET
DEFLECTION
ANGLE c
MAX INLET DEPTH
STORM CASTING DESIGN REQUIREMENTS
CASTING CAPACITY FREQUENCY
MAXIMUM HEAD (ft)
INTENSITYc*A
PONDING
DEPTH
CASTING INLET CUMULATIVE STRUCTURE
TYPE
CASTING
TYPE
FULL PIPE
CAPACITY FLOW
VELOCITY
PIPE SIZE PIPE SLOPE MANNING'S
N
FLOWCUMULATIVE
Tc
RATIONAL METHOD STORM SEWER DESIGN
STREET
INLET?
VELOCITY
HGL FLOW
VELOCITY
100-yrEntity Data(dc+D)/2Structure Coefficient(ft)(ft)(ft)(ft)(min)(in/hr)(cfs)(in.)%(sq. ft)(ft.)(ft.)(ft.)(ft)(ft/s)(ft)(ft)(ft/s)(ft.)(ft.)(ft.)(ft.)(ft/s)(ft)(ft)(ft)(ft.)(ft.)(ft.)102 101 837.44 838.69 838.66 840.58 7.06 8.57 10.05 15 1.45 1.227 3.927 0.313 1.250 1.185 8.19 162 0.013 3.907 5.98 0.10 0.10 0.10 0.10 - 0.50 8.14 - 0.243 4.150 844.73 846.97 841.04103 102 834.88 836.13 836.10 836.68 7.48 8.45 9.99 15 1.50 1.227 3.927 0.313 1.250 1.184 8.14 164 0.013 3.897 8.19 0.10 0.10 0.10 0.10 - 0.50 6.74 - 0.006 3.903 840.58 847.12 838.59113 103 833.58 835.08 834.99 834.99 7.91 8.34 11.91 18 1.00 1.767 4.712 0.375 1.500 1.310 6.74 120 0.013 1.533 8.14 0.10 0.10 0.10 0.10 - 0.50 5.69 - 0.162 1.695 836.68 843.09 836.28112 111 828.24 829.24 829.14 830.85 5.00 9.12 3.41 12 0.50 0.785 3.142 0.250 1.000 0.790 4.34 113 0.013 1.031 - 0.10 0.10 0.10 0.10 - 1.25 4.28 - 0.366 1.398 832.25 832.51 829.81113 112 827.62 828.87 828.71 829.87 5.59 8.96 5.26 15 0.35 1.227 3.927 0.313 1.250 0.929 4.28 148 0.013 0.978 4.34 0.10 0.10 0.10 0.10 - 0.50 5.69 - 0.004 0.982 830.85 833.46 829.39203 113 826.97 828.97 828.73 829.13 8.24 8.25 17.88 24 0.50 3.142 6.283 0.500 2.000 1.523 5.69 102 0.013 0.634 6.74 0.10 0.10 0.10 0.10 - 0.50 8.01 - 0.101 0.735 829.87 837.95 829.48202 201 832.69 833.69 833.58 834.11 5.00 9.12 3.17 12 0.50 0.785 3.142 0.250 1.000 0.763 4.04 92 0.013 0.724 - 0.10 0.10 0.10 0.10 - 1.25 5.49 - 0.317 1.041 835.15 836.89 834.15203 202 831.86 833.11 833.01 833.01 5.48 8.99 6.74 15 0.80 1.227 3.927 0.313 1.250 1.043 5.49 92 0.013 0.992 4.04 0.10 0.10 0.10 0.10 - 0.50 8.01 - 0.107 1.099 834.11 836.90 833.84203 203A 832.41 833.41 833.02 833.02 5.00 9.12 0.27 12 0.32 0.151 1.041 0.145 0.247 0.214 1.79 84 0.013 0.269 - 0.10 0.10 0.10 0.10 - 1.25 8.01 - 0.062 0.331 833.35 836.50 833.68211 203 825.87 827.87 827.75 827.75 8.58 8.16 25.15 24 0.75 3.142 6.283 0.500 2.000 1.765 8.01 92 0.013 1.135 5.69 0.10 0.10 0.10 0.10 - 0.50 6.71 - 0.246 1.382 829.13 837.54 828.56212 211 823.65 826.15 825.78 825.78 8.83 8.09 26.94 30 0.50 4.015 5.308 0.756 1.906 1.770 6.71 24 0.013 0.118 8.01 0.10 0.10 0.10 0.10 1.00 0.50 - 0.699 0.148 0.965 826.75 835.27 826.27301 300 838.81 839.81 839.54 839.54 5.00 9.12 1.16 12 2.50 0.206 1.177 0.175 0.308 0.454 5.65 108 0.013 2.685 - 0.10 0.10 0.10 0.10 - 1.25 5.49 - 0.620 3.305 842.85 845.89 842.51302 301 831.82 832.82 832.75 833.55 5.25 9.05 4.31 12 1.00 0.785 3.142 0.250 1.000 0.873 5.49 65 0.013 0.955 5.65 0.10 0.10 0.10 0.10 - 0.50 5.84 - 0.014 0.968 834.52 842.53 833.47312 302 831.52 832.52 832.46 833.19 5.49 8.99 4.59 12 1.00 0.785 3.142 0.250 1.000 0.892 5.84 20 0.013 0.330 5.49 0.10 0.10 0.10 0.10 - 0.50 4.97 - 0.031 0.361 833.55 840.04 832.72311 310 836.17 837.17 836.86 836.86 5.00 9.12 0.78 12 1.00 0.214 1.196 0.179 0.317 0.368 3.63 49 0.013 0.487 - 0.10 0.10 0.10 0.10 - 1.25 4.25 - 0.255 0.743 837.60 840.35 837.66312 311 831.52 832.52 832.27 833.19 5.18 9.07 1.39 12 1.00 0.326 1.437 0.227 0.433 0.498 4.25 56 0.013 0.553 3.63 0.10 0.10 0.10 0.10 - 0.50 4.97 - 0.038 0.591 833.78 840.57 833.07331 312 830.68 831.93 831.80 831.80 5.57 8.97 6.10 15 0.50 1.227 3.927 0.313 1.250 0.998 4.97 149 0.013 1.320 5.84 0.10 0.10 0.10 0.10 - 0.50 7.18 - 0.073 1.393 833.19 840.04 832.67331 320 828.00 829.00 828.76 830.90 5.00 9.12 1.61 12 0.32 0.565 1.931 0.293 0.676 0.539 2.85 98 0.013 0.312 - 0.10 0.10 0.10 0.10 - 1.25 7.18 - 0.158 0.469 831.36 832.10 829.31331 330 833.33 834.33 833.97 833.97 5.00 9.12 0.47 12 0.50 0.190 1.140 0.167 0.291 0.282 2.45 20 0.013 0.099 - 0.10 0.10 0.10 0.10 - 1.25 7.18 - 0.116 0.216 834.18 837.36 834.43352 331 825.65 826.90 826.84 827.92 6.23 8.79 8.81 15 1.50 1.227 3.927 0.313 1.250 1.149 7.18 150 0.013 2.772 4.97 0.10 0.10 0.10 0.10 - 0.50 7.26 - 0.208 2.980 830.90 837.36 829.15341 340 827.85 828.85 828.65 829.00 5.00 9.12 1.94 12 0.50 0.548 1.892 0.290 0.658 0.594 3.54 20 0.013 0.099 - 0.10 0.10 0.10 0.10 - 1.25 3.66 - 0.243 0.342 829.35 831.68 828.95351 341 827.35 828.35 828.18 828.59 5.10 9.09 2.47 12 0.50 0.676 2.223 0.304 0.804 0.674 3.66 82 0.013 0.406 3.54 0.10 0.10 0.10 0.10 - 0.50 4.18 - 0.007 0.412 829.00 831.68 828.75351 350 828.35 829.35 828.97 828.97 5.00 9.12 0.39 12 0.50 0.167 1.082 0.154 0.265 0.257 2.32 20 0.013 0.099 - 0.10 0.10 0.10 0.10 - 1.25 4.18 - 0.105 0.204 829.18 832.14 829.45352 351 826.87 827.87 827.75 827.92 5.53 8.98 3.28 12 0.50 0.785 3.142 0.250 1.000 0.775 4.18 76 0.013 0.643 3.66 0.10 0.10 0.10 0.10 - 0.50 7.26 - 0.032 0.675 828.59 832.14 828.25353 352 825.39 826.89 826.81 827.61 6.62 8.69 12.84 18 0.80 1.767 4.712 0.375 1.500 1.345 7.26 20 0.013 0.297 7.18 0.10 0.10 0.10 0.10 - 0.50 4.76 - 0.010 0.307 827.92 834.55 827.05354 353 825.25 827.25 826.95 826.95 6.68 8.67 14.95 24 0.20 3.142 6.283 0.500 2.000 1.393 4.76 18 0.013 0.076 7.26 0.10 0.10 0.10 0.10 1.00 0.50 - 0.352 0.234 0.662 827.61 834.55 827.29POIND 4 403 822.75 824.00 823.54 823.54 5.00 9.12 0.70 15 1.00 0.203 1.227 0.165 0.277 0.326 3.44 2 0.013 0.024 - 0.10 0.10 0.10 0.10 1.00 1.25 - 0.184 0.230 0.437 823.98 832.87 824.02POND 4 404 822.75 824.00 823.55 823.55 5.00 9.12 0.78 15 1.00 0.218 1.262 0.173 0.292 0.345 3.55 2 0.013 0.021 - 0.10 0.10 0.10 0.10 1.00 1.25 - 0.196 0.245 0.461 824.01 831.41 824.02POND 4 405 822.75 824.00 823.71 823.71 5.00 9.12 2.79 15 1.00 0.550 1.862 0.296 0.574 0.671 5.07 2 0.013 0.024 - 0.10 0.10 0.10 0.10 1.00 1.25 - 0.399 0.499 0.923 824.63 831.22 824.02511 510 826.00 827.00 826.84 826.84 5.00 9.12 2.48 12 0.50 0.678 2.230 0.304 0.806 0.675 3.66 17 0.013 0.085 - 0.10 0.10 0.10 0.10 1.00 1.25 - 0.208 0.260 0.552 827.39 830.12 827.09521 520 825.72 826.72 826.60 827.07 5.00 9.12 3.21 12 0.75 0.785 3.142 0.250 1.000 0.767 4.09 74 0.013 0.595 - 0.10 0.10 0.10 0.10 - 1.25 5.14 - 0.324 0.919 827.99 830.47 827.27522 521 824.91 825.91 825.80 826.29 5.31 9.04 3.26 12 1.00 0.633 2.099 0.302 0.752 0.773 5.14 71 0.013 0.705 4.09 0.10 0.10 0.10 0.10 - 0.50 3.04 - 0.076 0.780 827.07 830.72 826.62523 522 824.80 826.30 826.00 826.00 5.57 8.97 5.37 18 0.20 1.767 4.712 0.375 1.500 0.893 3.04 6 0.013 0.016 5.14 0.10 0.10 0.10 0.10 1.00 0.50 - 0.143 0.134 0.293 826.29 830.28 826.31611 600 824.41 825.41 825.11 825.11 5.00 9.12 0.85 12 0.32 0.347 1.479 0.235 0.454 0.386 2.46 41 0.013 0.132 - 0.10 0.10 0.10 0.10 - 1.25 2.89 - 0.117 0.249 825.36 829.26 825.55611 610 820.01 821.01 820.69 821.41 5.00 9.12 0.70 12 0.32 0.299 1.382 0.217 0.406 0.348 2.33 107 0.013 0.341 - 0.10 0.10 0.10 0.10 - 1.25 2.89 - 0.105 0.446 821.86 824.10 821.36621 611 819.77 820.77 820.55 821.25 5.70 8.93 1.75 12 0.32 0.605 2.024 0.299 0.719 0.562 2.89 45 0.013 0.144 2.46 0.10 0.10 0.10 0.10 - 0.50 3.64 - 0.018 0.162 821.41 828.26 820.91621 620 819.77 820.77 820.44 821.25 5.00 9.12 0.70 12 0.32 0.299 1.382 0.217 0.406 0.348 2.33 103 0.013 0.326 - 0.10 0.10 0.10 0.10 - 1.25 3.64 - 0.105 0.432 821.68 824.10 821.10631 621 819.53 820.53 820.39 820.92 5.99 8.85 2.86 12 0.32 0.785 3.142 0.250 1.000 0.725 3.64 45 0.013 0.288 2.89 0.10 0.10 0.10 0.10 - 0.50 3.71 - 0.038 0.327 821.25 827.09 820.67631 630 819.53 820.53 820.20 820.92 5.00 9.12 0.70 12 0.32 0.299 1.382 0.217 0.406 0.348 2.33 98 0.013 0.312 - 0.10 0.10 0.10 0.10 - 1.25 3.71 - 0.105 0.417 821.34 824.03 820.84632 631 819.13 820.38 820.18 820.55 6.28 8.78 4.55 15 0.40 1.227 3.927 0.313 1.250 0.865 3.71 75 0.013 0.369 3.64 0.10 0.10 0.10 0.10 - 0.50 4.63 - 0.004 0.372 820.92 826.70 820.68633 632 819.00 820.25 820.11 820.11 6.66 