Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Report 08-31-21
Prepared: 12/07/20 Revised: 02/02/21 Revised: 03/24/21 Revised: 06/14/21 Revised: 08/04/21 Revised: 08/31/21 08/31/21 Prepared for: Estridge Development Management, LLC 12965 Old Meridian Street Carmel, Indiana 46032 Drainage Report Rolling Hills Carmel, Indiana Table of Contents Introduction ...................................................................................................................... 3 Existing Conditions ............................................................................................................. 3 Proposed Conditions .......................................................................................................... 3 Detention System Design .................................................................................................... 4 Storm Sewer Design ........................................................................................................... 7 Water Quality ................................................................................................................... 7 Conclusion ......................................................................................................................... 8 Appendix A – Existing Conditions ........................................................................................ 9 Exhibit A-- Existing Conditions ................................................................................. 10 TR-55 existing conditions ........................................................................................ 11 Appendix B –Detention System Design ................................................................................ 14 Exhibit B--Pond Basin Map ...................................................................................... 15 Soils Data .............................................................................................................. 16 TR-55 summary and data ........................................................................................ 33 Schematic and Input ..........................................................................................................36 ICPR - 10yr/100yr performance on and off-site areas ............................................... 46 48 hr recovery analysis .....................................................................................................47 ICPR - 10yr/100yr performance on and off-site areas (6” orifice) ...................................54 48 hr recovery analysis (6” orifice) ....................................................................................55 Water Quality Volume calculation ......................................................................................62 Stormkeeper SK180 information sheet ..............................................................................63 Appendix C – Storm Sewer Design ..................................................................................... 64 Exhibit C --Stormwater Basins Map ......................................................................... 65 Rational Method Calculations .................................................................................. 66 Time of Concentration Calculations ......................................................................... 67 Hydraflow Reach Reports ....................................................................................... 68 Grate Capacity Calculations .................................................................................... 69 Appendix D – 100 Year Overflow Routing ............................................................................ 72 Exhibit D -100 Year Overflow Routing Map ............................................................... 73 100 Year Storm Flow Calculations ............................................................................ 74 100 Year Overflow Elevation Calculations ................................................................. 75 Emergency Spillway Weir Calculation ....................................................................... 81 Appendix E—Full Size Exhibits ............................................................................................ 84 Introduction The purpose of this report is to document the design of the stormwater detention and conveyance system for the proposed residential development known as “Rolling Hill” in Carmel, Indiana. The site is located at the southwest quadrant of 146th Street and Rolling Hill Dr. Existing Conditions The existing site consists of a residence consisting of a house, woodshed, and small barn on three subdivided lots totaling 1.258 acres. Right of way is to be dedicated for both 146th Street and Rolling Hill Dr resulting in a net site area of 1.159 acres. The site is wooded surrounding the house and is otherwise open lawn. Soils are classified as 33.9% Brookston (type B) and 66.1% Crosby (type C). Peak runoff values have been computed for existing conditions of the resulting 1.159 acre site utilizing TR-55 methods and software. The 10 yr-24hr peak is 1.68 cfs. The corresponding 100yr-24hr peak is 3.28 cfs. Proposed Conditions Areas of the site to be developed will drain to the detention and water quality facilities. We have graded the site to drain to the detention system to the extent practical including much of the proposed R/W dedication for 146th Street. Runoff from approximately 1.16 acres of the subject property will be graded to detention facilities described herein. In addition, offsite R/W will contribute to the east pond amounting to 0.39 acres (both Rolling Hills & 146th) and about 187 sf (146th) to the west pond. The total area draining to the detention system consists of 1.56 acres. For purposes of design, the hydrologic soil groups will be upgraded to groups C & D. It is noted, the Brookston soils are entirely in the northwest portion of the site. The storm water conveyance system is herein designed consisting of catch basins and storm pipes leading to the detention system consisting of dry ponds and underground detention chambers. The detention system outflow will be limited as follows based on onsite areas. Town of Carmel Outflows Storm Event Rate Allowable outflow (cfs) 10 yr 0.1 cfs per acre 1.56 X 0.1 = 0.16 100 yr 0.3 cfs per acre 1.56 X 0.3 = 0.47 Therefore, the peak allowable outflows from the detention chambers is as shown in the above table. 3 Detention System Design A system of two dry ponds and a series of underground storage chambers has been designed to control the runoff from the proposed development. Both ponds (east and west) discharge into the underground detention system. The underground design employs the Stormkeeper SK180 chambers. 108 chambers are to be utilized as shown on the drawings. The stage-volume data for the underground chamber system has been developed utilizing the manufacturer’s information regarding chamber volume and allowing storage within the stone backfill having a porosity of 40%. It is expected that storage of stormwater will occur well above the top of the structures, utilizing the voids in the surrounding gravel. This is normal and is considered a design feature as intended by the manufacturer. The following table duplicates the storage volumes as provided by the manufacturer. Note that the first 9” is for the stone foundation only and does not involve the chambers. Stormkeeper SK180 storage volume (108 count) Depth (in) Chamber Volume (CF) Installed Volume (CF) Depth (in) Chamber Volume (CF) Installed Volume (CF) 0 0 0.00 23 47.1 7796 1 0 205 24 50.2 8206 2 0 410 25 53.3 8614 3 0 614 26 56.4 9020 4 0 819 27 59.4 9424 5 0 1024 28 62.4 9825 6 0 1229 29 65.4 10224 7 0 1433 30 68.3 10620 8 0 1638 31 71.2 11012 9 0 1843 32 72.0 11401 10 3.6 2281 33 76.8 11787 11 7.1 2716 34 79.5 12170 12 10.6 3149 35 82.1 12549 13 14.0 3581 36 84.7 12924 14 17.5 4011 37 87.3 13294 15 20.9 4439 38 89.8 13661 16 24.2 4866 39 92.2 14023 17 27.6 5290 40 94.5 14380 18 30.9 5713 41 96.8 14732 19 34.2 6133 42 98.9 15079 20 37.5 6552 48 109.7 17010 21 40.7 6968 54 113.6 18490 22 43.9 7383 57 113.6 19105 4 The controlled outflow from these facilities will join at structure #102 as shown on the plans. The outflow from this control structure must be limited to the maximum allowable outflows as given before. Within the aforementioned control structure, a dividing wall will be constructed with a lower orifice and with a wall height as shown in the construction plans. The intent is to restrict the flow from the chambers while maintaining peak