8.68 5.68 15 0.40 1.227 3.927 0.313 1.250 0.965 4.63 7 0.013 0.052 3.71 0.10 0.10 0.10 0.10 1.00 0.50 - 0.332 0.059 0.444 820.55 825.70 820.28641 640 819.77 821.02 820.80 821.05 5.00 9.12 3.96 15 0.25 1.227 3.927 0.313 1.250 0.805 3.23 104 0.013 0.387 - 0.10 0.10 0.10 0.10 - 1.25 3.16 - 0.202 0.589 821.64 824.00 821.28642 641 819.50 820.75 820.52 820.80 5.66 8.94 3.88 15 0.25 1.227 3.927 0.313 1.250 0.797 3.16 69 0.013 0.247 3.23 0.10 0.10 0.10 0.10 - 0.50 3.23 - 0.003 0.250 821.05 824.25 820.92643 642 819.35 820.85 820.56 820.56 6.09 8.83 5.71 18 0.20 1.767 4.712 0.375 1.500 0.922 3.23 25 0.013 0.073 3.16 0.10 0.10 0.10 0.10 1.00 0.50 - 0.162 0.003 0.238 820.80 824.77 820.90653 653A 816.87 817.87 817.64 817.76 5.00 9.12 1.66 12 0.32 0.579 1.964 0.295 0.691 0.547 2.87 31 0.013 0.099 - 0.10 0.10 0.10 0.10 - 1.25 2.48 - 0.159 0.258 818.01 820.52 817.97654 653 816.62 817.62 817.40 817.60 5.20 9.07 1.65 12 0.23 0.666 2.191 0.304 0.790 0.546 2.48 63 0.013 0.145 2.87 0.10 0.10 0.10 0.10 - 0.50 2.67 - 0.016 0.161 817.76 821.47 817.77655 654 816.40 817.65 817.35 817.35 5.69 8.94 2.69 15 0.20 1.006 2.658 0.378 0.955 0.658 2.67 62 0.013 0.123 2.48 0.10 0.10 0.10 0.10 1.00 0.50 - 0.111 0.008 0.242 817.60 819.98 817.77701 700 836.25 837.25 837.14 837.14 5.00 9.12 3.35 12 0.45 0.785 3.142 0.250 1.000 0.783 4.27 65 0.013 0.571 - 0.10 0.10 0.10 0.10 1.00 1.25 - 0.283 0.353 1.207 838.35 840.00 837.54U.S. STR. CROWN"D" LOSSOUTLET STRUCTURE COEFFICIENTUPSTREAM STRUCTURE COEFFICIENTEFFLUENT PIPE VELOCITYOUTLET STRUCTURE LOSSUPSTREAM STRUCTURE LOSSU.S. STR. TOR"A" LOSS "B" LOSS "C" LOSSTOTAL LOSSU.S. HGL ELEV.UPSTREAM MAXIMUM INFLUENT VELOCITYFLOW DIAMETER SLOPE AREAWETTED PERIMETERHYDRAULIC RADIUSFLOW DEPTH VELOCITY LENGTH MANNING'S NFRICTION LOSSD.S. STR. U.S. STR.D.S. INV. ELEV.D.S. CROWN ELEV.CRITICAL DEPTH(dc+D)/2 ELEV.STARTING ELEV. Tc ENTITY DATAIntensity Calculation Method:Starting Elevation:Calculation Method:INTENSITYPROPOSED STORM SEWER SYSTEM HYDRAULIC GRADE LINE CALCULATIONSDesign ParametersDesign Storm:
10-yrEntity Data12INLET FACTOR CASTING CASTING CASTING ENTITY DATA CASTING ALLOWABLE SPREAD GUTTER MANNING'S TRANSVERSE SLOPELONGITUDINAL SLOPE SPREAD DEPTHINLET CAPACITY BYPASSK c A Tc i QTALLOWABLEnSXSLT DQINTERCEPTQBYPASS(ac) (min) (in/hr) (cfs) (ft)(%) (%) (ft) (ft) (CFS) (%) (CFS)102 R-3287-10V180.85 0.01 5.00 6.12 0.05 120.013 2.00 1.332.10 0.04 1.67 3207% - 1103 R-3287-10V190.85 0.29 5.00 6.12 1.51 120.013 2.00 3.896.06 0.12 1.76 117% - 1112 R-3287-10V180.85 0.25 5.00 6.12 1.30 120.013 2.00 1.766.65 0.13 1.67 128% - 1113 R-3287-10V190.85 0.18 5.00 6.12 0.94 120.013 2.00 4.135.01 0.10 1.76 188% - 1203 R-3287-10V190.85 0.16 5.00 6.12 0.83 120.013 2.00 3.514.94 0.10 1.76 212% - 1211 R-3287-10V190.85 0.29 5.00 6.12 1.51 120.013 2.00 4.215.97 0.12 1.76 117% - 1300 R-3287-10V180.85 0.15 5.00 6.12 0.78 120.013 2.00 1.855.44 0.11 1.67 214% - 1301 R-3287-10V190.85 0.22 5.00 6.12 1.14 120.013 2.00 3.715.51 0.11 1.76 154% - 1302 R-3501-TR190.85 0.04 5.00 6.12 0.21 60.013 2.00 2.263.19 0.06 0.55 267% - 1310 R-3287-10V170.85 0.10 5.00 6.12 0.52 120.013 2.00 0.945.31 0.11 1.58 303% - 1311 R-3287-10V180.85 0.08 5.00 6.12 0.42 120.013 2.00 1.364.55 0.09 1.67 401% - 1312 R-3501-TR190.85 0.02 5.00 6.12 0.10 60.013 2.00 2.262.46 0.05 0.55 533% - 1330 R-3501-TR190.85 0.06 5.00 6.12 0.31 60.013 2.00 2.483.65 0.07 0.55 178% - 1331 R-3287-10V190.85 0.11 5.00 6.12 0.57 60.013 2.00 2.484.58 0.09 0.55 97% 0.02 1340 R-3501-TR180.85 0.25 5.00 6.121.3570.013 2.00 1.087.38 0.15 1.36 101% - 2341 R-3501-TR180.85 0.07 5.00 6.12 0.36 50.013 2.00 1.084.52 0.09 0.39 106% - 1350 R-3501-TR170.85 0.05 5.00 6.120.5460.013 2.00 0.516.04 0.12 0.50 91% 0.05 1351 R-3501-TR170.85 0.06 5.00 6.120.3960.013 2.00 0.515.36 0.11 0.50 126% - 1352 R-3287-10V210.85 0.13 5.00 6.120.6960.013 2.00 6.864.07 0.08 0.61 88% 0.08 1353 R-3501-TR210.85 0.29 5.00 6.12 1.51 60.013 2.00 6.865.45 0.11 1.23 81% 0.28 2510 R-3287-10V170.85 0.32 5.00 6.12 1.66 100.013 2.00 0.509.24 0.18 2.33 140% - 2522 R-3287-10V180.85 0.28 5.00 6.12 1.46 100.013 2.00 3.176.21 0.12 2.46 169% - 2600 R-3501-TR180.85 0.11 5.00 6.12 0.57 100.013 2.00 2.924.45 0.09 1.23 215% - 1611 R-3501-TR180.85 0.03 5.00 6.12 0.16 100.013 2.00 2.342.85 0.06 1.23 789% - 1621 R-3501-TR180.85 0.06 5.00 6.12 0.31 100.013 2.00 1.703.92 0.08 1.23 394% - 1631 R-3501-TR170.85 0.14 5.00 6.12 0.73 100.013 2.00 0.456.91 0.14 1.16 160% - 1632 R-3501-TR190.85 0.16 5.00 6.12 0.83 100.013 2.00 4.394.74 0.09 1.30 156% - 1642 R-3287-10V200.85 0.25 5.00 6.12 1.30 100.013 2.00 6.875.15 0.10 1.37 105% - 1# OF INLETSPROPOSED STORM SEWER SYSTEM GUTTER SPREAD CALCULATIONINLET EFFICIENCYSTR. NO. CASTINGStandard Allowable Spread (ft):Design ParametersDesign Storm:Intensity Calculation Method:Choose Casting K
170187000 – North End Phase 1
Appendix E: Storm Water Quality
Design
WATER QUALITY BASINSNorth End
Carmel. IN
10/1/2020
ICPR PROPOSED OUTPUTS 1
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-07-14 - WATER QUALITY\7/19/2020 15:42
Simple Basin: WQ BASIN 3
Scenario:Icpr3
Node:3
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:6.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:3.4900 ac
Curve Number:97.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin Runoff Summary [Icpr3]
Basin
Name
Sim Name Max Flow
[cfs]
Time to
Max Flow
[hrs]
Total
Rainfall
[in]
Total
Runoff [in]
Area [ac]Equivalent
Curve
Number
% Imperv % DCIA
WQ BASIN
3
1IN -
24HR
3.45 12.0000 1.00 0.71 3.4900 97.0 0.00 0.00
Simple Basin: WQ BASIN 4
Scenario:Icpr3
Node:4
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:7.5000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:6.0900 ac
Curve Number:97.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
ICPR PROPOSED OUTPUTS 2
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-07-14 - WATER QUALITY\7/19/2020 15:42
Simple Basin Runoff Summary [Icpr3]
Basin
Name
Sim Name Max Flow
[cfs]
Time to
Max Flow
[hrs]
Total
Rainfall
[in]
Total
Runoff [in]
Area [ac]Equivalent
Curve
Number
% Imperv % DCIA
WQ BASIN
4
1IN -
24HR
5.87 12.0167 1.00 0.71 6.0900 97.0 0.00 0.00
Simple Basin: WQ BASIN 5
Scenario:Icpr3
Node:5
Hydrograph Method:NRCS Unit Hydrograph
Infiltration Method:Curve Number
Time of Concentration:7.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:1.6800 ac
Curve Number:94.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin Runoff Summary [Icpr3]
Basin
Name
Sim Name Max Flow
[cfs]
Time to
Max Flow
[hrs]
Total
Rainfall
[in]
Total
Runoff [in]
Area [ac]Equivalent
Curve
Number
% Imperv % DCIA
WQ BASIN
5
1IN -
24HR
1.24 12.0167 1.00 0.50 1.6800 94.0 0.00 0.00
Simple Basin: WQ BASIN 6
Scenario:Icpr3
Node:6
Hydrograph Method:NRCS Unit Hydrograph
ICPR PROPOSED OUTPUTS 3
C:\Users\Kaleb.Sondgerath\Desktop\ICPR 4\170187000 - North End.2020-07-14 - WATER QUALITY\7/19/2020 15:42
Infiltration Method:Curve Number
Time of Concentration:8.0000 min
Max Allowable Q:0.00 cfs
Time Shift:0.0000 hr
Unit Hydrograph:UH484
Peaking Factor:484.0
Area:2.5700 ac
Curve Number:94.0
% Impervious:0.00
% DCIA:0.00
% Direct:0.00
Rainfall Name:
Comment:
Simple Basin Runoff Summary [Icpr3]
Basin
Name
Sim Name Max Flow
[cfs]
Time to
Max Flow
[hrs]
Total
Rainfall
[in]
Total
Runoff [in]
Area [ac]Equivalent
Curve
Number
% Imperv % DCIA
WQ BASIN
6
1IN -
24HR
1.86 12.0167 1.00 0.50 2.5700 94.0 0.00 0.00
CNwq=
PARAMETERS
P =1 (in.)
Pervious Area 1.00
Impervious Area 2.49
Area 3.49
I = 71% (%)
Rv = 0.69212034
Qa=0.69 (in.)
CALCULATED CNwq
CNwq =97
Water Quality Treatment Rate (ICPR Output):3.45 cfs
Underground Isolator Treatment Rate:0.17 cfs/MC-4500 Chamber
Isolator Chambers Required: 20.29
Isolator Chambers Provided:50
1000
[10+5P+10Qa-10(Qa2+1.25Qa(P))1/2]
PROPOSED STORMWATER SYSTEM
WATER QUALITY CURVE NUMBER
WATER QUALITY BASIN 3
CNwq=
PARAMETERS
P =1 (in.)