stages below the pavement base course. The east dry pond will utilize a drop structure (#104) to control outflow while maintaining the peak stage below the overflow elevation with at least 1 foot of freeboard. Similarly, the west pond will be controlled at structure #112. The pond has been designed such that the 100 yr stage is at least 25 feet horizontally, from any building structure. In addition, all grades adjacent to each structure are at least 2 feet above the 100 yr stage elevation. IECI has utilized ICPR to analyze the modeled system for both the 10yr-24hr and 100yr-24hr storm events. The following table summarizes the results. Detention Routing (on & offsite areas) Event Control Structure Peak outflow (cfs) Allowable outflow (cfs) East Pond Peak Stage (ft) West Pond Peak Stage (ft) Underground system peak stage (ft) 10 0.14 0.16 852.90 856.97 852.55 100 0.47 0.47 854.92 857.43 854.74 As shown, the peak outflows from the system are less than the allowable. In addition, the east and west dry ponds peak with 1.08 feet and 1.07 feet of freeboard respectively. The HD pavement base over the storm chambers begins at 854.8 ft. Therefore, the peak storage in the chambers is below the pavement base. We have utilized ICPR to evaluate the 48 hr recovery for the pond system in the 100 yr-24 hr event. The following table summarizes the results. 48 Hr recovery analysis Time (hrs) Storage (CF) Storage recovered % recovered Target 13.75 20,993 48 6,711 14,282 68 =>90% As demonstrated, the detention system will not recover the prescribed storage in 48 hrs as specified by the Town of Carmel. An examination of the ICPR mass balance indicates the 90% 5 recovery will be delayed until hour 66.75. The solution to this deficiency is to increase the size of the outflow orifice. This however, would increase the peak outflows beyond the prescribed limits. Therefore, we believe the design is optimized. The emergency spillway for the dry ponds are designed to pass 1.25x the peak inflow. The east pond peak inflow for the 100 yr event is 7.12 cfs. The corresponding value for the west pond is 1.03 cfs. Therefore, the spillway design values are 8.90 cfs and 1.29 cfs. The weir calculations are presented in Appendix D. Given the hypothetical event that pond outflow devices clog and cease to function, the west pond would overflow into a swale located east of the pond outlet. The overflow point has an elevation of 857.5 feet. The overflow would be conveyed in the swale eastward toward structure #110. Assuming structure #110 also fails by clogging, the stormwater would rise and overflow to the site entrance driveway where flow would be conveyed southeasterly in the gutter plate and discharge into the storm system of Rolling Hills Dr. Likewise, an overflow of the east pond would occur at the top of curb with elevation 856.00 feet. This overflow is situated at the location of structure #107. The flow would similarly be conveyed southeasterly in the drive entrance gutter plate to the Rolling Hills Dr. drainage system. The above analysis includes a control structure consisting of a 48” manhole with a dividing wall constructed within. A 1~7/8” orifice at the bottom of the wall (850.05) controls the outflow. The wall is set at an elevation of 854.65 (4.6 feet high) and is overtopped in the 100 yr event. The orifice will be shown as having a 6” diameter on the construction drawings in accordance with 302.06-7. We have repeated the ICPR analysis using the minimum 6” orifice. The following table demonstrate the results. Detention Routing (on & offsite areas-min 6” orifice) Event Control Structure Peak outflow (cfs) Allowable outflow (cfs) East Pond Peak Stage (ft) West Pond Peak Stage (ft) Underground system peak stage (ft) 10 1.03 n/a 852.91 856.97 851.90 100 1.47 n/a 854.88 857.43 853.32 48 Hr recovery analysis (min 6” orifice) Time (hrs) Storage (CF) Storage recovered % recovered Target 12.75 15,106 48 2,060 13,046 86 =>90% 6 Design data including the soil survey, the curve number calculation, time of concentration calculations and the ICPR input/output is included in appendix B for reference. Storm Sewer Design The storm sewer proposed as a part of this phase of development has been sized using the Hydraflow Storm Sewers program by inteliSolve. The Hydraflow Storm Sewers program uses the Bernoulli energy equation and the Manning equation to determine the flow characteristics of each segment of the storm sewer system. The flow to each collection point of the storm sewer system has been estimated by the Hydraflow Storm Sewers program using the Rational Method. The appropriate rainfall intensities used in these calculations have been determined using the data provided in Table 201-2 of the Carmel Stormwater Technical Standards Manual. Weighted ‘C’ values were determined using the ‘C’ values for land uses as given in Table 201-1. Time of concentration calculations have been performed using the TR-55 program created by the United States Department of Agriculture, Natural Resources Conservation Service. With the engineering properties determined for each contributing drainage basin, the data was entered into the Hydraflow Storm Sewers program. The resulting storm sewer system was refined until it met the requirements of the Carmel Stormwater Technical Standards Manual. The input data and resulting output of each of these methods of calculation can be found in Appendix C of this report. Water Quality The developed drainage basins are directed first to one of the dry ponds and then to the underground storm chambers or the dry pond, defining the two levels of water quality treatment. The areas directed to the storm chambers will enter diversion structures which allow the first flush to enter the isolator row. Greater events will overflow respective diversion walls and the resulting flows will be manifolded to remaining rows of chambers. The following table summarizes items which are pertinent to the water quality design for the project. 7 Water Quality Site Area (ac) Impervious (ac) Rv WQv (cf) East Pond 1.413 0.854 West Pond 0.146 0.070 Total 1.558 0.924 .58 3,301 The water quality volume can be stored in the chambers to a depth of just over 11”. There are two paths of the treatment train; the first conveys flow thru the east pond and then thru the underground detention facility. The second path conveys flow thru the west pond prior to the underground chambers. In each case, there are two levels of treatment. The TSS removal for each is 72% since the underground chambers will function as a dry pond. Therefore, the series removal is calculated as: E= 1-(1-.72)(1-.72) = 92%. Therefore, the efficiency exceeds the required 80% removal. Conclusion The stormwater collection and detention system for the proposed site development has been designed to meet all local design criteria. Water quality design BMPs are herein designed. All elements are transferred accordingly to the construction drawings. 8 Appendix “A” Existing Conditions 9 10 BG Rolling Hill existing conditions Hamilton NOAA_A County, Indiana Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 10-Yr 100-Yr Identifier (cfs) (cfs) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS roof 0.37 0.53 11.92 11.92 drive/walk 0.37 0.53 11.92 11.92 lawn 0.41 0.82 12.06 12.05 woods 0.92 1.97 12.14 12.11 REACHES OUTLET 1.68 3.28 WinTR-55, Version 1.00.10 Page 1 3/24/2021 8:47:48 AM 11 BG Rolling Hill existing conditions Hamilton NOAA_A County, Indiana Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- roof SHEET 10 0.0100 0.240 0.052 SHALLOW 168 0.0150 0.050 0.024 Time of Concentration 0.1 ======== drive/walk SHEET 10 0.0100 0.240 0.052 SHALLOW 168 0.0150 0.050 0.024 Time of Concentration 0.1 ======== lawn SHEET 100 0.0230 0.240 0.235 SHALLOW 264 0.0150 0.050 0.037 Time of Concentration .272 ======== woods SHEET 100 0.0230 0.400 0.353 SHALLOW 96 0.0310 0.050 0.009 Time of Concentration .362 ======== WinTR-55, Version 1.00.10 Page 1 3/24/2021 8:47:48 AM 12 BG Rolling Hill existing conditions Hamilton NOAA_A County, Indiana Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- roof Paved parking lots, roofs, driveways B .068 98 Total Area / Weighted Curve Number .07 98 === == drive/walkPaved parking lots, roofs, driveways B .069 98 Total Area / Weighted Curve Number .07 98 === == lawn Open space; grass cover > 75% (good) B .085 61 Open space; grass cover > 75% (good) C .166 74 Total Area / Weighted Curve Number .25 70 === == woods Woods - grass combination (good) B .261 58 Woods - grass combination (good) C .509 72 Total Area / Weighted Curve Number .77 67 === == WinTR-55, Version 1.00.10 Page 1 3/24/2021 8:47:48 AM 13 Appendix “B” Detention System Design 14 EX52341EX101103108107110111104106112113105103a114115109102Know what'sCallbelow.before you dig.GRAPHIC SCALENREVISIONS: 3961 Perry Boulevard Whitestown, IN 46075 Ph. 317-769-2916 www.innovativeeci.com ENGINEERING & CONSULTINGExhibit BPond Basins19122Rolling Hills Townhomes Carmel, Indiana ECL Development, LLC 12965 Old Meridian Street Carmel, IN 46032 317-669-620915 United States Department of Agriculture A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Hamilton County, IndianaNatural Resources Conservation Service November 10, 202016 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require 2 17 alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. 3 18 Contents Preface....................................................................................................................2 How Soil Surveys Are Made..................................................................................5 Soil Map..................................................................................................................8 Soil Map................................................................................................................9 Legend................................................................................................................10 Map Unit Legend................................................................................................11 Map Unit Descriptions.........................................................................................11 Hamilton County, Indiana................................................................................13 YbvA—Brookston silty clay loam-Urban land complex, 0 to 2 percent slopes....................................................................................................13 YclA—Crosby silt loam, fine-loamy subsoil-Urban land complex, 0 to 2 percent slopes.......................................................................................14 References............................................................................................................16 4 19 How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil 5 20 scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and Custom Soil Resource Report 6 21 identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. Custom Soil Resource Report 7 22 Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. 8 23 9 Custom Soil Resource Report Soil Map 44280204428030442804044280504428060442807044280804428090442810044281104428020442803044280404428050442806044280704428080442809044281004428110573700 573710 573720 573730 573740 573750 573760 573770 573780 573790 573800 573810 573820 573830 573840 573850 573700 573710 573720 573730 573740 573750 573760 573770 573780 573790 573800 573810 573820 573830 573840 573850 40° 0' 0'' N 86° 8' 11'' W40° 0' 0'' N86° 8' 5'' W39° 59' 56'' N 86° 8' 11'' W39° 59' 56'' N 86° 8' 5'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 16N WGS84 0 30 60 120 180 Feet 0 10 20 40 60 Meters Map Scale: 1:691 if printed on A landscape (11" x 8.5") sheet. Soil Map may not be valid at this scale. 24 MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:15,800. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Hamilton County, Indiana Survey Area Data: Version 21, Jun 4, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Aug 1, 2018—Sep 30, 2018 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Custom Soil Resource Report 10 25 Map Unit Legend Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI YbvA Brookston silty clay loam-Urban land complex, 0 to 2 percent slopes 0.5 33.9% YclA Crosby silt loam, fine-loamy subsoil-Urban land complex, 0 to 2 percent slopes 1.0 66.1% Totals for Area of Interest 1.4 100.0% Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The Custom Soil Resource Report 11 26 delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. Custom Soil Resource Report 12 27 Hamilton County, Indiana YbvA—Brookston silty clay loam-Urban land complex, 0 to 2 percent slopes Map Unit Setting National map unit symbol: 2w57n Elevation: 600 to 1,260 feet Mean annual precipitation: 37 to 46 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 145 to 180 days Farmland classification: Not prime farmland Map Unit Composition Brookston and similar soils:65 percent Urban land:30 percent Minor components:5 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Brookston Setting Landform:Depressions, till plains Landform position (two-dimensional):Toeslope Landform position (three-dimensional):Dip Down-slope shape:Concave, linear Across-slope shape:Concave Parent material:Loess over loamy till Typical profile Ap - 0 to 16 inches: silty clay loam Btg1 - 16 to 32 inches: silty clay loam Btg2 - 32 to 44 inches: loam C - 44 to 60 inches: loam Properties and qualities Slope:0 to 2 percent Depth to restrictive feature:More than 80 inches Drainage class:Poorly drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat):Moderately high (0.20 to 0.60 in/hr) Depth to water table:About 0 to 12 inches Frequency of flooding:None Frequency of ponding:Frequent Calcium carbonate, maximum content:40 percent Maximum salinity:Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water capacity:Moderate (about 8.9 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B/D Ecological site: F111AY007IN - Till Depression Flatwood Hydric soil rating: Yes Custom Soil Resource Report 13 28 Minor Components Crosby Percent of map unit:5 percent Landform:Till plains Landform position (two-dimensional):Footslope, summit Landform position (three-dimensional):Talf Down-slope shape:Concave Across-slope shape:Linear Ecological site:F111AY008IN - Wet Till Ridge Hydric soil rating: No YclA—Crosby silt loam, fine-loamy subsoil-Urban land complex, 0 to 2 percent slopes Map Unit Setting National map unit symbol: 2w57p Elevation: 600 to 1,040 feet Mean annual precipitation: 36 to 46 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 145 to 180 days Farmland classification: Not prime farmland Map Unit Composition Crosby and similar soils:60 percent Urban land:30 percent Minor components:10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Crosby Setting Landform:Water-lain moraines, ground moraines, recessionial moraines Landform position (two-dimensional):Footslope, summit, backslope Landform position (three-dimensional):Interfluve, rise Down-slope shape:Convex, linear Across-slope shape:Linear, convex Parent material:Silty material or loess over loamy till Typical profile Ap - 0 to 10 inches: silt loam Btg - 10 to 17 inches: silty clay loam 2Bt - 17 to 29 inches: clay loam 2BCt - 29 to 36 inches: loam 2Cd - 36 to 79 inches: loam Properties and qualities Slope:0 to 2 percent Depth to restrictive feature:24 to 40 inches to densic material Drainage class:Somewhat poorly drained Custom Soil Resource Report 14 29 Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat):Low to moderately high (0.01 to 0.20 in/hr) Depth to water table:About 6 to 24 inches Frequency of flooding:None Frequency of ponding:None Calcium carbonate, maximum content:55 percent Maximum salinity:Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water capacity:Moderate (about 6.5 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C/D Ecological site: F111AY008IN - Wet Till Ridge Hydric soil rating: No Minor Components Williamstown, eroded Percent of map unit:5 percent Landform:Recessionial moraines, water-lain moraines, ground moraines Landform position (two-dimensional):Summit, shoulder, backslope Landform position (three-dimensional):Crest, nose slope, head slope, side slope, rise Down-slope shape:Linear, convex Across-slope shape:Convex, linear Ecological site:F111AY009IN - Till Ridge Hydric soil rating: No Treaty, drained Percent of map unit:5 percent Landform:Swales, depressions, water-lain moraines Landform position (two-dimensional):Toeslope, footslope Landform position (three-dimensional):Base slope, dip Down-slope shape:Linear Across-slope shape:Concave Ecological site:F111AY007IN - Till Depression Flatwood Hydric soil rating: Yes Custom Soil Resource Report 15 30 References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 16 31 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf Custom Soil Resource Report 17 32 BG Rolling Hills developed conditons Hamilton NOAA_A County, Indiana Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- west pond .15 0.100 88 Outlet developed east pond 1.41 0.360 90 Outlet developed Total Area: 1.56 (ac) WinTR-55, Version 1.00.10 Page 1 5/26/2021 10:19:33 AM 33 BG