Pervious Area 1.74
Impervious Area 4.35
Area 6.09
I = 71% (%)
Rv = 0.69285714
Qa=0.69 (in.)
CALCULATED CNwq
CNwq =97
Water Quality Treatment Rate (ICPR Output):5.87 cfs
Underground Isolator Treatment Rate:0.17 cfs/MC-4500 Chamber
Isolator Chambers Required: 34.53
Isolator Chambers Provided:67
1000
[10+5P+10Qa-10(Qa2+1.25Qa(P))1/2]
PROPOSED STORMWATER SYSTEM
WATER QUALITY CURVE NUMBER
WATER QUALITY BASIN 4
CNwq=
PARAMETERS
P =1 (in.)
Pervious Area 0.79
Impervious Area 0.89
Area 1.68
I = 53% (%)
Rv = 0.52678571
Qa=0.53 (in.)
CALCULATED CNwq
CNwq =94
Water Quality Treatment Rate (ICPR Output):1.24 cfs
Underground Isolator Treatment Rate:0.17 cfs/MC-4500 Chamber
Isolator Chambers Required: 7.29
Isolator Chambers Provided:35
1000
[10+5P+10Qa-10(Qa2+1.25Qa(P))1/2]
PROPOSED STORMWATER SYSTEM
WATER QUALITY CURVE NUMBER
WATER QUALITY BASIN 5
CNwq=
PARAMETERS
P =1 (in.)
Pervious Area 1.28
Impervious Area 1.29
Area 2.57
I = 50% (%)
Rv = 0.50175097
Qa=0.50 (in.)
CALCULATED CNwq
CNwq =94
Water Quality Treatment Rate (ICPR Output):1.86 cfs
Underground Isolator Treatment Rate:0.24 cfs/MC-3500 Chamber
Isolator Chambers Required: 7.75
Isolator Chambers Provided:24
1000
[10+5P+10Qa-10(Qa2+1.25Qa(P))1/2]
PROPOSED STORMWATER SYSTEM
WATER QUALITY CURVE NUMBER
WATER QUALITY BASIN 6
www.stormtech.com│70 Inwood Road│Suite 3│Rocky Hill│Connecticut│06067│888.892.2694│fax 866.328.8401
Name
Title
Office February 27, 2012
Address
Subject: BMP Application StormTech Isolator Row
Dear Sir/Madam,
StormTech requests the District’s approval for “general use level” of the Isolator™ Row, which is a
patented filtration type BMP manufactured by StormTech, LLC. The Isolator Row is covered under
US Patent No.: US 6,991,734 B1.
1.a. Description:
The Isolator Row is a row or rows of StormTech thermoplastic chambers that are wrapped in filter
fabric and installed below grade. Stormwater enters the chambers and must pass through the filter
fabric media where sediments and other contaminants are filtered out as stormwater exits the
Isolator Row through the fabric.
Some of the unique features of the Isolator Row that contribute to its effectiveness and practicality
include:
Vast filtration area – each MC-3500 chamber has 43.2 square feet of filtration area through
the bottom filter fabric
Large sediment storage volume
Entire bottom area accessible for cleaning without obstructions within the row
A state-of-the-art structural design that meets AASHTO safety factors for both live loads and
permanent dead loads
1.b. Applicable Sites:
The Isolator Row can be effectively used for essentially all developed sites. The most common
applications are highly impervious sites such as paved parking areas, roads as well as developed
sites that include grassy or other landscaped areas. It is not intended to be used for construction
sediments.
1.c Isolator Row Approvals:
The Isolator Row has been approved on a project by project basis for thousands of projects around
the United States. Following are some examples:
In Massachusetts, approvals for the State DEP requirement of 80% TSS removal on an
annual load basis are issued at the Conservation Commission level, and the Isolator Row is
commonly used to meet this criteria.
In 2004 the Maine DEP approved the Isolator Row based on laboratory testing of 110 micron
(US Silica OK-110) particle size
Under the New Environmental Technology Evaluation program, the Ontario (Canada)
Ministry of the Environment has evaluated the Isolator row and issued a Certificate of
Technology Assessment
www.stormtech.com│70 Inwood Road│Suite 3│Rocky Hill│Connecticut│06067│888.892.2694│fax 866.328.8401
1.d. Manufacturer History:
After many years developing and providing chamber systems for both septic and stormwater
applications, StormTech owners formed StormTech, LLC in 2003 as a joint venture Company to
focus exclusively on stormwater. All StormTech chambers are produced in the United States. As of
this date, StormTech has millions of chambers installed, primarily for commercial applications within
the United States, but installation locations also include Canada, Europe, Australia and the Middle
East.
The Isolator Row was developed in 2003 initially as a maintenance feature, essentially to capture
sediments that could otherwise accumulate in the open graded stone that surrounds the chambers.
This open graded stone serves two roles; 1) to provide the important structural soil support of the
soil–structure interaction system and 2) to provide open porosity to store stormwater. The Isolator
Row was found to be so effective at capturing sediments that many regulators began allowing the
Isolator Row as a sediment removal BMP for water quality.
StormTech engineering personnel include decades of experience in water quality. Our collective in-
house engineering experience includes years with manufacturers of hydrodynamic separators, filter
systems, consulting engineering and regulators. For performance evaluations relative to water
quality, StormTech has gone to qualified outside researchers such as Vincent Neary, PhD, PE from
Tennessee Tech University and Robert Roseen, PhD from the University of New Hampshire.
History of Isolator Row Testing:
February 23, 2005 - Tennessee Tech University summarized laboratory testing on the
Isolator Row in accordance with Maine DEP testing protocol. Tests demonstrated the
following:
o 95% TSS overall removal at 8.1 gpm/sqft for US Silica OK-110 (110 micron).
o 80% captured on fabric, 15% captured in stone
October 20, 2006 - Tennessee Tech University summarized laboratory testing on the Isolator
Row in accordance with New Jersey Center for Advanced Technologies (NJCAT) testing
protocol. Tests demonstrated the following:
o 60% TSS Removal at 3.2 gpm/sqft for Sil-Co-Sil 106 with accumulated fines (D50 = 10
microns)
o 66% TSS Removal at 3.2 gpm/sqft for Sil-Co-Sil 106 (D50 = 22 microns)
o 71% TSS Removal at 3.2 gpm/sqft for Sil-Co-Sil 250 (D50 = 45 microns)
o 88% TSS Removal at 1.7 gpm/sqft for Sil-Co-Sil 250 (D50 = 45 microns)
August, 2007 – NJCAT summarized its third party evaluation of the Tennessee Tech test
results and produced the “NJCAT Technology Verification Report StormTech Isolator Row”.
Their verification is summarized as follows:
o Claim 1: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more
than 2.5 gpm/ft2 of bottom area, using two layers of woven geotextile fabric under the
base of the system and one layer of non-woven fabric wrapped over the top of the
system and a mean event influent concentration of 270 mg/L (range of 139 – 361
mg/L) has been shown to have a TSS removal efficiency (measured as SSC) of at
least 60% for SIL-CO-SIL 106, a manufactured silica product with an average particle
size of 22 microns, in laboratory studies using simulated stormwater.
o Claim 2: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more
than 2.5 gpm/ft2 of bottom area, using two layers of woven geotextile fabric Page 3
www.stormtech.com│70 Inwood Road│Suite 3│Rocky Hill│Connecticut│06067│888.892.2694│fax 866.328.8401
under the base of the system and one layer of non-woven fabric wrapped over the top
of the system and a mean event influent concentration of 318 mg/L (range of 129 –
441 mg/L) has been shown to have a TSS removal efficiency (measured as SSC) of
84% for SIL-CO-SIL 250, a manufactured silica product with an average particle size
of 45 microns, in laboratory studies using simulated stormwater.
o Claim 3: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more
than 6.5 gpm/ft2 of bottom area, using a single layer of woven geotextile fabric under
the base of the system and one layer of non-woven fabric wrapped over the top of the
system and a mean event influent concentration of 371 mg/L (range of 116 – 614
mg/L) has been shown to have a TSS removal efficiency (measured as SSC) of
greater than 95% for OK-110, a manufactured silica product with an average particle
size of 110 microns, in laboratory studies using simulated stormwater.
September 2010 – The University of New Hampshire Stormwater Center released the Final
Report on Field Verification Testing of the StormTech Isolator Row Treatment Unit. Testing
consisted of determining the water quality performance for multiple stormwater pollutants in
accordance with TARP Tier II protocol. Data was recorded for 23 storm events.
o TSS median removal efficiency – 83%
o Petroleum Hydrocarbons median removal efficiency – 91%
o Zinc median removal efficiency – 57%
o Phosphorus median removal efficiency – 33%
1.e. Requested Use Level Designation Approval:
StormTech requests approval at the __________. In support of this request, StormTech is providing
test results from both laboratory and field studies by others that demonstrate that the “performance
requirement” is met.
Product Performance Claim and Certification
80% TSS removal is achieved by sizing Isolator Rows to treat the water quality flow rate at a
specific flow rate not to exceed 2.5 gpm/sqft of bottom area using two layers of Propex 315
ST, Mirafi 600X or approved equal woven geotextile.
Model Specific Flow Rate Bottom Area Flow Per Model
StormTech SC-310 2.5 gpm/sf 17.7 sf 0.10 cfs
StormTech SC-740 2.5 gpm/sf 27.8 sf 0.15 cfs
StormTech DC-780 2.5 gpm/sf 27.8 sf 0.15 cfs
StormTech RC-310 2.5 gpm/sf 17.7 sf 0.10 cfs
StormTech RC-750 2.5 gpm/sf 27.8 sf 0.15 cfs
StormTech MC-3500 2.5 gpm/sf 43.2 sf 0.24 cfs
StormTech MC-4500 2.5 gpm/sf 30.1 sf 0.17 cfs
We therefore respectfully request that _______ evaluate the Isolator Row based on ______
performance requirements. I trust this provides sufficient information on the StormTech Isolator Row
to enable your evaluation. However, should you have any questions or require additional
information. Please do not hesitate to contact me or Ed Pisowicz directly.
www.stormtech.com│70 Inwood Road│Suite 3│Rocky Hill│Connecticut│06067│888.892.2694│fax 866.328.8401
Sincerely,
(signature) (signature)
Kenneth M. Sanok, PE Ed Pisowicz
Senior Engineer Engineered Product Manager
Advanced Drainage Systems Advanced Drainage Systems
Phone: (860) 861-2151 Phone: (404) 433-7452
e-mail: ksanok@stormTech.com e-mail: episowicz@stormtech.com
NJCAT TECHNOLOGY VERIFICATION
StormTech® Isolator™ Row
August 2007
ii
TABLE OF CONTENTS
1. Introduction 1
1.1 New Jersey Corporation for Advanced Technology (NJCAT) Program 1
1.2 Technology Verification Report 2
1.3 Technology Description 2
1.3.1 Technology Status 2
1.3.2 Specific Applicability 3
1.4 Project Description 3
1.5 Key Contacts 3
2. Evaluation of the Applicant 4
2.1 Corporate History 4
2.2 Organization and Management 7
2.3 Technical Resources, Staff and Capital Equipment 7
2.4 Patents 7
3. Treatment System Description 7
4. Technical Performance Claims 9
5. Technical System Performance 9
5.1 System Description 10
5.2 Procedure 11
5.3 Verification Procedures for all Claims 13
5.3.1 NJDEP Recommended TSS Laboratory Testing Procedure 13
5.3.2 Laboratory Testing for the StormTech® Isolator™ Row 14
5.4 Inspection and Maintenance 15
5.4.1 Solids Disposal 16
5.4.2 Damage Due to Lack of Maintenance 16
iii
TABLE OF CONTENTS (Continued)
6. Technical Evaluation Analysis 16
6.1 Verification of Performance Claims 16
6.2 Limitations 17
6.2.1 Factors Causing Under-Performance 17
6.2.2 Pollutant Transformation and Release 17
6.2.3 Sensitivity to Heavy or Fine Sediment Loading 17
6.2.4 Mosquitoes 17
7. Net Environmental Benefit 17
8. References 18
LIST OF FIGURES
Figure 1. Isolator™ Row Profile View 20
Figure 2. Treatment Train with Isolator™ Row 21
Figure 3. Section and Profile Views of StormTech®Isolator™ Row as Installed in the
Laboratory 22
Figure 4. SSC Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 106 23
Figure 5. SSC Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 250 24
LIST OF TABLES
Table 1. Results: SIL-CO-SIL 106 Tests 26
Table 2. Reduction of Removal Efficiency with Detention Time 27
Table 3. Results: SIL-CO-SIL 250 Tests at 3.2 gpm/ft2 (July 19, 2006) 27
Table 4. Results: SIL-CO-SIL 250 Tests at 1.7 gpm/ft2 (July 19, 2006) 28
Table 5. Results: OK-110 Tests 28
Table 6. Particle Size Distribution 29
Table 7. Weight Factors for Different Treatment Operating Rates 29
Table 8. NJDEP Weighted Removal Efficiency for 2.56 gpm/ft2
for SIL-CO-SIL 106 30
Table 9. NJDEP Weighted Removal Efficiency for 2.56 gpm/ft2
for SIL-CO-SIL 250 30
Table 10. NJDEP Weighted Removal Efficiency for 4.8 gpm/ft2
for OK-110 31
Table 11. NJDEP Weighted Removal Efficiency for 8.1 gpm/ft2
for OK-110 31
Appendix - GEOTEX® 315 ST & GEOTEX® 601 product data sheets
1
1. Introduction
1.1 New Jersey Corporation for Advanced Technology (NJCAT) Program
NJCAT is a not-for-profit corporation to promote in New Jersey the retention and growth of
technology-based businesses in emerging fields such as environmental and energy technologies.
NJCAT provides innovators with the regulatory, commercial, technological and financial
assistance required to bring their ideas to market successfully. Specifically, NJCAT functions to:
• Advance policy strategies and regulatory mechanisms to promote technology
commercialization;
• Identify, evaluate, and recommend specific technologies for which the regulatory and
commercialization process should be facilitated;
• Facilitate funding and commercial relationships/alliances to bring new technologies
to market and new business to the state; and
• Assist in the identification of markets and applications for commercialized
technologies.
The technology verification program specifically encourages collaboration between vendors and
users of technology. Through this program, teams of academic and business professionals are
formed to implement a comprehensive evaluation of vendor specific performance claims. Thus,
suppliers have the competitive edge of an independent third party confirmation of claims.
Pursuant to N.J.S.A. 13:1D-134 et seq. (Energy and Environmental Technology Verification
Program), the New Jersey Department of Environmental Protection (NJDEP) and NJCAT have
established a Performance Partnership Agreement (PPA) whereby NJCAT performs the
technology verification review and NJDEP certifies that the technology meets the regulatory
intent and that there is a net beneficial environmental effect by using the technology. In addition,
NJDEP/NJCAT work in conjunction to develop expedited or more efficient timeframes for
review and decision-making of permits or approvals associated with the verified/certified
technology.
The PPA also requires that:
• The NJDEP shall enter into reciprocal environmental technology agreements concerning the
evaluation and verification protocols with the United States Environmental Protection Agency
(USEPA), other local or national environmental agencies, entities or groups in other states and
New Jersey for the purpose of encouraging and permitting the reciprocal acceptance of
technology data and information concerning the evaluation and verification of energy and
environmental technologies; and
• The NJDEP shall work closely with the State Treasurer to include in State bid specifications,
as deemed appropriate by the State Treasurer, any technology verified under the Energy and
Environment Technology Verification Program.
2
1.2 Technology Verification Report
In December 2006 StormTech®, LLC (20 Beaver Road, Suite 104, Wethersfield, Connecticut,
06109) submitted a formal request for participation in the NJCAT Technology Verification
Program. The technology proposed, the StormTech® Isolator™ Row, filters sand, and silt sized
particles from stormwater runoff from developed sites. It is considered a post-development BMP
(best management practice) that is potentially an additional tool to meet the State’s stormwater
quality objectives.
The request (after pre-screening by NJCAT staff personnel in accordance with the technology
assessment guidelines) was accepted into the verification program. This verification report
covers the evaluation based upon the performance claims of the vendor, StormTech® (see
Section 4). This verification report is intended to evaluate StormTech®’s initial performance
claims for the technology based primarily on laboratory studies. This project included the
evaluation of company manuals and laboratory testing reports to verify that the StormTech®
Isolator™ Row meets the performance claims of StormTech®.
1.3 Technology Description
1.3.1 Technology Status
In 1990 Congress established deadlines and priorities for USEPA to require permits for
discharges of stormwater that are not mixed or contaminated with household or industrial
wastewater. Phase I regulations established that a NPDES (National Pollutant Discharge
Elimination System) permit is required for stormwater discharge from municipalities with a
separate storm sewer system that serves a population greater than 100,000 and certain defined
industrial activities. To receive a NPDES permit, the municipality or specific industry has to
develop a stormwater management plan and identify best management practices for stormwater
treatment and discharge. Best management practices (BMPs) are measures, systems, processes or
controls that reduce pollutants at the source to prevent the pollution of stormwater runoff
discharge from the site. Phase II stormwater discharges include all discharges composed entirely
of stormwater, except those specifically classified as Phase I discharge.
The StormTech® subsurface chamber system for stormwater management provides underground
detention, retention, and storage of stormwater. This subsurface chamber system eliminates the
need for surface detention ponds and optimizes space. The StormTech® chamber system for
stormwater management can be used in commercial, residential, recreational, agricultural, and
highway drainage applications. The StormTech® chamber system is accompanied by the
StormTech® Isolator™ Row, which enhances total suspended solids (TSS) removal, as well as
provides for inspection and maintenance of the chamber system.
The Isolator™ Row is a row of StormTech® chambers that is surrounded with filter fabric and
connected to a manhole. The chambers allow for settling and filtration of sediment as
stormwater rises within the Isolator™ Row and passes through the filter fabric. The open bottom
chambers and the perforated sidewalls allow stormwater to flow in both a vertical and horizontal
direction out of the chambers. Sediments are then captured in the Isolator™ Row, thereby
protecting the storage areas of the adjacent stone and chambers from sediment accumulation.
3
1.3.2 Specific Applicability
The Isolator™ Row can be designed on a volume basis or flow rate basis depending on
regulatory requirements. An upstream manhole can typically include a high flow weir such that
stormwater flow rates or volumes that exceed the capacity of the Isolator™ Row overtop the
overflow weir and discharge through a manifold to the other chambers.
1.4 Project Description
This project included the evaluation of company manuals and laboratory testing reports to verify
that the StormTech® Isolator™ Row meets the performance claims of StormTech®.
1.5 Key Contacts
Rhea Weinberg Brekke
Executive Director
New Jersey Corporation for Advanced
Technology (NJCAT)
c/o New Jersey Eco Complex
1200 Florence Columbus Road
Bordentown, NJ 08505
609 499 3600 ext. 227
rwbrekke@njcat.org
Richard S. Magee, Sc.D., P.E., BCEE
Technical Director
NJCAT
15 Vultee Drive
Florham Park, NJ 07932
973-879-3056
rsmagee@rcn.com
Ravi Patraju
Division of Science, Research and Technology
NJ Department of Environmental Protection
401 East State Street
Trenton, NJ 08625-0409
609-292-0125
ravi.patraju@dep.state.nj.us
Ron Vitarelli, President
Dan Hurdis, Zone Manager
David J. Mailhot, PE, Engineering Manager
StormTech, LLC
20 Beaver Road
Wethersfield, CT 06109
860-257-2150
dmailhot@stormtech.com
Christopher C. Obropta, Ph.D., P.E.
Assistant Professor
Rutgers, The State University of New Jersey
14 College Farm Road
New Brunswick, NJ 08901-8551
732-932-4917
obropta@envsci.rutgers.edu
4
2. Evaluation of the Applicant (As provided by David J. Mailhot, P.E. on 1/19/07)
2.1 Corporate History
StormTech® was founded in the late 1990s by Jim Nichols to provide subsurface chamber
systems exclusively for stormwater applications. Mr. Nichols, a mechanical engineer and
entrepreneur, is known for successfully developing a plastic chamber system for on-site sanitary
sewage applications and for ultimately creating the market for chambers.
Since a primary motivation for engineers and developers locating stormwater storage under
ground is often to create more parking spaces, subsurface chamber applications are typically
under parking lots and roadways. In these demanding applications, structural integrity is vital.
StormTech® recognized the need for a structurally robust chamber and began a product
development program to turn this vision into a reality.
StormTech®’s product development program spanned more than four years at a cost of over $7
million. Early chambers were thermoformed from sheets of polyethylene and installed in sixteen
locations around the country for observation. Although the early chambers performed well, it
became apparent that maintaining uniform wall thickness in the product was an important
structural concern that could not be controlled using the thermoforming process. So StormTech®
moved on, investing more money and time developing the means to injection mold chambers.
At about the same time as StormTech®’s move to injection molding, Dr. Timothy McGrath, P.E.
of Simpson, Gumpertz & Heger was developing new design specifications for buried pipe under
the National Cooperative Highway Research Program (NCHRP). After years of research and
collaboration with others conducting state of the art work for flexible pipe design, Dr. McGrath
framed the design requirements for flexible structures based on strain limits for long term loads
and a time-dependent material modulus. Dr. McGrath’s NCHRP work was adopted by the
American Association of State Highway and Transportation Officials (AASHTO) and
incorporated into the AASHTO LRFD Bridge Design Specifications. This design method is now
the standard for structures buried under vehicle travel ways.
StormTech® seized an opportunity to hire Dr. McGrath as a consultant for their chamber
development program. From that point forward, the chamber development would be evaluated
under a higher standard, AASHTO. Dr. McGrath oversaw extensive field testing of the buried
chambers using state-of-the-art instrumentation. The testing included several shallow cover tests
under AASHTO H20 design vehicle loads for various structural aggregate gradations as well as
deep cover tests that spanned months in duration. Test results were used to validate finite
element analysis models and to verify structural safety factors.
The result of the product development program was a chamber that was designed in accordance
with the same AASHTO specifications that structural engineers use in the design of highway
structures. The product was unique since it was the only chamber produced from virgin, impact
modified polypropylene, the only injection molded chamber and, at approximately 75 pounds,
was the largest injection-molded, one-piece thermoplastic structure produced anywhere.
5
In 2002, with Jim Nichols as President and David Click as Vice President and General Manager,
StormTech®, Inc. began manufacturing and distributing two models of yellow chambers called
the StormTech® SC-740 and the StormTech® SC-310. However, StormTech®’s resources were
limited to a small force of six outside sales personnel. Although the chamber system was
proving to be a more cost effective alternative for underground stormwater storage than
competing systems such as polyethylene pipe, it was clear that sales and distribution would need
to be ramped up fast to realize the business potential of this product line.
In 2003 Jim Nichols and David Click found the perfect partner and StormTech®, Inc. became
StormTech®, LLC as the result of a joint venture agreement between two corporate owners. The
new joint venture partner was Advanced Drainage Systems (ADS). ADS brought access to an
outside sales force of over 200 personnel, field engineers, an established distribution system and
a fleet of trucks to move the product. Ronald Vitarelli was appointed President and General
Manager and StormTech®, LLC was positioned as an independently operated, privately owned
business.
Under Mr. Vitarelli, StormTech® is committed to a safe, conservative design philosophy. This is
accomplished by strict adherence to national standards. StormTech® chamber systems are not
only designed to AASHTO specifications, but the chamber itself is produced to ASTM
standards. StormTech® played a key role in driving the development of ASTM F2418 “Standard
Specification for Polypropylene (PP) Corrugated Wall Stormwater Collection Chambers.” This
standard ensures that each chamber produced meets minimum standards for raw materials,
dimensional consistency and overall product quality. The robust design and adherence to
national standards separates StormTech® chambers from various other flexible structures and
positions StormTech® with classes of established buried structures like reinforced concrete and
high density polyethylene pipe.
With the creation of StormTech®, LLC, the outside sales group immediately transitioned into a
team of Regional Product Managers who provide technical support and management to the ADS
sales team.
Shortly after the inception of StormTech®, LLC, Mr. Vitarelli brought David J. Mailhot, P.E. to
StormTech® to establish a technical department and the small inside sales team was replaced
with a technical team comprised of engineers and technicians. David Mailhot brings many years
of engineering experience from the flexible pipe industry including work with researchers to
apply soil-structure interaction principles to flexible drainage structure design and also includes
work with water quality systems for stormwater treatment. The technical team includes
engineering for product development and the Technical Services Department which provides
CAD services and specifications to the consulting engineers who specify StormTech® chambers
and to the contractors who install StormTech® chambers.