Rolling Hills developed conditons Hamilton NOAA_A County, Indiana Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- west pond SHEET 5 0.0400 0.240 0.017 CHANNEL 186 0.0270 0.035 0.07 0.58 1.722 0.030 Time of Concentration 0.1 ======== east pond SHEET 87 0.0070 0.240 0.343 SHALLOW 130 0.0110 0.025 0.017 Time of Concentration .36 ======== WinTR-55, Version 1.00.10 Page 1 5/26/2021 10:19:33 AM 34 BG Rolling Hills developed conditons Hamilton NOAA_A County, Indiana Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- west pond Open space; grass cover > 75% (good) C .026 74 Open space; grass cover > 75% (good) D .05 80 Paved parking lots, roofs, driveways C .024 98 Paved parking lots, roofs, driveways D .046 98 Total Area / Weighted Curve Number .15 88 === == east pond Open space; grass cover > 75% (good) C .189 74 Open space; grass cover > 75% (good) D .369 80 Paved parking lots, roofs, driveways C .29 98 Paved parking lots, roofs, driveways D .564 98 Total Area / Weighted Curve Number 1.41 90 ==== == WinTR-55, Version 1.00.10 Page 1 5/26/2021 10:19:33 AM 35 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.NodesA Stage/AreaV Stage/VolumeT Time/StageM ManholeBasinsO Overland FlowU SCS Unit CNS SBUH CNY SCS Unit GAZ SBUH GALinksP PipeW WeirC ChannelD Drop StructureB BridgeR Rating CurveH BreachE PercolationF FilterX Exfil TrenchA:west pondU:west pond basinA:west mhV:ug detentionA:outlet mh2A:outlet mh1T:ex mhA:east pondU:east pond basinA:cont structureD:west outlet devP:west mh to ug P:ug to cont strP:ex connectP:mh1 to mh2D:east pond to ugD:cont to mh136 ============================================================================================== Basins ======================================================================================================================================================================== Name: east pond basin Node: east pond Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Scsii-24 Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 21.60 Area(ac): 1.410 Time Shift(hrs): 0.00 Curve Number: 90.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 ---------------------------------------------------------------------------------------------------- Name: west pond basin Node: west pond Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh484 Peaking Factor: 484.0 Rainfall File: Scsii-24 Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(min): 6.00 Area(ac): 0.150 Time Shift(hrs): 0.00 Curve Number: 88.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 ============================================================================================== Nodes ========================================================================================================================================================================= Name: cont structure Base Flow(cfs): 0.000 Init Stage(ft): 850.050 Group: BASE Warn Stage(ft): 858.000 Type: Stage/Area Stage(ft) Area(ac)--------------- --------------------------------------------------------------------------------------------------------- Name: east pond Base Flow(cfs): 0.000 Init Stage(ft): 851.200 Group: BASE Warn Stage(ft): 856.000 Type: Stage/Area Stage(ft) Area(ac)--------------- --------------- 851.200 0.0000 852.000 0.0022 853.000 0.0065 854.000 0.0126 855.000 0.0203Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 1 of 937 856.000 0.0343------------------------------------------------------------------------------------------ Name: ex mh Base Flow(cfs): 0.000 Init Stage(ft): 849.270 Group: BASE Warn Stage(ft): 859.400 Type: Time/Stage Time(hrs) Stage(ft)--------------- --------------- 0.00 849.270 90.00 849.270------------------------------------------------------------------------------------------ Name: outlet mh1 Base Flow(cfs): 0.000 Init Stage(ft): 849.650 Group: BASE Warn Stage(ft): 858.000 Type: Stage/Area Stage(ft) Area(ac)--------------- --------------------------------------------------------------------------------------------------------- Name: outlet mh2 Base Flow(cfs): 0.000 Init Stage(ft): 849.410 Group: BASE Warn Stage(ft): 858.000 Type: Stage/Area Stage(ft) Area(ac)--------------- --------------------------------------------------------------------------------------------------------- Name: ug detention Base Flow(cfs): 0.000 Init Stage(ft): 850.100 Group: BASE Warn Stage(ft): 854.800 Type: Stage/Volume Stage(ft) Volume(af)--------------- --------------- 850.050 0.0000 850.800 0.0423 851.050 0.0723 851.550 0.1311 852.050 0.1884 852.550 0.2438 853.050 0.2967 853.550 0.3462 854.050 0.3905 854.550 0.4245 854.800 0.4386------------------------------------------------------------------------------------------ Name: west mh Base Flow(cfs): 0.000 Init Stage(ft): 850.800 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 2 of 938 Group: BASE Warn Stage(ft): 857.200 Type: Stage/Area Stage(ft) Area(ac)--------------- --------------------------------------------------------------------------------------------------------- Name: west pond Base Flow(cfs): 0.000 Init Stage(ft): 856.400 Group: BASE Warn Stage(ft): 858.500 Type: Stage/Area Stage(ft) Area(ac)--------------- --------------- 856.400 0.0000 857.000 0.0050 858.000 0.0142 859.000 0.0256============================================================================================== Pipes ========================================================================================================================================================================= Name: ex connect From Node: outlet mh2 Length(ft): 10.00 Group: BASE To Node: ex mh Count: 1 Friction Equation: Automatic UPSTREAM DOWNSTREAM Solution Algorithm: Most Restrictive Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 1.00 Invert(ft): 849.410 849.370 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 0.000 0.000 Stabilizer Option: NoneUpstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallDownstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwall---------------------------------------------------------------------------------------------------- Name: mh1 to mh2 From Node: outlet mh1 Length(ft): 43.00 Group: BASE To Node: outlet mh2 Count: 1 Friction Equation: Automatic UPSTREAM DOWNSTREAM Solution Algorithm: Most Restrictive Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 1.00 Invert(ft): 849.650 849.510 Bend Loss Coef: 0.00Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 3 of 939 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 0.000 0.000 Stabilizer Option: NoneUpstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallDownstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwall---------------------------------------------------------------------------------------------------- Name: ug to cont str From Node: ug detention Length(ft): 6.00 Group: BASE To Node: cont structure Count: 1 Friction Equation: Automatic UPSTREAM DOWNSTREAM Solution Algorithm: Most Restrictive Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 1.00 Invert(ft): 850.800 850.780 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 0.000 0.000 Stabilizer Option: NoneUpstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallDownstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwall---------------------------------------------------------------------------------------------------- Name: west mh to ug From Node: west mh Length(ft): 11.00 Group: BASE To Node: ug detention Count: 1 Friction Equation: Automatic UPSTREAM DOWNSTREAM Solution Algorithm: Most Restrictive Geometry: Circular Circular Flow: Both Span(in): 12.00 12.00 Entrance Loss Coef: 0.50 Rise(in): 12.00 12.00 Exit Loss Coef: 1.00 Invert(ft): 850.800 850.800 Bend Loss Coef: 0.00 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 0.000 0.000 Stabilizer Option: NoneUpstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallDownstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallInterconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 4 of 940 ============================================================================================== Drop Structures =============================================================================================================================================================== Name: cont to mh1 From Node: cont structure Length(ft): 93.00 Group: BASE To Node: outlet mh1 Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Automatic Geometry: Circular Circular Solution Algorithm: Most Restrictive Span(in): 12.00 12.00 Flow: Both Rise(in): 12.00 12.00 Entrance Loss Coef: 0.500 Invert(ft): 850.050 849.750 Exit Loss Coef: 1.000 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 