Also in 2003, StormTech® introduced an innovative yet simple system to capture and remove
sediments from stormwater called the Isolator™ Row. Removing the sediments from the
incoming stormwater prevents sediments from accumulating in the chambers and in the
surrounding aggregate. Since the chamber system utilizes the storage volume in the stone
porosity, as well as the volume within the chambers, it is important to prevent any loss of void
6
space. The Isolator™ Row intercepts sediments before they reach the surrounding stone voids
and provides a means to inspect and conduct maintenance.
The Isolator™ Row is a row or rows of chambers that are completely wrapped by geotextile
fabrics. Stormwater is directed into the Isolator™ Row so that flow must pass through the fabric
before reaching the surrounding stone. Sediments are filtered out onto the fabric where they can
later be jetted out and vactored from the access manhole upstream.
Since 2003, StormTech® chambers have gained wide acceptance as a stormwater detention
method. The Isolator™ Row is a recent extension of this technology to address water quality.
In the spring of 2004, StormTech®, LLC received an award from The Society of the Plastics
Industry, Inc. Structural Plastics Division for the “Stormwater Chamber & End Caps Model
740.” This award was recognition for the sophistication and technology of the mold design for
the production of what may be the largest injection molded structural part.
2005 was an important year for StormTech® and for the chamber industry. In early 2005,
StormTech®’s significant investment in materials research paid dividends as StormTech®
validated a short term materials test for creep modulus determination. This new testing
technique enables StormTech® the ability to ensure that raw materials not only meet the initial
properties that are commonly measured by resin suppliers, but also the 50-year creep modulus
property that is an essential component of long-term design requirement in the AASHTO design
specification. StormTech®’s materials research remains an important leg of the Company’s
leadership position in the Industry.
In the fall of 2005, ASTM F 2418 “Standard Specification for Polypropylene (PP) Corrugated
Wall Stormwater Collection Chambers” was passed by ASTM and became the standard for
polypropylene chambers and the model specification for the chamber industry. StormTech®
chambers are marked with the “ASTM F 2418” designation and with the ASTM F 4101
materials designation “PP0330B99945” as required by the ASTM standard.
Also in 2005, Tennessee Technological University completed the first series of laboratory tests
for the Isolator™ Row and reported total suspended solids (TSS) removal efficiencies of over
95% for the manufactured silica product, US Silica OK-110. This testing resulted in an approval
of the Isolator™ Row as a water quality BMP in the state of Maine. However, currently
applications are more limited since the new Maine standards require other BMP techniques. The
Ontario (Canada) Ministry of the Environment also has reviewed the IsolatorTM Row testing by
Tennessee Tech University and has issued a Certificate of Technology Assessment.
Currently StormTech® has 26 employees. Approximately 500,000 chambers are installed around
the word in over 2,600 projects. Only a small percentage (less than 10%) of chambers
nationwide are being used for water quality purposes. The large percentage of chambers is used
for retention or detention applications. The IsolatorTM Row concept with one-layer of geotextile
fabric is used on approximately 90% of StormTech® projects. However, historically the primary
application has been as a maintenance feature where sediments and debris are captured and
prevented from entering the stone voids. In these applications, the objectives are to prevent
7
accumulation of sediment in the stone voids in detention systems and to minimize occlusion at
infiltration surfaces in retention systems.
2.2 Organization and Management
The Company is headquartered in Wethersfield, Connecticut with ten regional sales offices in the
United States. StormTech® is also represented in Europe, Australia and the Middle East.
Ronald Vitarelli is the President and General Manager of StormTech®, LLC and reports to a
Board of Directors consisting of executives from each of two corporate owners. Other members
of the management team include: David J. Mailhot, P.E., Engineering Manager, Susan
McNamee, Operations Manager, David K. Click, Director of International Sales & Southern
Zone Manager, Daniel Hurdis, Northeastern Zone Manager and Mark Moeller, P.E., Western
Zone Manager.
2.3 Technical Resources, Staff and Capital Equipment
StormTech® benefits from several technical resources. StormTech® has five registered
professional Civil Engineers on staff, three non-registered degreed Civil Engineers, a geologist, a
polymer scientist and a construction engineer. Several of the engineers have advanced degrees.
StormTech® engineers bring with them decades of experience in buried structures from the
drainage pipe industry and decades of experience from the water quality industry. Water quality
experience includes design and sales of vortex separators, gravity grit separators, gravity filters
and various media filters.
The corporate owners lead their respective industries in pipe extrusion and injection molding
technologies. StormTech® owns multiple molds for injection molding chambers and end caps.
Together with their corporate owners and outside consultants, StormTech® uses state-of-the-art
molding techniques and has advanced the industry with their developmental work of materials
test methods for the determination of long-term thermoplastic mechanical properties.
StormTech® retains Simpson, Gumpertz & Heger, Inc. (SGH) for structural analysis relative to
applications and product design. SGH is uniquely qualified in areas of buried pipe design and
soil-structure interaction systems including buried flexible structure behavior. StormTech®
contracts with Dr. Vincent Neary, P.E., from Tennessee Technological University for water
quality testing of the Isolator™ Row.
2.4 Patents
In January of 2006, the United States Patent Office issued a patent for the Isolator™ Row, Patent
No: US 6,991,734 B1 entitled “Solids Retention in Stormwater System.”
3. Treatment System Description
StormTech®, LLC is the owner and producer of two brand names of subsurface chambers that
are designed for use under paved and unpaved surfaces for stormwater applications. The brand
names are StormTech® and LandSaver. Respective chambers are identical in every way but are
branded by name and color. LandSaver chambers are blue and StormTech® chambers are
yellow. Identical chamber models are listed below.
8
• StormTech® SC-740 is the same as LandSaver LS-3051
• StormTech® SC-310 is the same as LandSaver LS-1633
The StormTech® SC-740 is 85.4” x 51.0” x 30.0” (L x W x H) and has a chamber storage of 45.9
ft3. The StormTech® SC-310 is 85.4” x 34.0” x 16.0” (L x W x H) and has a chamber storage of
14.7 ft3.
The Isolator™ Row is a row of StormTech® chambers (either SC-740 or SC-310 models) that is
surrounded with filter fabric and connected to a manhole. The chambers allow for settling and
filtration of sediment as stormwater rises within the Isolator™ Row and passes through the filter
fabric. The open bottom chambers and the perforated sidewalls allow stormwater to flow in both
a vertical and horizontal direction out of the chambers. Sediments are then captured in the
Isolator™ Row, thereby protecting the storage areas of the adjacent stone and chambers from
sediment accumulation (See Figure 1).
Typically, some level of pre-treatment of the stormwater is required prior to entry into the
system. Pre-treatment devices differ greatly in complexity, design and effectiveness. Options
include a simple deep sumped manhole with a 90º bend on its outlet, baffle boxes, swirl
concentrators, sophisticated filtration devices and devices that combine these processes. Some of
the most effective pre-treatment options combine engineering site grading with vegetation such
as bio-swales or grass filter strips.
The Isolator™ Row is designed to capture the “first flush,” and it can be sized on a volume basis
or flow rate basis. The Isolator™ Row is designed with a manhole with an overflow weir at its
upstream end (See Figure 1). The manhole is connected to the Isolator™ Row with a short 12”
to 24” diameter pipe set near the bottom of the end cap. The diversion manhole provides access
to the Isolator™ Row for inspection and maintenance. The overflow weir with its crest set even
with the top of the chamber allows stormwater in excess of the Isolator™ Row’s
storage/conveyance capacity to bypass the chamber system through the downstream eccentric
header/manifold system (See Figure 2). This diversion manhole is the only mechanism used to
control flow into the system.
The Isolator™ Row typically rests on a 6-18 inch foundation of No. 3 gravel overlaid with a
woven geotextile filter fabric (GEOTEX® 315 ST – see Appendix for product data sheet). A
double-layer of fabric was introduced to address the need for removal of finer sediments in
accordance with NJDEP requirements. StormTech® implemented the double layer approach to
enhance protection of infiltration surfaces by targeting finer particles for removal. The
individual slit films are woven together in such a manner as to provide dimensional stability
relative to each other. This geotextile fabric provides a media for stormwater filtration and also
provides a durable surface for maintenance operations. In addition, this geotextile fabric is
designed to prevent scour of the underlying stone and is designed to remain intact during high
pressure jetting. A non-woven fabric is also used for the Isolator™ Row (GEOTEX® 601 – see
Appendix for product data sheet). GEOTEX® 601 is a polypropylene, staple fiber, needle-
punched, non-woven geotextile. The fibers are needled to form a stable network that retains
dimensional stability relative to each other. The non-woven fabric is placed over the chambers
to provide a filter media for flows passing through the perforations in the sidewall of the
9
chamber. The chamber has two rows of perforations along the side with the lowest row 2 ¾
inches above the base woven geotextile fabric. As head increases in the chamber, water is
discharged through these perforations as it continues to be discharged through the underlying
stone bed. The non-woven geotextile fabric provides some filtering capacity for the water
exiting the system through the side perforations.
Since the majority of the StormTech® installations are detention systems, they are designed to
have some type of outlet structure. These systems are installed on angular stone that has a
porosity of 40% and the systems are designed to discharge stormwater through this stone bed.
The water in the stone bed can either be allowed to percolate into the underlying soil or
perforated piping can be embedded within the stone to collect and discharge the treated
stormwater.
4. Technical Performance Claims
Claim 1: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more than 2.5
gpm/ft2 of bottom area, using two layers of woven geotextile fabric under the base of the system
and one layer of non-woven fabric wrapped over the top of the system and a mean event influent
concentration of 270 mg/L (range of 139 – 361 mg/L) has been shown to have a TSS removal
efficiency (measured as SSC) of at least 60% for SIL-CO-SIL 106, a manufactured silica product
with an average particle size of 22 microns, in laboratory studies using simulated stormwater.
Claim 2: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more than 2.5
gpm/ft2 of bottom area, using two layers of woven geotextile fabric under the base of the system
and one layer of non-woven fabric wrapped over the top of the system and a mean event influent
concentration of 318 mg/L (range of 129 – 441 mg/L) has been shown to have a TSS removal
efficiency (measured as SSC) of 84% for SIL-CO-SIL 250, a manufactured silica product with
an average particle size of 45 microns, in laboratory studies using simulated stormwater.
Claim 3: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more than 6.5
gpm/ft2 of bottom area, using a single layer of woven geotextile fabric under the base of the
system and one layer of non-woven fabric wrapped over the top of the system and a mean event
influent concentration of 371 mg/L (range of 116 – 614 mg/L) has been shown to have a TSS
removal efficiency (measured as SSC) of greater than 95% for OK-110, a manufactured silica
product with an average particle size of 110 microns, in laboratory studies using simulated
stormwater.
5. Technical System Performance
A StormTech® SC-740 Isolator™ Row was tested in a full-scale laboratory study by the
Department of Civil and Environmental Engineering at Tennessee Technological University,
Cookeville, TN. Three different silica-water slurry influent streams were used in the experiment.
The first consisted of SIL-CO-SIL 106 with a median particle size of approximately 22 microns.
The second consisted of SIL-CO-SIL 250 with a median particle size of approximately 45
microns. For both silica-water slurries, the system was tested at a hydraulic loading rate of 3.2
gpm/ft2 of filter area. The SIL-CO-SIL 250 was also tested at a hydraulic loading rate of 1.7
10
gpm/ft2 of filter area. Finally, a third silica-water slurry using US Silica OK-110 with a median
particle size of 110 microns was tested in the laboratory at a range of hydraulic loading rates
with maximum rates of 4.8 gpm/ft2 and 8.1 gpm/ft2. The removal efficiencies measured in these
laboratory experiments were then used to calculate SSC removal efficiency to verify the claims
presented above (See Section 4).
5.1 Test System Description
The main components of the laboratory set-up are shown in the design drawings (See Figure 3).
Two (2) SC-740 chambers were secured to a wooden frame and laid over a 12-in. bed of No. 3
angular stone (AASHTO M43 #3) with a porosity of 40% contained in a wooden flume with
interior W x L x H dimensions, 6.25-ft x 16.22-ft x 3-ft.
The chambers were covered with GEOTEX® 601 non-woven geotextile fabric with a thickness
of 60 mils and an apparent opening size of 0.212 mm (see attached product data sheet). Two
layers of GEOTEX® 315 ST woven geotextile fabric, each layer with a thickness of 20 mils and
an apparent opening size of 0.212 mm (see Appendix for product data sheet), were placed at the
bottom of the chamber to stabilize the stone foundation and to prevent scouring of the stone base.