0.000 0.000 Solution Incs: 10Upstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallDownstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwall*** Weir 1 of 2 for Drop Structure cont to mh1 *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Circular Orifice Disc Coef: 0.600 Span(in): 1.88 Invert(ft): 850.050 Rise(in): 1.88 Control Elev(ft): 850.050 *** Weir 2 of 2 for Drop Structure cont to mh1 *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Rectangular Orifice Disc Coef: 0.600 Span(in): 48.00 Invert(ft): 854.650 Rise(in): 24.00 Control Elev(ft): 854.650 ---------------------------------------------------------------------------------------------------- Name: east pond to ug From Node: east pond Length(ft): 46.00 Group: BASE To Node: ug detention Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Automatic Geometry: Circular Circular Solution Algorithm: Most Restrictive Span(in): 24.00 24.00 Flow: Both Rise(in): 24.00 24.00 Entrance Loss Coef: 0.500 Invert(ft): 850.860 850.800 Exit Loss Coef: 1.000Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 5 of 941 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 0.000 0.000 Solution Incs: 10Upstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallDownstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwall*** Weir 1 of 2 for Drop Structure east pond to ug *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Circular Orifice Disc Coef: 0.600 Span(in): 12.00 Invert(ft): 851.200 Rise(in): 12.00 Control Elev(ft): 851.200 *** Weir 2 of 2 for Drop Structure east pond to ug *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Horizontal Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Rectangular Orifice Disc Coef: 0.600 Span(in): 31.50 Invert(ft): 854.800 Rise(in): 31.50 Control Elev(ft): 854.800 ---------------------------------------------------------------------------------------------------- Name: west outlet dev From Node: west pond Length(ft): 10.00 Group: BASE To Node: west mh Count: 1 UPSTREAM DOWNSTREAM Friction Equation: Automatic Geometry: Circular Circular Solution Algorithm: Most Restrictive Span(in): 12.00 12.00 Flow: Both Rise(in): 12.00 12.00 Entrance Loss Coef: 0.500 Invert(ft): 854.200 854.160 Exit Loss Coef: 1.000 Manning's N: 0.013000 0.013000 Outlet Ctrl Spec: Use dc or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dc Bot Clip(in): 0.000 0.000 Solution Incs: 10Upstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwallDownstream FHWA Inlet Edge Description:Circular Concrete: Square edge w/ headwall*** Weir 1 of 2 for Drop Structure west outlet dev *** TABLE Count: 1 Bottom Clip(in): 0.000 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 6 of 942 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Circular Orifice Disc Coef: 0.600 Span(in): 6.00 Invert(ft): 856.400 Rise(in): 6.00 Control Elev(ft): 856.400 *** Weir 2 of 2 for Drop Structure west outlet dev *** TABLE Count: 1 Bottom Clip(in): 0.000 Type: Horizontal Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Rectangular Orifice Disc Coef: 0.600 Span(in): 21.00 Invert(ft): 857.500 Rise(in): 21.00 Control Elev(ft): 857.500 ============================================================================================== Hydrology Simulations ========================================================================================================================================================= Name: 100yr Filename: I:\Jobs\2019\19122 - Rolling Hills\Drainage\carmel comments 082721\100yr.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 6.46 Time(hrs) Print Inc(min) --------------- ---------------30.000 5.00 ---------------------------------------------------------------------------------------------------- Name: 10yr Filename: I:\Jobs\2019\19122 - Rolling Hills\Drainage\carmel comments 082721\10yr.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 3.83 Time(hrs) Print Inc(min) --------------- ---------------30.000 5.00 ---------------------------------------------------------------------------------------------------- Name: wqv Filename: I:\Jobs\2019\19122 - Rolling Hills\Drainage\carmel comments 082721\wqv.R32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Scsii-24 Rainfall Amount(in): 1.00 Time(hrs) Print Inc(min) Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 7 of 943 --------------- ---------------30.000 5.00 ============================================================================================== Routing Simulations =========================================================================================================================================================== Name: 100yr Hydrology Sim: 100yr Filename: I:\Jobs\2019\19122 - Rolling Hills\Drainage\carmel comments 082721\100yr.I32 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 90.00 Min Calc Time(sec): 0.5000 Max Calc Time(sec): 90.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) --------------- ---------------999.000 15.000 Group Run --------------- -----BASE Yes ---------------------------------------------------------------------------------------------------- Name: 10yr Hydrology Sim: 10yr Filename: I:\Jobs\2019\19122 - Rolling Hills\Drainage\carmel comments 082721\10yr.I32 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 90.00 Min Calc Time(sec): 0.5000 Max Calc Time(sec): 90.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) --------------- ---------------999.000 15.000 Group Run --------------- -----BASE Yes ---------------------------------------------------------------------------------------------------- Name: wqv Hydrology Sim: wqv Filename: I:\Jobs\2019\19122 - Rolling Hills\Drainage\carmel comments 082721\wqv.I32 Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 8 of 944 Execute: No Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 90.00 Min Calc Time(sec): 0.5000 Max Calc Time(sec): 90.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) --------------- ---------------999.000 15.000 Group Run --------------- -----BASE Yes Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 9 of 945 Max Time Max Warning Max Delta Max Surf Max Time Max Max Time Max Name Group Simulation Stage Stage Stage Stage Area Inflow Inflow Outflow Outflow hrs ft ft ft ft2 hrs cfs hrs cfs cont structure BASE 100yr 13.80 854.73 858.00 -0.7300 113 13.79 0.47 13.80 0.47 east pond BASE 100yr 12.17 854.92 856.00 0.0050 856 12.08 7.12 12.17 6.58 ug detention BASE 100yr 13.81 854.74 854.80 0.0031 2331 12.16 6.99 13.79 0.47 west pond BASE 100yr 12.03 857.43 858.50 0.0049 391 12.00 1.03 12.03 0.84 cont structure BASE 10yr 15.54 852.55 858.00 -0.7300 113 31.78 0.34 15.54 0.14 east pond BASE 10yr 12.13 852.90 856.00 0.0050 264 12.08 3.82 12.14 3.71 ug detention BASE 10yr 15.54 852.55 854.80 0.0028 4719 12.12 3.89 31.78 0.34 west pond BASE 10yr 12.01 856.97 858.50 0.0033 208 12.00 0.55 12.01 0.52Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 1 of 146 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 0.00 0.0 0.0 0.0 0.0 0.00 100yr 0.25 0.0 25.4 120.4 -145.8 574.44 100yr 0.50 0.0 88.3 121.2 -209.5 237.34 100yr 0.75 0.0 151.5 121.2 -272.7 180.05 100yr 1.00 0.0 215.2 121.2 -336.5 156.34 100yr 1.25 0.0 278.4 121.2 -399.6 143.55 100yr 1.50 0.0 342.1 121.2 -463.4 135.44 100yr 1.75 0.0 405.3 121.2 -526.6 129.91 100yr 2.00 0.0 469.1 121.2 -590.3 125.85 100yr 2.25 0.0 532.8 121.2 -654.0 122.76 100yr 2.50 0.0 596.0 121.2 -717.2 120.34 100yr 2.75 0.0 659.7 121.2 -781.0 118.38 100yr 3.00 0.0 722.9 121.2 -844.2 116.77 100yr 3.25 0.3 786.7 121.6 -907.9 115.46 100yr 3.50 2.6 849.9 123.9 -971.1 114.62 100yr 3.75 7.8 913.6 129.1 -1034.8 114.25 100yr 4.00 17.1 976.8 138.3 -1098.0 114.42 100yr 4.25 32.6 1040.5 153.8 -1161.8 115.26 100yr 4.50 54.0 1103.7 175.2 -1225.0 116.69 100yr 4.75 80.2 1167.5 201.5 -1288.7 118.53 100yr 5.00 112.5 1231.2 233.7 -1352.4 120.89 100yr 5.25 148.9 1294.4 270.1 -1415.6 123.58 100yr 5.50 188.7 1358.1 310.0 -1479.4 126.51 100yr 5.75 232.7 1421.3 354.0 -1542.6 129.78 100yr 6.00 280.1 1485.1 401.3 -1606.3 133.31 100yr 6.25 335.6 1548.3 456.8 -1669.5 137.67 100yr 6.50 403.0 1612.0 524.3 -1733.2 143.36 100yr 6.75 475.2 1675.2 596.5 -1796.4 149.71 100yr 7.00 554.1 1738.9 675.4 -1860.2 157.00 100yr 7.25 636.1 1802.7 757.3 -1923.9 164.92 100yr 7.50 722.7 1865.9 844.0 -1987.1 173.83 100yr 7.75 812.4 1929.6 933.7 -2050.8 183.57 100yr 8.00 908.4 1992.8 1029.6 -2114.0 194.95 100yr 8.25 1012.7 2056.5 1133.9 -2177.8 208.63 100yr 8.50 1132.1 2119.7 1253.4 -2241.0 226.92 100yr 8.75 1274.5 2183.5 1395.7 -2304.7 253.56 100yr 9.00 1423.0 2246.7 1544.2 -2367.9 287.49 100yr 9.25 1589.8 2310.4 1711.0 -2431.6 337.45 100yr 9.50 