Both the nonwoven fabric covering the chamber and the woven fabric placed at the bottom
provided filtration media for the Isolator™ Row. During testing, the water depth varied upstream
to downstream from 3.5 inches to 4.75 inches, with an average depth of 4 inches. Variations in
depth of ±20% were due to the roughness and non-uniformity of the gravel substrate underneath
the geotextile fabric.
An 8-inch pipe fed the silica-water mixture through an expansion into the 12-inch inlet pipe of
the Isolator™ Row. The target SSC influent concentration was set to 200 mg/L. A 1.5 lb/gal
silica-water slurry was introduced to the 8-inch pipe from a 35-gallon mixing tank using a
Watson-Marlow 323S/RL (220 rpm) pump. The silica–water slurry enters a 3/8″ feed tap
located 10 inches upstream of a butterfly valve, which introduces turbulence and promotes
uniform mixing of the influent stream. The Isolator™ Row resides in the recirculating flume,
which collects and drains water discharged by the chamber to the stone substrate through an 8-
inch drain that discharges to the laboratory trench and sump. The water was recirculated with a
25 horsepower Allis Chalmers (model AC7V) variable speed pump. A 1-micron filter, designed
for flows up to 1.5 cfs, was placed at the end of the outlet, which was intended to trap all
sediment that was not removed by the chambers.
For the OK-110 testing, the chambers were covered with Mirafli 160N non-woven geotextile
fabric, meeting AASHTO M288 Class 2 standards. The Mirafli 160N geotextile has an apparent
opening size of 0.212 mm. Mirafli 600X woven geotextile fabric, which meets ASSHTO’s
M288 Class 1 requirements, was placed at the bottom of the chamber to stabilize the stone
foundation and to prevent scouring of the stone base. The Miralfi 600X fabric has an apparent
opening size of 0.425 mm (see Appendix for product data sheet).
Flow rates were measured with a Thermo Electron Corporation Polysonic DCT 7088 portable
digital correlation transit time flow meter placed on the 8″ aluminum water line. The DCT 7088
was factory calibrated by the manufacturer and was guaranteed accurate to ±0.5%.
The removal efficiency, η, for the Isolator™ Row was calculated as:
11
100xSSC
SSCSSC
Influent
EffluentInfluent−=η
where SSC is the suspended sediment concentration of the influent and the effluent grab
samples, which were staggered by one detention time.
5.2 Procedure
Test runs for both SIL-CO-SIL 106 and SIL-CO-SIL 250 were completed at a treatment flow
rate of 180 gpm (0.4 cfs), which corresponds to a hydraulic loading rate of 3.2 gpm/ft2. Five (5)
test runs were completed with SIL-CO-SIL 106 silica slurry. One (1) test run was completed
with a SIL-CO-SIL 250 silica-water slurry. Additionally one (1) test run was completed with a
SIL-CO-SIL 250 silica-water slurry at a treatment flow rate of 94 gpm (0.21 cfs), which
corresponds to a hydraulic loading rate of 1.7 gpm/ft2. All tests lasted fifteen detention times
with sampling beginning after three detention times. Flow rates were regulated by an inlet valve.
Test runs for the OK-110 were completed at a range of treatment flows from 44.9 to 539 gpm
(0.1 to 1.2 cfs), which corresponds to hydraulic loading rates of 0.4 to 4.8 gpm/ft2. This
experiment used four of the StormTech® Isolator™ Chambers. The experiment was then
modified using two chambers with a maximum design hydraulic loading rate of 8.1 gpm/ft2.
Since the system was half the size (two chambers instead of four), the experiment could be run at
higher flows.
Table 1 includes the results for the SIL-CO-SIL 106 test runs. The influent concentrations were
generally above the target concentration of 200 mg/L, which suggests that the one-micron filter
sock at the outlet was only partially effective at trapping the finer SIL-CO-SIL 106 particles.
This was supported by visual observations, which noted that the trench went from clear to cloudy
in less than one detention time. The average influent concentration was 270±59 mg/L, with a
minimum value of 139 mg/L and a maximum value of 361 mg/L. The average effluent
concentration was 109±35 mg/L, with a minimum value of 66 mg/L and a maximum value of
182 mg/L.
Table 2 shows how the average removal efficiency decreased on average with detention time
during each test run as a result of recirculation. The removal efficiencies were calculated by
averaging all influent and effluent samples with the same sample number, respectively (e.g., all
influent samples with sample No. 1 and all effluent samples with sample No. 2). The results
indicate that at the beginning of the test recirculation did not significantly increase influent
concentrations above the target level of 200 mg/L. The average influent concentration for sample
No. 1 was 219 mg/L. In addition, as discussed below, one can speculate that the recirculation of
predominantly fine particles has not reduced the particle size distribution of the influent
significantly. Under these conditions, the average removal efficiency (based solely on the first
samples of each test run) is 66%. However, as the test progresses and recirculation of fines
increases, the removal efficiency is reduced.
12
During the SIL-CO-SIL 106 tests, grab samples of the effluent were collected and sent to the
laboratory for grain size analysis. These analyses indicated that the effluent sediments consisted
mainly of very fine particles, 84% of which were 10 microns or smaller.
The observed variability in the influent and effluent concentrations was mainly due to the
recirculation of fine grained particles not trapped by the filter sock. It was apparent starting with
the first test (9-July) that the filter sock was not effective at trapping the fine effluent sediments
and preventing their recirculation. As a result, there is a trend of increasing influent and effluent
SSC concentrations with increasing detention time during each test run. Additionally, sediments
occluded within the woven fabric and trapped in the gravel cannot be removed between each test
run. As a result, the initial condition cannot be reestablished once testing has begun, and the
sediments trapped in previous test runs may washout, raising effluent and influent SSC
concentrations at latter test runs. One potential benefit of sediment occlusion and deposition
over time may be increased removal efficiency as the geotextile fabric clogs and a filter cake
develops on the Isolator™ Row bottom. (Note: The depth of accumulated sediment varies along
the bottom of the Isolator™ Row.) Eventually, however, the cake will begin to reduce the flow
through the bottom fabric and direct more flow through the chamber sides.
Note that removal efficiencies were calculated using the “indirect method” only, which relies on
influent and effluent concentrations. The material trapped in the isolator row was intentionally
not removed to allow the filter cake to develop with time. A rough estimate can be made by
determining the total amount of sediment influent and effluent mass over the testing period. The
difference is the amount trapped on the surface of the geotextile fabric, occluded in the fabric,
and within the gravel substrate. A rough estimate indicates that about 50% of the total sediment
trapped was on the surface of the fabric, with the remaining 50% occluded and within the gravel
substrate.
Furthermore, the above “50%-50%” estimate is in fact an estimate for only the fine particle test
runs since the testing was by indirect method and the sediment captured on the fabric is based on
a rough measurement of the depth observed on the fabric at the conclusion of testing. The depth
varied across the bottom of the test system. Earlier testing of the OK-110 by direct testing
demonstrated 80% removal on the fabric. This is significant since the frequency of maintenance
is driven very much by the accumulation of larger particles on the fabric based on the measured
80% capture.
In the SIL-CO-SIL 106 tests, the water depth varied from upstream to downstream from 3.5
inches to 4.75 inches, with an average depth of 4 inches. Variations in depth of ±20% were due
to the roughness and nonuniformity of the gravel substrate underneath the geotextile fabric.
Results for the one SIL-CO-SIL 250 test are summarized in Tables 3 and 4. Recirculation of fine
sediments was observed and would have reduced the particle size distribution of the influent
concentrations below the mean particle size of D50=45 microns. However, particle size analyses
of influent sediments were not obtained as was done for the SIL-CO-SIL 106 experiment. The
average removal efficiency was 71±14%, with a minimum value of 47% and a maximum value
of 82% at 3.2 gpm/ft2 and 88±1% at 1.7 gpm/ft2. Compared to the results for the SIL-CO-SIL
13
106, these values appear reasonable since one would expect higher removal efficiencies when the
particle size distribution is greater.
The results for the OK-110 tests at a range of hydraulic loading rates ranging from 0.1 to 1.2 cfs
(0.4 to 4.8 gpm/ft2) are summarized in Table 5. The scaled experiment is also presented in Table
5 for the hydraulic loading rate of 8.1 gpm/ft2. Two types of influent sampling were conducted
during the experiment: discrete sampling and grab sampling. These influent samples are greatly
different in concentration. The removal rates exceed 95% for all samples.
5.3 Verification Procedures for All Claims
All the data provided to NJCAT were reviewed to fully understand the capabilities of the
StormTech® Isolator™ Row. To verify the StormTech® claim for the Isolator™ Row, the
laboratory data were reviewed and compared to the NJDEP TSS laboratory testing procedure.
5.3.1 NJDEP Recommended TSS Laboratory Testing Procedure
The NJDEP has prepared a TSS laboratory testing procedure, primarily designed for
hydrodynamic devices, to help guide vendors as they prepare to test their stormwater treatment
systems prior to applying for NJCAT verification. The testing procedure has three components:
1. Particle size distribution
2. Full scale laboratory testing requirements
3. Measuring treatment efficiency
1. Particle size distribution:
The following particle size distribution will be utilized to evaluate a manufactured treatment
system (See Table 6) using a natural/commercial soil representing the USDA definition of a
sandy loam material. This hypothetical distribution was selected as it represents the various
particles that would be associated with typical stormwater runoff from a post construction site.
NJDEP now requires that filter based BMPs be tested with SIL-CO-SIL 106.
2. Full Scale lab test requirements:
A. At a minimum, complete a total of 15 test runs including three (3) tests each at a
constant flow rate of 25, 50, 75, 100, and 125 percent of the treatment flow rate.
These tests should be operated with initial sediment loading of 50% of the unit’s
capture capacity.
B. The three tests for each treatment flow rate will be conducted for influent
concentrations of 100, 200, and 300 mg/L.
C. For an online system, complete two tests at the maximum hydraulic operating rate.
Utilizing clean water, the tests will be operated with initial sediment loading at 50%
and 100% of the unit’s capture capacity. These tests will be utilized to check the
potential for TSS re-suspension and washout.
D. The test runs should be conducted at a temperature between 73-79 degrees Fahrenheit
(°F) or colder.
3. Measuring treatment efficiency:
A. Calculate the individual removal efficiency for the 15 test runs.
14
B. Average the three test runs for each operating rate.
C. The average percent removal efficiency will then be multiplied by a specified weight
factor (See Table 7) for that particular operating rate.
D. The results of the five numbers will then be summed to obtain the theoretical annual
TSS load removal efficiency of the system.
5.3.2 Laboratory Testing for the StormTech® Isolator™ Row
The results of the laboratory testing that were performed by Tennessee Tech are presented later
in Tables 1, 2, 3, 4 and 5. Testing was performed for two different silica-water slurry influent
streams at a target SSC influent concentration of 200 mg/L. The tests using the SIL-CO-SIL 106
slurry were performed at 3.2 gpm/ft2, which was set to be 125% of the treatment operating rate.
The tests using the SIL-CO-SIL 250 slurry were performed at 1.7 gpm/ft2 and 3.2 gpm/ft2, which
were assumed to be 62.5% and 125% of the treatment operating rate, respectively. The tests
using the OK-110 slurry were performed for a range of hydraulic loading rates (0.4 to 8.1
gpm/ft2).
For the SIL-CO-SIL 106, laboratory testing shows a 60% removal efficiency at 3.2 gpm/ft2 for an
average SSC influent concentration of 270 mg/L. Since only one operating rate was tested, the
3.2 gpm/ft2 was set to be 125% of the treatment operating rate. Since other verifications of pre-
manufactured systems have indicated that as the operating rate increases, removal efficiency
decreases, the 60% removal efficiency at 3.2 gpm/ft2 was assumed as the minimum removal of
this system at this operating rate. Therefore, the NJDEP weighting system can be used to
determine an overall removal efficiency of the system by assuming that removal efficiency
observed at the 125% treatment operating rates would also be applicable for the lower operating
rates. Since the 3.2 gpm/ft2 is set to be 125% of the treatment operating rate, the SSC removal
efficiency for the system would be based upon 2.56 gpm/ft2, which would be 100% of the
treatment operating rate (see Table 8 and Figure 4).
For the SIL-CO-SIL 250, laboratory testing demonstrates a 71% removal efficiency at 3.2
gpm/ft2 for an average SSC influent concentration of 211 mg/L and an 88% removal efficiency at
1.7 gpm/ft2 for an average SSC influent concentration of 424 mg/L. Once again, the 3.2 gpm/ft2
was set to be 125% of the treatment operating rate, and 1.7 gpm/ft2 was set to be 62.5% of the
treatment operating rate. These removal efficiencies, which were input into the NJDEP
weighting system, can be used to determine an overall removal efficiency of the system. Since
the 3.2 gpm/ft2 is set to be 125% of the treatment operating rate, the SSC removal efficiency for
the system would be based upon 2.56 gpm/ft2, which would be 100% of the treatment operating
rate (see Table 9 and Figure 5).