1772.1 2373.6 1893.4 -2494.8 414.80 100yr 9.75 1966.4 2437.3 2087.0 -2558.0 543.14 100yr 10.00 2183.2 2501.1 2295.2 -2613.0 822.17 100yr 10.25 2410.7 2564.2 2496.2 -2649.8 1725.69 100yr 10.51 2681.0 2629.1 2714.2 -2662.2 -5125.32 100yr 10.75 2992.0 2692.3 2961.9 -2662.2 -888.49 100yr 11.00 3410.6 2765.6 3307.2 -2662.2 -412.75 100yr 11.26 3933.9 2845.4 3750.8 -2662.2 -244.57 100yr 11.50 4539.5 2925.8 4276.0 -2662.2 -164.97 100yr 11.75 5803.0 3010.7 5454.6 -2662.2 -95.34 100yr 12.00 9673.4 3106.7 9229.0 -2662.2 -40.54 100yr 12.25 15870.4 3226.2 15306.4 -2662.2 -21.06 100yr 12.50 18932.0 3374.1 18220.1 -2662.2 -17.11 100yr 12.75 20278.0 3535.8 19404.4 -2662.2 -15.90 100yr 13.00 21152.8 3704.2 20110.8 -2662.2 -15.26 100yr 13.25 21805.0 3876.2 20591.1 -2662.2 -14.85Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 1 of 747 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 13.50 22350.9 4093.5 20919.7 -2662.2 -14.58 100yr 13.75 22809.4 4478.3 20993.4 -2662.2 -14.52 100yr 14.00 23218.4 4899.0 20981.6 -2662.2 -14.53 100yr 14.25 23579.5 5298.8 20943.0 -2662.2 -14.56 100yr 14.50 23896.2 5661.2 20897.3 -2662.2 -14.60 100yr 14.75 24181.6 5986.5 20857.3 -2662.2 -14.63 100yr 15.00 24435.4 6277.7 20819.9 -2662.2 -14.66 100yr 15.25 24690.1 6545.4 20806.9 -2662.2 -14.67 100yr 15.50 24932.6 6803.7 20791.2 -2662.2 -14.69 100yr 15.75 25150.8 7047.9 20765.1 -2662.2 -14.71 100yr 16.00 25364.9 7276.6 20750.5 -2662.2 -14.72 100yr 16.25 25574.6 7496.4 20740.4 -2662.2 -14.73 100yr 16.50 25787.4 7711.9 20737.8 -2662.2 -14.73 100yr 16.75 25989.7 7924.7 20727.2 -2662.2 -14.74 100yr 17.00 26178.7 8129.2 20711.8 -2662.2 -14.75 100yr 17.25 26360.6 8326.3 20696.6 -2662.2 -14.76 100yr 17.50 26536.2 8515.8 20682.7 -2662.2 -14.77 100yr 17.75 26713.9 8700.3 20675.9 -2662.2 -14.78 100yr 18.00 26881.4 8881.7 20661.9 -2662.2 -14.79 100yr 18.25 27034.5 9057.4 20639.3 -2662.2 -14.81 100yr 18.50 27180.2 9231.5 20611.0 -2662.2 -14.83 100yr 18.75 27320.9 9405.6 20577.6 -2662.2 -14.86 100yr 19.00 27463.2 9579.5 20546.0 -2662.2 -14.89 100yr 19.25 27603.4 9753.2 20512.5 -2662.2 -14.91 100yr 19.50 27745.8 9926.7 20481.3 -2662.2 -14.94 100yr 19.75 27885.3 10099.3 20448.3 -2662.2 -14.97 100yr 20.00 28022.5 10272.4 20412.3 -2662.2 -15.00 100yr 20.25 28139.7 10445.4 20356.6 -2662.2 -15.05 100yr 20.50 28246.8 10618.0 20291.0 -2662.2 -15.10 100yr 20.75 28353.9 10790.2 20225.9 -2662.2 -15.16 100yr 21.00 28459.1 10962.1 20159.2 -2662.2 -15.22 100yr 21.25 28567.7 11132.8 20097.2 -2662.2 -15.27 100yr 21.50 28676.2 11304.0 20034.5 -2662.2 -15.32 100yr 21.75 28781.8 11474.8 19969.2 -2662.2 -15.38 100yr 22.00 28888.8 11645.3 19905.7 -2662.2 -15.44 100yr 22.25 28994.1 11815.5 19840.8 -2662.2 -15.50 100yr 22.50 29100.6 11984.6 19778.2 -2662.2 -15.55 100yr 22.75 29205.9 12154.1 19714.0 -2662.2 -15.61 100yr 23.00 29315.1 12323.3 19654.1 -2662.2 -15.67 100yr 23.25 29423.8 12492.1 19593.9 -2662.2 -15.72 100yr 23.50 29529.5 12660.6 19531.1 -2662.2 -15.78 100yr 23.75 29636.5 12828.7 19470.0 -2662.2 -15.84 100yr 24.00 29733.9 12995.8 19400.3 -2662.2 -15.91 100yr 24.25 29798.7 13163.3 19297.7 -2662.2 -16.00 100yr 24.50 29817.2 13330.1 19149.3 -2662.2 -16.15 100yr 24.75 29820.4 13496.3 18986.4 -2662.2 -16.31 100yr 25.00 29820.8 13661.5 18821.5 -2662.2 -16.47 100yr 25.25 29820.8 13825.2 18657.9 -2662.2 -16.64 100yr 25.50 29820.8 13988.7 18494.3 -2662.2 -16.82 100yr 25.75 29820.8 14151.5 18331.6 -2662.2 -16.99 100yr 26.00 29820.8 14313.4 18169.7 -2662.2 -17.17 100yr 26.25 29820.8 14474.3 18008.8 -2662.2 -17.35 100yr 26.50 29820.8 14634.6 17848.5 -2662.2 -17.53 100yr 26.75 29820.8 14793.4 17689.7 -2662.2 -17.72Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 2 of 748 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 27.00 29820.8 14952.1 17531.0 -2662.2 -17.90 100yr 27.25 29820.8 15110.0 17373.1 -2662.2 -18.10 100yr 27.50 29820.8 15267.1 17215.9 -2662.2 -18.29 100yr 27.75 29820.8 15422.8 17060.3 -2662.2 -18.49 100yr 28.00 29820.8 15578.4 16904.7 -2662.2 -18.69 100yr 28.25 29820.8 15733.2 16749.8 -2662.2 -18.90 100yr 28.50 29820.8 15887.3 16595.7 -2662.2 -19.11 100yr 28.75 29820.8 16040.5 16442.6 -2662.2 -19.32 100yr 29.00 29820.8 16193.1 16290.0 -2662.2 -19.54 100yr 29.25 29820.8 16344.9 16138.1 -2662.2 -19.76 100yr 29.50 29820.8 16495.4 15987.6 -2662.2 -19.98 100yr 29.75 29820.8 16645.8 15837.2 -2662.2 -20.21 100yr 30.00 29820.8 16795.5 15687.5 -2662.2 -20.44 100yr 30.25 29820.8 16944.5 15538.6 -2662.2 -20.68 100yr 30.50 29820.8 17092.1 15391.0 -2662.2 -20.92 100yr 30.75 29820.8 17239.6 15243.4 -2662.2 -21.16 100yr 31.00 29820.8 17386.4 15096.6 -2662.2 -21.41 100yr 31.25 29820.8 17532.4 14950.7 -2662.2 -21.66 100yr 31.50 29820.8 17677.8 14805.3 -2662.2 -21.92 100yr 31.75 29820.8 17822.4 14660.6 -2662.2 -22.19 100yr 32.00 29820.8 17965.8 14517.2 -2662.2 -22.46 100yr 32.25 29820.8 18109.1 14373.9 -2662.2 -22.73 100yr 32.50 29820.8 18251.7 14231.4 -2662.2 -23.01 100yr 32.75 29820.8 18393.6 14089.5 -2662.2 -23.30 100yr 33.00 29820.8 18534.7 13948.3 -2662.2 -23.59 100yr 33.25 29820.8 18674.6 13808.4 -2662.2 -23.88 100yr 33.50 29820.8 18814.4 13668.6 -2662.2 -24.19 100yr 33.75 29820.8 18953.3 13529.7 -2662.2 -24.50 100yr 34.00 29820.8 19091.8 13391.3 -2662.2 -24.81 100yr 34.25 29820.8 19229.5 13253.5 -2662.2 -25.14 100yr 34.50 29820.8 19366.5 13116.5 -2662.2 -25.47 100yr 34.75 29820.8 19502.3 12980.7 -2662.2 -25.80 100yr 35.00 29820.8 19638.0 12845.1 -2662.2 -26.14 100yr 35.25 29820.8 19773.0 12710.1 -2662.2 -26.50 100yr 35.50 29820.8 19907.3 12575.8 -2662.2 -26.85 100yr 35.75 29820.8 20040.9 12442.2 -2662.2 -27.22 100yr 36.00 29820.8 20173.3 12309.8 -2662.2 -27.60 100yr 36.25 29820.8 20305.4 12177.7 -2662.2 -27.98 100yr 36.50 29820.8 20437.0 12046.1 -2662.2 -28.37 100yr 36.75 29820.8 20567.9 11915.2 -2662.2 -28.77 100yr 37.00 29820.8 20698.1 11784.9 -2662.2 -29.18 100yr 37.25 29820.8 20827.7 11655.4 -2662.2 -29.60 100yr 37.50 29820.8 20956.0 11527.0 -2662.2 -30.03 100yr 37.75 29820.8 21084.2 11398.8 -2662.2 -30.47 100yr 38.00 29820.8 21211.8 11271.2 -2662.2 -30.92 100yr 38.25 29820.8 21338.7 11144.3 -2662.2 -31.39 100yr 38.50 29820.8 21464.9 11018.1 -2662.2 -31.86 100yr 38.75 29820.8 21590.5 10892.6 -2662.2 -32.35 100yr 39.00 29820.8 21714.7 10768.4 -2662.2 -32.84 100yr 39.25 29820.8 21838.9 10644.2 -2662.2 -33.35 100yr 39.50 29820.8 21962.4 10520.6 -2662.2 -33.88 100yr 39.75 29820.8 22085.3 10397.7 -2662.2 -34.42 100yr 40.00 29820.8 22207.6 10275.5 -2662.2 -34.97 100yr 40.25 29820.8 22328.6 10154.4 -2662.2 -35.53Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 3 of 749 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 40.50 29820.8 22449.5 10033.5 -2662.2-36.12 100yr 40.75 29820.8 22569.8 9913.3 -2662.2-36.72 100yr 41.00 29820.8 22689.4 9793.7 -2662.2-37.33 100yr 41.25 29820.8 22808.3 9674.7 -2662.2-37.96 100yr 41.50 29820.8 22926.5 9556.6 -2662.2-38.61 100yr 41.75 29820.8 23043.6 9439.5 -2662.2-39.28 100yr 42.00 29820.8 23160.5 9322.5 -2662.2-39.97 100yr 42.25 29820.8 23276.8 9206.2 -2662.2-40.68 100yr 42.50 29820.8 23392.5 9090.6 -2662.2-41.41 100yr 42.75 29820.8 23507.5 8975.6 -2662.2-42.17 100yr 43.00 29820.8 23621.3 8861.7 -2662.2-42.94 100yr 43.25 29820.8 23735.0 8748.0 -2662.2-43.75 100yr 43.50 29820.8 23848.1 8635.0 -2662.2-44.57 100yr 43.75 29820.8 23960.5 8522.6 -2662.2-45.43 100yr 44.00 29820.8 24072.1 8410.9 -2662.2-46.31 100yr 44.25 29820.8 24183.2 8299.8 -2662.2-47.22 100yr 44.50 29820.8 24293.2 8189.9 -2662.2-48.16 100yr 44.75 29820.8 24403.0 8080.0 -2662.2-49.14 100yr 45.00 29820.8 24512.2 7970.9 -2662.2-50.15 100yr 45.25 29820.8 24620.7 7862.3 -2662.2-51.20 100yr 45.50 29820.8 24728.6 7754.4 -2662.2-52.28 100yr 45.75 29820.8 24835.5 7647.6 -2662.2-53.40 100yr 46.00 29820.8 24942.1 7540.9 -2662.2-54.57 100yr 46.25 29820.8 25048.2 7434.9 -2662.2-55.78 100yr 46.50 29820.8 25153.5 7329.6 -2662.2-57.04 100yr 46.75 29820.8 25258.3 7224.8 -2662.2-58.35 100yr 47.00 29820.8 25362.5 7120.6 -2662.2-59.71 100yr 47.25 29820.8 25465.8 7017.2 -2662.2-61.13 100yr 47.50 29820.8 25568.4 6914.7 -2662.2-62.61 100yr 47.75 29820.8 25671.0 6812.0 -2662.2-64.15 100yr 48.00 29820.8 25772.5 6710.6 -2662.2-65.76 100yr 48.25 29820.8 25873.3 6609.7 -2662.2-67.44 100yr 48.50 29820.8 25973.5 6509.5 -2662.2-69.20 100yr 48.75 29820.8 26073.7 6409.3 -2662.2-71.05 100yr 49.00 29820.8 26172.6 6310.5 -2662.2-72.97 100yr 49.25 29820.8 26271.1 6211.9 -2662.2-75.00 100yr 49.50 29820.8 26369.2 6113.9 -2662.2-77.13 100yr 49.75 29820.8 26466.6 6016.4 -2662.2-79.37 100yr 50.00 29820.8 26563.1 5919.9 -2662.2-81.72 100yr 50.25 29820.8 26659.6 5823.4 -2662.2-84.22 100yr 50.50 29820.8 26755.0 5728.1 -2662.2-86.84 100yr 50.75 29820.8 26849.7 5633.4 -2662.2-89.60 100yr 51.00 29820.8 26943.8 5539.2 -2662.2-92.54 100yr 51.25 29820.8 27037.8 5445.3 -2662.2-95.66 100yr 51.50 29820.8 27130.7 5352.4 -2662.2-98.96 100yr 51.75 29820.8 27223.0 5260.0 -2662.2 -102.48 100yr 52.00 29820.8 27314.8 5168.3 -2662.2 -106.23 100yr 52.25 29820.8 27406.0 5077.0 -2662.2 -110.25 100yr 52.50 29820.8 27497.0 4986.0 -2662.2 -114.56 100yr 52.75 29820.8 27586.6 4896.4 -2662.2 -119.16 100yr 53.00 29820.8 27676.2 4806.9 -2662.2 -124.14 100yr 53.25 29820.8 27765.0 4718.1 -2662.2 -129.50 100yr 53.50 29820.8 27853.7 4629.4 -2662.2 -135.34 100yr 53.75 29820.8 27940.9 4542.2 -2662.2 -141.61Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 4 of 750 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 54.00 29820.8 28028.0 4455.1 -2662.2 -148.49 100yr 54.25 29820.8 28114.1 4369.0 -2662.2 -155.98 100yr 54.50 29820.8 28200.0 4283.1 -2662.2 -164.25 100yr 54.75 29820.8 28285.3 4197.7 -2662.2 -173.38 100yr 55.00 29820.8 28370.0 4113.1 -2662.2 -183.50 100yr 55.25 29820.8 28454.1 4029.0 -2662.2 -194.79 100yr 55.50 29820.8 28537.5 3945.5 -2662.2 -207.46 100yr 55.75 29820.8 28619.8 3863.2 -2662.2 -221.68 100yr 56.00 29820.8 28701.5 3781.5 -2662.2 -237.85 100yr 56.25 29820.8 28783.4 3699.6 -2662.2 -256.62 100yr 56.50 29820.8 28864.6 3618.4 -2662.2 -278.43 100yr 56.75 29820.8 28944.9 3538.1 -2662.2 -303.94 100yr 57.01 29820.8 29025.2 3457.8 -2662.2 -334.62 100yr 57.25 29820.8 29104.1 3379.0 -2662.2 -371.43 100yr 57.50 29820.8 29181.5 3301.6 -2662.2 -416.40 100yr 57.75 29820.8 29258.6 3224.4 -2662.2 -473.56 100yr 58.00 29820.8 29337.0 3146.1 -2662.2 -550.23 100yr 58.25 29820.8 29413.1 3069.9 -2662.2 -653.04 100yr 58.51 29820.8 29489.3 2993.8 -2662.2 -802.97 100yr 58.75 29820.8 29563.5 2919.6 -2662.2 -1034.54 100yr 59.01 29820.8 29638.9 2844.1 -2662.2 -1463.62 100yr 59.26 29820.8 29713.6 2769.5 -2662.2 -2482.32 100yr 59.50 29820.8 29783.9 2699.2 -2662.2 -7204.54 100yr 59.75 29820.8 29854.9 2628.1 -2662.2 7803.30 100yr 60.00 29820.8 29924.5 2558.5 -2662.2 2566.17 100yr 60.25 29820.8 29989.9 2506.7 -2675.8 1582.26 100yr 60.50 29820.8 30053.7 2465.4 -2698.3 1158.73 100yr 60.75 29820.8 30116.4 2429.5 -2725.1 921.80 100yr 61.00 29820.8 30180.2 2397.0 -2756.4 766.87 100yr 61.25 29820.8 30243.4 2368.2 -2790.8 660.36 100yr 61.50 29820.8 30307.0 2342.1 -2828.4 581.70 100yr 61.75 29820.8 30370.6 2318.6 -2868.4 521.70 100yr 62.00 29820.8 30434.2 2297.3 -2910.7 474.50 100yr 62.25 29820.8 30497.3 2278.0 -2954.6 436.73 100yr 62.50 29820.8 30560.9 2260.4 -3000.5 405.41 100yr 62.75 29820.8 30624.5 2244.2 -3047.9 379.23 100yr 63.00 29820.8 30687.5 2229.5 -3096.2 357.26 100yr 63.25 29820.8 30751.1 2215.9 -3146.2 338.21 100yr 63.50 29820.8 30814.7 2203.3 -3197.2 321.70 100yr 63.75 29820.8 30878.3 2191.6 -3249.1 307.26 100yr 64.00 29820.8 30941.9 2180.7 -3301.7 294.52 100yr 64.25 29820.8 31005.5 2170.4 -3355.1 283.21 100yr 64.50 29820.8 31068.4 2160.9 -3408.5 273.21 100yr 64.75 29820.8 31132.0 2151.8 -3463.0 264.12 100yr 65.00 29820.8 31195.7 2143.4 -3518.3 255.90 100yr 65.25 29820.8 31258.9 2135.7 -3573.8 248.51 100yr 65.50 29820.8 31322.6 2128.4 -3630.2 241.72 100yr 65.75 29820.8 31385.8 2121.6 -3686.7 235.56 100yr 66.00 29820.8 31449.6 2115.3 -3744.1 229.87 100yr 66.25 29820.8 31513.3 2109.3 -3801.9 224.63 100yr 66.50 29820.8 31576.5 2103.8 -3859.5 219.82 100yr 66.75 29820.8 31640.2 2098.4 -3917.9 215.33 100yr 67.00 29820.8 31703.4 2093.4 -3976.1 211.20 100yr 67.25 29820.8 31767.2 2088.6 -4035.0 207.31Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 5 of 751 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 67.50 29820.8 31830.4 2084.1 -4093.7 203.71 100yr 67.75 29820.8 31894.1 2079.8 -4153.1 200.31 100yr 68.00 29820.8 31957.3 2075.7 -4212.2 197.16 100yr 68.25 29820.8 32021.0 2071.8 -4272.1 194.16 100yr 68.50 29820.8 32084.8 2068.1 -4332.1 191.35 100yr 68.75 29820.8 32148.0 2064.6 -4391.7 188.72 100yr 69.00 29820.8 32211.7 2061.1 -4452.0 186.21 100yr 69.25 29820.8 32274.9 2057.9 -4512.0 183.86 100yr 69.50 29820.8 32338.6 2054.8 -4572.6 181.61 100yr 69.75 29820.8 32401.8 2051.8 -4632.8 179.49 100yr 70.00 29820.8 32465.6 2048.9 -4693.7 177.47 100yr 70.25 29820.8 32528.8 2046.2 -4754.1 175.56 100yr 70.50 29820.8 32592.5 2043.5 -4815.2 173.73 100yr 70.75 29820.8 32655.7 2041.0 -4875.9 171.99 100yr 71.00 29820.8 32719.4 2038.5 -4937.1 170.33 100yr 71.25 29820.8 32783.2 2036.1 -4998.5 168.73 100yr 71.50 29820.8 32846.4 2033.9 -5059.5 167.22 100yr 71.75 29820.8 32910.1 2031.7 -5121.0 165.77 100yr 72.00 29820.8 32973.3 2029.6 -5182.1 164.38 100yr 72.25 29820.8 33037.0 2027.6 -5243.8 163.04 100yr 72.50 29820.8 33100.2 2025.6 -5305.0 161.77 100yr 72.75 29820.8 33164.0 2023.7 -5366.9 160.53 100yr 73.00 29820.8 33227.2 2021.9 -5428.2 159.36 100yr 73.25 29820.8 33290.9 2020.1 -5490.2 158.21 100yr 73.50 29820.8 33354.6 2018.3 -5552.2 157.11 100yr 73.75 29820.8 33417.8 2016.7 -5613.7 156.07 100yr 74.00 29820.8 33481.6 2015.1 -5675.8 155.04 100yr 74.25 29820.8 33544.8 2013.5 -5737.5 154.07 100yr 74.50 29820.8 33608.5 2012.0 -5799.7 153.12 100yr 74.75 29820.8 33671.7 2010.5 -5861.4 152.21 100yr 75.00 29820.8 33735.4 2009.1 -5923.7 151.32 100yr 75.25 29820.8 33798.6 2007.7 -5985.5 150.47 100yr 75.50 29820.8 33862.4 2006.3 -6047.9 149.64 100yr 75.75 29820.8 33926.1 2005.0 -6110.3 148.84 100yr 76.00 29820.8 33989.3 2003.8 -6172.2 148.07 100yr 76.25 29820.8 34053.0 2002.5 -6234.7 147.32 100yr 76.50 29820.8 34116.2 2001.3 -6296.8 146.59 100yr 76.75 29820.8 34180.0 2000.2 -6359.3 145.88 100yr 77.00 29820.8 34243.2 1999.0 -6421.4 145.20 100yr 77.25 29820.8 34306.9 1997.9 -6484.0 144.54 100yr 77.50 29820.8 34370.1 1996.9 -6546.1 143.89 100yr 77.75 29820.8 34433.8 1995.8 -6608.8 143.26 100yr 78.00 29820.8 34497.0 1994.8 -6671.0 142.66 100yr 78.25 29820.8 34560.8 1993.8 -6733.8 142.06 100yr 78.50 29820.8 34624.5 1992.9 -6796.5 141.49 100yr 78.75 29820.8 34687.7 1991.9 -6858.8 140.93 100yr 79.00 29820.8 34751.4 1991.0 -6921.6 140.38 100yr 79.25 29820.8 34814.6 1990.1 -6983.9 139.85 100yr 79.50 29820.8 34878.4 1989.2 -7046.8 139.33 100yr 79.75 29820.8 34941.5 1988.4 -7109.1 138.83 100yr 80.00 29820.8 35005.3 1987.5 -7172.0 138.34 100yr 80.25 29820.8 35068.5 1986.7 -7234.4 137.86 100yr 80.50 29820.8 35132.2 1985.9 -7297.3 137.39 100yr 80.75 29820.8 35195.9 1985.1 -7360.3 136.93Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 6 of 752 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 81.00 29820.8 35259.1 1984.4 -7422.7 136.49 100yr 81.25 29820.8 35322.9 1983.6 -7485.7 136.05 100yr 81.50 29820.8 35386.1 1982.9 -7548.2 135.63 100yr 81.75 29820.8 35449.8 1982.2 -7611.2 135.21 100yr 82.00 29820.8 35513.0 1981.5 -7673.7 134.81 100yr 82.25 29820.8 35576.7 1980.8 -7736.7 134.41 100yr 82.50 29820.8 35639.9 1980.1 -7799.2 134.03 100yr 82.75 29820.8 35703.7 1979.4 -7862.3 133.65 100yr 83.00 29820.8 35766.9 1978.8 -7924.8 133.28 100yr 83.25 29820.8 35830.6 1978.1 -7987.9 132.92 100yr 83.50 29820.8 35894.3 1977.5 -8051.0 132.56 100yr 83.75 29820.8 35957.5 1976.9 -8113.6 132.21 100yr 84.00 29820.8 36021.3 1976.3 -8176.7 131.87 100yr 84.25 29820.8 36084.5 1975.7 -8239.3 131.54 100yr 84.50 29820.8 36148.2 1975.1 -8302.5 131.21 100yr 84.75 29820.8 36211.4 1974.5 -8365.1 130.90 100yr 85.00 29820.8 36275.1 1974.0 -8428.3 130.58 100yr 85.25 29820.8 36338.3 1973.4 -8490.9 130.28 100yr 85.50 29820.8 36402.1 1972.9 -8554.1 129.98 100yr 85.75 29820.8 36465.8 1972.3 -8617.3 129.68 100yr 86.00 29820.8 36529.0 1971.8 -8680.0 129.39 100yr 86.25 29820.8 36592.7 1971.3 -8743.2 129.11 100yr 86.50 29820.8 36655.9 1970.8 -8805.9 128.83 100yr 86.75 29820.8 36719.7 1970.3 -8869.2 128.56 100yr 87.00 29820.8 36782.9 1969.8 -8931.9 128.29 100yr 87.25 29820.8 36846.6 1969.3 -8995.1 128.03 100yr 87.50 29820.8 36909.8 1968.9 -9057.9 127.77 100yr 87.75 29820.8 36973.5 1968.4 -9121.1 127.52 100yr 88.00 29820.8 37036.7 1968.0 -9183.9 127.27 100yr 88.25 29820.8 37100.5 1967.5 -9247.2 127.03 100yr 88.50 29820.8 37164.2 1967.1 -9310.5 126.79 100yr 88.75 29820.8 37227.4 1966.6 -9373.2 126.55 100yr 89.00 29820.8 37291.1 1966.2 -9436.5 126.32 100yr 89.25 29820.8 37354.3 1965.8 -9499.3 126.09 100yr 89.50 29820.8 37418.1 1965.4 -9562.6 125.87 100yr 89.75 29820.8 37481.3 1965.0 -9625.4 125.65 100yr 90.00 29820.8 37544.5 1964.6 -9688.2 125.44Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 7 of 753 Max Time Max Warning Max Delta Max Surf Max Time Max Max Time Max Name Group Simulation Stage Stage Stage Stage Area Inflow Inflow Outflow Outflow hrs ft ft ft ft2 hrs cfs hrs cfs cont structure BASE 100yr 12.65 853.23 858.00 -0.7300 113 12.46 1.48 12.65 1.47 east pond BASE 100yr 12.18 854.88 856.00 -0.0050 844 12.08 7.12 12.18 6.39 ug detention BASE 100yr 12.65 853.32 854.80 