For the OK-110, laboratory testing data that are presented in Table 5 were used with the NJDEP
protocol to develop an NJDEP weighted removal efficiency for the hydraulic loading rates of 4.8
and 8.1 gpm/ft2 (see Tables 10 and 11). These loading rates were set to be 125% of the treatment
operating rate. Removal efficiencies for 25, 50, 75, and 100% of the treatment operating rate
were interpolated from the data presented in Table 5. The NJDEP weighted removal efficiencies
were determined to be 98.8 and 98.4% for the hydraulic loading rates of 3.87 and 6.48 gpm/ft2,
respectively.
15
5.4 Inspection and Maintenance
The StormTech® Isolator™ Row requires minimal routine inspection and maintenance.
However, it is important that the system be inspected at regular intervals and cleaned when
necessary to ensure optimum performance. Initially, the StormTech® Isolator™ Row should be
inspected every six months until information can be gathered to develop an inspection and
maintenance routine for the particular site. The rate at which the system collects pollutants will
depend more on site activities than on the size of the unit (i.e., heavy winter sanding will cause
the lower chamber to fill more quickly, but regular sweeping will slow accumulation). The
JetVac process can be used to clean the system. However, the JetVac process, as per
StormTech® should only be performed on StormTech® Isolator™ Rows that have AASHTO class
1 woven geotextile over their angular base stone. When the average depth of sediment exceeds
three inches, clean-out should be conducted.
The frequency of cleanout is related to the number of chambers in the Isolator™ Row.
StormTech®’s cleanout experience includes systems receiving flows from paved areas that were
cleaned in advance of actual need and systems that received construction sediments and were
cleaned after a sedimentation event.
StormTech® does not recommend that the Isolator™ be used for construction sediments. Where
erosion of disturbed sites is possible which could cause sedimentation of the subsurface system,
StormTech® recommends plugging inlet pipes to both the Isolator™ Row and high flow
manifolds until the site is stabilized and the post development conditions established.
A 20-chamber Isolator™ Row in Portland, Maine was cleaned after one year in service.
Approximately 1/8” to 1/4” of sediment had accumulated and StormTech® cleaned the system as
a maintenance demonstration. Four passes of a jet nozzle cleaned the Isolator™ Row to bare
fabric. The nozzle pressure reached approximately 2200 psi. The fabric was not impacted by the
jetting.
Other experience, for all Isolator™ Rows receiving flows from paved areas, indicates that a 1-
year maintenance interval is too frequent. Only Isolator™ Rows that 1) have received
construction sediments or 2) received sediments from gravel parking areas required maintenance
within the first year.
In each cleaning event observed, solids were successfully moved from the fabric bottom to the
access manhole and vactored. The solids movement includes both clumps of solids and slurry.
Since murky water is produced, it is reasonable to assume that some amount of the clay size
particles that go into suspension may be lost through the fabric during the cleanout process.
Actual sediment removal is expected to include the larger particle sizes targeted during
performance tests and some percentage of finer particles that are moved in the solid cake clumps
and slurry that is vactored from the manhole.
5.4.1 Solids Disposal
Solids recovered from the StormTech® Isolator™ Row can typically be land filled or disposed of
at a waste water treatment plant.
16
5.4.2 Damage Due to Lack of Maintenance
It is unlikely that the StormTech® Isolator™ Row will become damaged due to lack of
maintenance since there are no fragile internal parts. However, adhering to a regular
maintenance plan ensures optimal performance of the system, since filter cake build-up will
eventually reduce treatment flow rate through the double layer bottom fabrics.
StormTech® has no reported clogged infiltration systems. The typical StormTech® design
includes Isolator™ Rows downstream of all inlets with high flow bypasses to the balance of the
chamber system. Therefore the infiltration surface is preserved while the Isolator™ Row
collects sediments. Flow through the Isolator™ Row bottom material is expected to decrease
over several years. As the bottom occludes and head builds, flow increases through perforations
and joints which are covered with a single layer of filter fabric.
6. Technical Evaluation Analysis
6.1 Verification of Performance Claims
Claim 1: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more than 2.5
gpm/ft2 of bottom area, using two layers of woven geotextile fabric under the base of the system
and one layer of non-woven fabric wrapped over the top of the system and a mean event influent
concentration of 270 mg/L (range of 139 – 361 mg/L) has been shown to have a TSS removal
efficiency (measured as SSC) of 60% for SIL-CO-SIL 106, a manufactured silica product with
an average particle size of 22 microns, in laboratory studies using simulated stormwater.
• Since the claim laboratory test was performed at 3.2 gpm/ft2 and this was set to be 125%
of the treatment operating rate, the treatment operating rate in Claim 1 should be
adjusted to reflect the true operation rate (100% value or 2.56 gpm/ft2). Claim 1 is
verified.
Claim 2: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more than 2.5
gpm/ft2 of bottom area, using two layers of woven geotextile fabric under the base of the system
and one layer of non-woven fabric wrapped over the top of the system and a mean event influent
concentration of 318 mg/L (range of 129 – 441 mg/L) has been shown to have a TSS removal
efficiency (measured as SSC) of 84% for SIL-CO-SIL 250, a manufactured silica product with
an average particle size of 45 microns, in laboratory studies using simulated stormwater.
• For a treatment operating rate of 2.56 gpm/ft2 and a mean event influent concentration of
318 mg/L (measured as SSC) the data at 3.20 gpm/ft2 and 1.7 gpm/ft2 were used to
conservatively determine a TSS removal efficiency of 84% for SIL-CO-SIL 250, verifying
Claim 2. The average influent concentration of 318 mg/L is simply the average
concentration of the two sets of experiments that were run using the SIL-CO-SIL 250.
Claim 3: A StormTech® SC-740 Isolator™ Row, sized at a treatment rate of no more than 6.5
gpm/ft2 of bottom area, using a single layer of woven geotextile fabric and a mean event influent
concentration of 371 mg/L (range of 116 – 614 mg/L) has been shown to have a TSS removal
efficiency (measured as SSC) of greater than 95% for OK-110, a manufactured silica product
with an average particle size of 110 microns, in laboratory studies using simulated stormwater.
17
• Since the experiment was run at 8.1 gpm/ft2, which was set at 125% of the treatment
operating rate, Claim 3 is valid with 100% of the treatment operating rate of 6.5 gpm/ft2.
The weighted removal efficiency at rates of 8.1 gpm/ft2 and 4.8 gpm/ft2 exceeded 98% so
a removal efficiency greater than 95% is valid.
6.2 Limitations
6.2.1 Factors Causing Under-Performance
If the StormTech® Isolator™ Row is designed and installed correctly, there is minimal
possibility of failure. There are no moving parts to bind or break, nor are there parts that are
particularly susceptible to wear or corrosion. Lack of maintenance may cause the system to
operate at a reduced efficiency, and it is possible that eventually the system will become totally
filled with sediment.
6.2.2 Pollutant Transformation and Release
The StormTech® Isolator™ Row should not increase the net pollutant load to the downstream
environment. However, pollutants may be transformed within the unit. For example, organic
matter may decompose and release nitrogen in the form of nitrogen gas or nitrate. These
processes are similar to those in wetlands but probably occur at slower rates in the StormTech®
Isolator™ Row due to the absence of light and mixing by wind, thermal inputs, and biological
activity. Accumulated sediment should not be lost from the system at or under the design flow
rate.
6.2.3 Sensitivity to Heavy Sediment Loading
Heavy loads of sediment will increase the needed maintenance frequency.
6.2.4 Mosquitoes
Although the StormTech® Isolator™ Row normally drain completely, designs may include
standing water in a sump in the diversion manhole, which can be a breeding site for mosquitoes.
StormTech® advises that the sump is not a necessity for proper Isolator™ Row operation and
maintenance. The sump can be eliminated or designed with drain holes where the intent is to
preclude mosquito breeding sites. In addition, StormTech® advises that the stone is designed to
drain so as to not leave standing water. Small amounts of water that may not drain due to
depressions in the otherwise flat bottom would infiltrate.
7. Net Environmental Benefit
Once the StormTech® Isolator™ Row has been verified and granted interim approval use within
the State of New Jersey, StormTech® will then proceed to install and monitor systems in the field
for the purpose of achieving goals set by the Tier II Protocol and final certification. At that time
a net environmental benefit evaluation will be completed. However, it should be noted that the
StormTech® technology requires no input of raw material, has no moving parts, and therefore,
uses no water or energy.
8. References
18
Christensen, A. and V. Neary. 2005. Hydraulic Performance and Sediment Trap Efficiency for
the StormTech® SC-740 Isolator™ Row. Department of Civil and Environmental Engineering,
Tennesee Technological University. February 23, 2005.
Neary, V. 2006. Performance Evaluation of Sediment Removal Efficiency StormTech®
Isolator™ Row. Department of Civil and Environmental Engineering, Tennessee Tech
University. October 20, 2006.
Patel, M. 2003, Draft Total Suspended Solids Laboratory Testing Procedures, December 23,
2003, New Jersey Department of Environmental Protection, Office of Innovative Technology
and Market Development.
StormTech® Subsurface Stormwater Management Technical Resources CD: Product Literature,
Design Tools, Isolator™ Row, Project Installation Video. April 2006.
19
FIGURES
Figure 1. Isolator™ Row Profile View
Figure 2. Treatment Train with Isolator™ Row
Figure 3. Section and Profile Views of StormTech®Isolator™ as Installed in the Laboratory
Figure 4. SSC Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 106
Figure 5. SSC Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 250
20
Figure 1. Isolator™ Row Profile View
21
Figure 2. Treatment Train with Isolator™ Row
One StormTech® Recommended Configuration
22
Figure 3. Section and Profile Views of StormTech®Isolator™ Row
as Installed in the Laboratory
23
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0% 25% 50% 75% 100% 125%
% of the Treatment Operating Rate% Removal EfficiencyAssumed Value Measured Value
Figure 4. SSC Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 106
(assuming efficiency does not increase as flowrate decreases)
24
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0% 25% 50% 75% 100% 125%
% of the Treatment Operating Rate% Removal Efficiency
Figure 5. SSC Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 250
25
TABLES
Table 1. Results: SIL-CO-SIL 106 Tests
Table 2. Reduction of Removal Efficiency with Detention Time
Table 3. Results: SIL-CO-SIL 250 Tests at 3.2 gpm/ft2 (July 19, 2006)
Table 4. Results: SIL-CO-SIL 250 Tests at 1.7 gpm/ft2 (July 19, 2006)
Table 5. Results: OK-110 Tests
Table 6. Particle Size Distribution
Table 7. Weight Factors for Different Treatment Operating Rates
Table 8. NJDEP Weighted Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 106
Table 9. NJDEP Weighted Removal Efficiency for 2.56 gpm/ft2 for SIL-CO-SIL 250
Table 10. NJDEP Weighted Removal Efficiency for 4.8 gpm/ft2 for OK-110
Table 11. NJDEP Weighted Removal Efficiency for 8.1 gpm/ft2 for OK-110
26
Table 1. Results: SIL-CO-SIL 106 Tests
Date Influent
SSC (mg/L)
Effluent
SSC (mg/L)
% Removal
9-Jul 180 81 55
9-Jul 177 100 44
9-Jul 292 122 58
9-Jul 315 147 53
9-Jul 318 162 49
17-Jul 212 72 66
17-Jul 266 95 64
17-Jul 278 135 51
25-Jul 236 77 67
25-Jul 229 66 71
25-Jul 139 74 47
25-Jul 293 87 70
1-Aug 240 70 71
1-Aug 290 124 57
1-Aug 294 144 51
1-Aug 341 146 57
1-Aug 361 132 63
28-Aug 227 74 67
28-Aug 266 67 75
28-Aug 328 137 58
28-Aug 308 100 68
28-Aug 353 182 48
Average: 270 109 60
Std.
Deviation: 59 35 9
Minimum: 139 66 44
Maximum: 361 182 75
27
Table 2. Reduction of Removal Efficiency with Detention Time
Sample No.
No. of
Detention
Times
Influent
SSC (mg/L)
Effluent
SSC (mg/L) % Removal
1 3 219 75 66
2 6 246 90 63
3 9 305 134 56
4 12 311 132 57
5 15 331 141 58
Table 3. Results: SIL-CO-SIL 250 Tests at 3.2 gpm/ft2 (July 19, 2006)
Sample No. Influent
SSC (mg/L)
Effluent
SSC (mg/L)
% Removal
1 226 40 82
2 169 47 72
3 244 53 78
4 288 67 77
5 129 68 47
Average: 211 55 71
Std. Deviation: 63 12 14
Minimum: 129 40 47
Maximum: 288 68 82
28
Table 4. Results: SIL-CO-SIL 250 Tests at 1.7 gpm/ft2 (July 19, 2006)
Sample Influent
SSC (mg/L)
Effluent
SSC (mg/L)
% Removal
1 416 27 89
2 407 44 88
3 441 48 87
4 417 56 89
5 441 61 87
Average: 424 47 88
Std. Deviation: 16 13 1
Minimum: 407 27 87
Maximum: 441 61 89
Table 5. Results: OK-110 Tests
Flow
(cfs)
Hydraulic
Loading
Rate
(gpm/ft2)
Influent -
Discrete
SSC
(mg/L)
Influent –
Grab
SSC
(mg/L)
Effluent -
Discrete
SSC
(mg/L)
%
Removal -
Discrete
%
Removal
- Grab
0.1 0.4 613.8 86.2 1.08 99.82% 98.75%
0.2 0.81 324.4 192.0 2.56 99.21% 98.67%
0.4 1.61 514.6 207.7 3.14 99.39% 98.49%
0.6 2.42 411.8 175.0 3.34 99.19% 98.09%
0.8 3.23 325.4 193.0 2.80 99.14% 98.55%
1.0 4.04 525.6 137.2 1.96 99.63% 98.57%
1.2 4.84 116.4 178.6 3.18 97.27% 98.22%
0.2 0.81 398.2 108.8 1.78 99.55% 98.37%
0.4 1.61 358.8 85.7 1.96 99.45% 97.71%
0.6 2.42 329.5 200.0 3.41 98.97% 98.30%
1.2 4.84 227.5 164.4 2.00 99.12% 98.79%
1.0 (scaled) 8.1 302.0 241.8 11.00 96.36% 95.45%
Average: 370.7 164.2 3.18 99.14% 98.06%
Minimum: 116.4 85.7 1.08 96.36% 95.45%
Maximum: 613.8 241.8 11.0 99.82% 98.79%
29
Table 6. Particle Size Distribution
Particle Size (microns) Sandy loam (percent by mass)
500-1,000 (coarse sand) 5.0
250-500 (medium sand) 5.0
100-250 (fine sand) 30.0
50-100 (very fine sand) 15.0
2-50 (silt) (8-50 µm, 25%) (2-8 µm, 15%)*
1-2 (clay) 5.0
Notes:
Recommended density of particles ≤2.65 g/cm3
*The 8 µm diameter is the boundary between very fine silt and fine silt according to the definition of American
Geophysical Union. The reference for this division/classification is: Lane, E. W., et al. (1947). "Report of the
Subcommittee on Sediment Terminology," Transactions of the American Geophysical Union, Vol. 28, No. 6, pp.
936-938.
Table 7. Weight Factors for Different Treatment Operating Rates
Treatment
operating rate
Weight
factor
25% 0.25
50% 0.30
75% 0.20
100% 0.15
125% 0.10
Notes:
Weight factors were based upon the average annual distribution of runoff volumes in New Jersey and the assumed
similarity with the distribution of runoff peaks. This runoff volume distribution was based upon accepted
computation methods for small storm hydrology and a statistical analysis of 52 years of daily rainfall data at 92
rainfall gages.
30
Table 8. NJDEP Weighted Removal Efficiency
for 2.56 gpm/ft2 for SIL-CO-SIL 106
(assuming efficiency does not increase as flowrate decreases)
Treatment
Operating
Rate
NJDEP
Weight
Factor
Loading Rate
(gpm/ft2)
% SSC Removal
NJDEP
Weighted
% Removal
25% 0.25 0.64 60 15
50% 0.30 1.28 60 18
75% 0.20 1.92 60 12
100% 0.15 2.56 60 9
125% 0.10 3.20 60 6
Total: 60
Table 9. NJDEP Weighted Removal Efficiency
for 2.56 gpm/ft2 for SIL-CO-SIL 250
Treatment
Operating
Rate
NJDEP
Weight
Factor
Loading Rate
(gpm/ft2)
% SSC Removal
NJDEP
Weighted
% Removal
25% 0.25 0.64 0.88 0.22
50% 0.30 1.28 0.88 0.264
62.5 1.70 0.88
75% 0.20 1.92 0.846 0.1692
100% 0.15 2.56 0.778 0.1167
125% 0.10 3.20 0.71 0.071
Total: 84
31
Table 10. NJDEP Weighted Removal Efficiency
for 4.8 gpm/ft2 for OK-110
Treatment
Operating
Rate
NJDEP
Weight
Factor
Loading Rate
(gpm/ft2)
% SSC Removal
NJDEP
Weighted
% Removal
25% 0.25 0.97 98.9 24.7
50% 0.30 1.94 98.7 29.6
75% 0.20 2.90 98.7 19.7
100% 0.15 3.87 98.9 14.8
125% 0.10 4.84 98.4 9.8
Total: 98.8
Table 11. NJDEP Weighted Removal Efficiency
for 8.1 gpm/ft2 for OK-110
Treatment
Operating
Rate
NJDEP
Weight
Factor
Loading Rate
(gpm/ft2)
% SSC Removal
NJDEP
Weighted
% Removal
25% 0.25 1.62 98.8 24.7
50% 0.30 3.24 98.8 29.7
75% 0.20 4.86 98.3 19.7
100% 0.15 6.48 98.3 14.8
125% 0.10 8.10 95.9 9.6
Total: 98.4
32
33
City of Indianapolis Stormwater Quality Unit (SQU)
Selection Guide
Pg. 1 02/11/2020
Version 17.0
(Check
http://www.indy.gov/eGov/City/DPW/Business/Specs/Pages/UpdatedStormWaterManual.aspx
for current Selection Guide)
Performance Matrix for Manufactured SQUs that are approved for use as post-construction water
quality units in the City of Indianapolis and in compliance with the Stormwater Design and
Construction Specifications Manual
PLEASE NOTE: All SQUs shall be configured as off-line units unless approved for on-line use.
On-line units must document the peak 10-year flow (per the Stormwater Design and
Construction Specification Manual) is less than the approved maximum10-yr flow rate.
Rate Based SQUs - Table 1
Manufactured
SQU SQU System Model
Max
Treatment
Flow
(cfs)
Max 10-yr
On-Line
Flow Rate
(cfs)
Cleanout
Depth
(Inches)
SC-3 0.39 N/A 9
SC-4 0.70 N/A 9
SC-5 1.09 N/A 9
SC-6 1.57 N/A 9
SC-7 2.14 N/A 9
SC-8 2.80 N/A 9
SC-9 3.54 N/A 9
SC-10 4.37 N/A 9
SC-11 5.29 N/A 9
SciClone1
SC-12 6.30 N/A 9
CDS-3 0.52 1.04 9
CDS-4 0.93 1.86 9
CDS-5 1.5 3.00 9
CDS-6 2.1 4.2 9
CDS-7 2.8 5.60 9
CDS-8 3.7 7.4 9
CDS-10 5.8 11.6 9
CDS
Technologies1
CDS-12 8.4 16.8 9
DVS-36C 0.56 1.12 9
DVS-48C 1.00 2.00 9
DVS-60C 1.56 3.12 9
DVS-72C 2.25 4.50 9
DVS-84C 3.06 6.12 9
DVS-96C 4.00 8.00 9
DVS-120C 6.25 12.50 9
DVS1
DVS-144C 9.00 18.00 9
Appendix E 12 of 49 4/5/2020Appendix E 12 of 49 04/05/20
City of Indianapolis Stormwater Quality Unit (SQU)
Selection Guide
Pg. 2 02/11/2020
Version 17.0
Manufactured
SQU SQU System Model
Max
Treatment
Flow
(cfs)
Max 10-yr
On-Line
Flow Rate
(cfs)
Cleanout
Depth
(Inches)
4-ft 1.12 2.95 9
6-ft 2.52 6.63 12
8-ft 4.49 11.81 15
10-ft 7.00 18.40 18
Hydro
International
Downstream
Defender1
12 ft 10.08 26.51 21
3-ft 0.85 1.84 9
4-ft 1.5 3.24 9
5-ft 2.35 5.08 9
6-ft 3.38 7.30 9
7-ft 4.60 9.94 9
Hydro
International
First Defense
High Capacity1
8-ft 6.00 12.96 9
HS-3 0.50 1.00 6
HS-4 0.88 1.76 6
HS-5 1.37 2.74 6
HS-6 1.98 3.96 6
HS-7 2.69 5.38 6
HS-8 3.52 7.04 6
HS-9 4.45 8.9 6
HS-10 5.49 10.98 6
HS-11 6.65 13.3 6
HydroStorm by
Hydroworks,
LLC1
HS-12 7.91 15.82 6
XC-2 0.57 1.16 6
XC-3 1.13 2.30 6
XC-4 1.86 3.79 6
XC-5 2.78 5.66 6
XC-6 3.88 7.90 6
XC-7 5.17 10.52 6
XC-8 6.64 13.51 6
XC-9 8.29 16.87 6
XC-10 10.13 20.62 6
XC-11 12.15 24.73 6
XC-12 14.35 29.20 6
AquaShield
Aqua-Swirl
Xcelerator1
XC-13 15.53 31.60 6
CS-4 1.80 4.03 9
CS-5 2.81 6.29 9
CS-6 4.05 9.07 9
CS-8 7.20 16.1 9
CS-10 11.3 25.3 9
Contech
Cascade
Separator
CS-12 16.2 36.3 9
Appendix E 13 of 49 4/5/2020Appendix E 13 of 49 04/05/20
170187000 – North End Phase 1
Appendix F: Channel Calculations
kimley-horn.com 250 E. 96th Street, Suite 580, Indianapolis, Indiana 46240 317 218 9560
Memorandum
Date: September 14, 2020
To: Mr. Sam Clark, Mr. Kent Ward
From: Andy Taylor, Kaleb Sondgerath
Re: North End Phase 1 – Stream Analysis
CC: Erik Dirks
Purpose
This design memo is intended to provide an analysis of the existing ditch that is currently conveying the
Hunters Knoll Legal Drain located within the North End development on the northeastern corner of Smokey
Row Road & Rohrer Road in Carmel, Indiana. This analysis includes the existing 100-year depth of flow within
the creek as well as the proposed depth of flow after construction of Phase 1 of the North End development.
Existing Creek Analysis
Currently the existing creek conveys the existing 7’x4’ box culvert crossing SR31 as a part of the Hunters Knoll
Legal Drain. To determine the flow conveyed by this culvert, HY-8 modelling was completed to determine the
maximum capacity of the culvert before over-topping the road to be 265.82 cfs. In addition, ICPR 4 modelling
was utilized to evaluate the existing on-site flow from Phase 1 and Phase II using the NRCS Curve Number
(CN) method. This modelling determined an additional 35.52cfs of flow that discharges to the existing creek.
Together the existing on-site creek conservatively conveys a total flow of 301.34cfs, which when modeled by
FlowMaster shows a normal depth of flow within the creek of 44 inches. The slope and shape of the existing
creek was conservatively modeled as a 5.5’ wide trapezoidal channel at 2% slope. These numbers were based
on the narrowest and flattest portion of the creek and is therefore the worst-case scenario. (Refer to Appendix A
for existing calculations)
Proposed Development Analysis
The proposed Phase I development will detain all on-site improvements, therefore, with the required minimum
6” orifice per Carmel Standards, the proposed 100-yr release rate from the site will be 4.47cfs, which is a
21.49cfs decrease from the existing on-site runoff to the creek. With the proposed detention the existing creek
will receive a total of 279.96cfs, which when modeled by FlowMaster shows a normal depth within the existing
creek of 42.9 inches. Attached is a map showing the limits of a 100-year event within the creek. As the map
reflects, no portion of the creek floods within the proposed improvements, and all building pads exceed the 2’
minimum height above the flood elevation. (Refer to Appendix B for existing calculations)
The proposed calculations provided are in accordance with all Hamilton County Standards as well as City of
Carmel Standards and will have no adverse impacts on adjacent property owners. If you have any questions or
concerns please contact Andy Taylor at andy.taylor@kimley-horn.com or call 317-218-9567
Sincerely,
Kimley-Horn and Associates, Inc.
Kaleb Sondgerath, E.I.
Analyst