0.0030 4260 12.17 6.74 12.46 1.48 west pond BASE 100yr 12.03 857.43 858.50 -0.0032 391 12.00 1.03 12.03 0.84 cont structure BASE 10yr 12.54 851.86 858.00 -0.7300 113 12.14 1.17 12.54 1.03 east pond BASE 10yr 12.14 852.91 856.00 -0.0050 266 12.08 3.82 12.15 3.71 ug detention BASE 10yr 12.54 851.90 854.80 0.0021 4953 12.12 3.89 12.14 1.17 west pond BASE 10yr 12.01 856.97 858.50 -0.0018 208 12.00 0.55 12.01 0.52Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 1 of 154 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 0.00 0.0 0.0 0.0 0.0 0.00 100yr 0.25 0.0 354.8 201.1 -555.9 156.68 100yr 0.50 0.0 827.7 201.1 -1028.7 124.30 100yr 0.75 0.0 1300.5 201.1 -1501.6 115.46 100yr 1.00 0.0 1773.9 201.1 -1975.0 111.34 100yr 1.25 0.0 2246.8 201.1 -2447.9 108.95 100yr 1.50 0.0 2719.7 201.1 -2920.8 107.39 100yr 1.75 0.0 3192.5 201.1 -3393.6 106.30 100yr 2.00 0.0 3665.9 201.1 -3867.0 105.49 100yr 2.25 0.0 4138.8 201.1 -4339.9 104.86 100yr 2.50 0.0 4611.7 201.1 -4812.8 104.36 100yr 2.75 0.0 5085.1 201.1 -5286.2 103.95 100yr 3.00 0.0 5558.0 201.1 -5759.0 103.62 100yr 3.25 0.3 6030.8 201.4 -6231.9 103.34 100yr 3.50 2.6 6503.7 203.7 -6704.8 103.13 100yr 3.75 7.8 6977.1 208.9 -7178.2 103.00 100yr 4.00 17.1 7450.0 218.2 -7651.1 102.94 100yr 4.25 32.5 7922.8 233.6 -8123.9 102.96 100yr 4.50 54.0 8395.7 255.1 -8596.8 103.06 100yr 4.75 80.1 8869.1 281.2 -9070.2 103.20 100yr 5.00 112.2 9342.0 313.3 -9543.1 103.39 100yr 5.25 148.8 9814.9 349.8 -10015.9 103.62 100yr 5.50 188.5 10288.3 389.5 -10489.4 103.86 100yr 5.75 232.7 10761.1 433.8 -10962.2 104.12 100yr 6.00 279.8 11234.0 480.9 -11435.1 104.39 100yr 6.25 335.5 11706.9 536.6 -11908.0 104.72 100yr 6.50 402.7 12180.3 603.8 -12381.4 105.13 100yr 6.75 475.2 12653.2 676.3 -12854.2 105.55 100yr 7.00 553.8 13126.0 754.9 -13327.1 106.00 100yr 7.25 635.4 13598.9 836.5 -13800.0 106.45 100yr 7.50 722.5 14072.3 923.6 -14273.4 106.92 100yr 7.75 811.8 14545.2 1012.9 -14746.3 107.38 100yr 8.00 908.1 15018.0 1109.2 -15219.1 107.86 100yr 8.25 1012.1 15491.4 1213.2 -15692.5 108.38 100yr 8.50 1132.0 15964.3 1333.1 -16165.4 108.99 100yr 8.75 1273.7 16437.2 1474.8 -16638.3 109.73 100yr 9.00 1422.9 16910.0 1623.9 -17111.1 110.49 100yr 9.25 1589.1 17383.5 1790.2 -17584.5 111.33 100yr 9.50 1772.2 17856.3 1973.3 -18057.4 112.27 100yr 9.75 1965.6 18329.2 2166.1 -18529.7 113.24 100yr 10.00 2181.6 18802.1 2373.4 -18993.9 114.28 100yr 10.25 2410.2 19275.5 2575.6 -19440.9 115.27 100yr 10.50 2674.3 19748.3 2788.6 -19862.6 116.33 100yr 10.75 2991.3 20221.2 3022.1 -20252.0 117.54 100yr 11.00 3406.9 20694.1 3310.0 -20597.2 119.15 100yr 11.25 3917.6 21167.8 3630.8 -20881.0 121.05 100yr 11.50 4528.7 21640.7 3975.0 -21087.0 123.23 100yr 11.75 5795.0 22113.6 4844.9 -21163.5 129.69 100yr 12.00 9670.7 22784.2 8050.0 -21163.5 161.39 100yr 12.25 15872.4 23788.9 13247.0 -21163.5 267.33 100yr 12.50 18925.7 25021.1 15068.2 -21163.5 347.21 100yr 12.75 20281.6 26339.6 15105.5 -21163.5 349.35 100yr 13.00 21153.3 27646.9 14669.9 -21163.5 325.91 100yr 13.25 21804.2 28930.8 14036.8 -21163.5 296.96Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 1 of 755 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 13.50 22352.4 30189.0 13326.9 -21163.5 270.06 100yr 13.75 22809.7 31404.1 12569.1 -21163.5 246.25 100yr 14.00 23217.8 32580.6 11800.7 -21163.5 226.04 100yr 14.25 23579.7 33717.8 11025.4 -21163.5 208.75 100yr 14.50 23895.7 34814.6 10244.6 -21163.5 193.82 100yr 14.75 24182.0 35875.1 9470.5 -21163.5 180.99 100yr 15.00 24435.5 36886.5 8712.5 -21163.5 169.97 100yr 15.25 24689.7 37851.9 8001.3 -21163.5 160.79 100yr 15.50 24932.7 38774.8 7321.5 -21163.5 152.89 100yr 15.75 25150.8 39657.2 6657.2 -21163.5 145.89 100yr 16.00 25365.8 40498.7 6030.6 -21163.5 139.85 100yr 16.25 25574.0 41284.4 5453.1 -21163.5 134.71 100yr 16.50 25788.2 42026.3 4925.4 -21163.5 130.33 100yr 16.75 25989.2 42647.9 4504.9 -21163.5 127.04 100yr 17.00 26179.6 43135.0 4239.8 -21195.3 125.01 100yr 17.25 26360.3 43605.7 4050.3 -21295.7 123.49 100yr 17.50 26535.8 44078.7 3902.7 -21445.6 122.25 100yr 17.75 26713.5 44552.0 3792.2 -21630.7 121.26 100yr 18.00 26880.9 45025.3 3697.8 -21842.2 120.38 100yr 18.25 27034.4 45498.1 3612.2 -22075.8 119.56 100yr 18.50 27180.3 45971.3 3537.9 -22328.8 118.83 100yr 18.75 27320.8 46444.0 3474.5 -22597.7 118.17 100yr 19.00 27462.9 46916.8 3425.4 -22879.3 117.61 100yr 19.25 27603.1 47390.4 3384.0 -23171.3 117.10 100yr 19.50 27745.3 47863.2 3352.7 -23470.6 116.67 100yr 19.75 27885.2 48335.9 3325.5 -23776.2 116.26 100yr 20.00 28022.3 48808.7 3300.3 -24086.8 115.88 100yr 20.25 28139.5 49282.3 3261.2 -24404.0 115.42 100yr 20.50 28246.4 49755.1 3220.2 -24728.9 114.97 100yr 20.75 28353.5 50228.4 3186.5 -25061.3 114.57 100yr 21.00 28458.6 50701.0 3157.0 -25399.3 114.19 100yr 21.25 28567.7 51174.2 3136.2 -25742.7 113.87 100yr 21.50 28676.0 51646.8 3118.2 -26089.1 113.57 100yr 21.75 28781.6 52120.1 3100.7 -26439.2 113.29 100yr 22.00 28888.5 52593.4 3087.4 -26792.2 113.02 100yr 22.25 28993.6 53066.0 3074.7 -27147.1 112.77 100yr 22.50 29100.5 53539.2 3065.7 -27504.4 112.54 100yr 22.75 29205.7 54011.8 3056.7 -27862.9 112.32 100yr 23.00 29314.9 54485.1 3052.9 -28223.1 112.13 100yr 23.25 29423.5 54958.4 3049.1 -28583.9 111.94 100yr 23.50 29529.0 55431.0 3043.2 -28945.2 111.75 100yr 23.75 29636.0 55904.3 3039.4 -29307.7 111.57 100yr 24.00 29733.9 56377.5 3027.5 -29671.2 111.36 100yr 24.25 29798.7 56850.1 2986.2 -30037.7 111.04 100yr 24.50 29817.2 57323.4 2907.7 -30413.9 110.57 100yr 24.75 29820.4 57796.0 2826.7 -30802.4 110.10 100yr 25.00 29820.8 58269.3 2754.6 -31203.2 109.68 100yr 25.25 29820.8 58742.2 2692.2 -31613.6 109.31 100yr 25.50 29820.8 59215.0 2638.0 -32032.3 108.97 100yr 25.75 29820.8 59688.4 2590.7 -32458.3 108.67 100yr 26.00 29820.8 60161.3 2549.1 -32889.6 108.40 100yr 26.25 29820.8 60634.2 2512.3 -33325.7 108.15 100yr 26.50 29820.8 61107.6 2479.6 -33766.4 107.93 100yr 26.75 29820.8 61580.4 2450.4 -34210.0 107.72Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 2 of 756 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 27.00 29820.8 62053.3 2424.1 -34656.6 107.52 100yr 27.25 29820.8 62526.2 2400.4 -35105.8 107.34 100yr 27.50 29820.8 62999.6 2378.8 -35557.7 107.17 100yr 27.75 29820.8 63472.5 2359.3 -36011.0 107.01 100yr 28.00 29820.8 63945.3 2341.5 -36466.1 106.86 100yr 28.25 29820.8 64418.2 2325.2 -36922.7 106.72 100yr 28.50 29820.8 64891.6 2310.3 -37381.1 106.59 100yr 28.75 29820.8 65364.5 2296.6 -37840.3 106.46 100yr 29.00 29820.8 65837.3 2283.9 -38300.5 106.34 100yr 29.25 29820.8 66310.7 2272.2 -38762.2 106.23 100yr 29.50 29820.8 66783.6 2261.2 -39224.0 106.12 100yr 29.75 29820.8 67256.5 2250.9 -39686.6 106.01 100yr 30.00 29820.8 67729.4 2241.2 -40149.8 105.91 100yr 30.25 29820.8 68202.8 2232.1 -40614.1 105.82 100yr 30.50 29820.8 68675.6 2223.6 -41078.5 105.72 100yr 30.75 29820.8 69148.5 2215.8 -41543.5 105.63 100yr 31.00 29820.8 69621.4 2208.5 -42009.1 105.55 100yr 31.25 29820.8 70094.8 2201.6 -42475.7 105.47 100yr 31.50 29820.8 70567.6 2195.3 -42942.2 105.39 100yr 31.75 29820.8 71040.5 2189.3 -43409.1 105.31 100yr 32.00 29820.8 71513.9 2183.7 -43876.8 105.24 100yr 32.25 29820.8 71986.8 2178.3 -44344.4 105.17 100yr 32.50 29820.8 72459.7 2173.3 -44812.2 105.10 100yr 32.75 29820.8 72932.5 2168.5 -45280.2 105.03 100yr 33.00 29820.8 73405.9 2163.9 -45749.1 104.96 100yr 33.25 29820.8 73878.8 2159.6 -46217.6 104.90 100yr 33.50 29820.8 74351.7 2155.5 -46686.4 104.84 100yr 33.75 29820.8 74824.5 2151.6 -47155.3 104.78 100yr 34.00 29820.8 75297.9 2147.8 -47625.0 104.72 100yr 34.25 29820.8 75770.8 2144.3 -48094.3 104.67 100yr 34.50 29820.8 76243.7 2140.8 -48563.8 104.61 100yr 34.75 29820.8 76717.1 2137.6 -49033.9 104.56 100yr 35.00 29820.8 77190.0 2134.4 -49503.6 104.51 100yr 35.25 29820.8 77662.8 2131.4 -49973.5 104.46 100yr 35.50 29820.8 78135.7 2128.5 -50443.5 104.41 100yr 35.75 29820.8 78609.1 2125.8 -50914.1 104.36 100yr 36.00 29820.8 79082.0 2123.1 -51384.3 104.31 100yr 36.25 29820.8 79554.8 2120.6 -51854.6 104.26 100yr 36.50 29820.8 80027.7 2118.1 -52325.0 104.22 100yr 36.75 29820.8 80501.1 2115.7 -52796.1 104.17 100yr 37.00 29820.8 80974.0 2113.5 -53266.7 104.13 100yr 37.25 29820.8 81446.9 2111.3 -53737.4 104.09 100yr 37.50 29820.8 81920.3 2109.1 -54208.7 104.05 100yr 37.75 29820.8 82393.1 2107.1 -54679.5 104.01 100yr 38.00 29820.8 82866.0 2105.1 -55150.4 103.97 100yr 38.25 29820.8 83338.9 2103.2 -55621.3 103.93 100yr 38.50 29820.8 83812.3 2101.4 -56092.9 103.89 100yr 38.75 29820.8 84285.2 2099.6 -56564.0 103.85 100yr 39.00 29820.8 84758.0 2097.9 -57035.1 103.82 100yr 39.25 29820.8 85230.9 2096.2 -57506.3 103.78 100yr 39.50 29820.8 85704.3 2094.6 -57978.1 103.75 100yr 39.75 29820.8 86177.2 2093.0 -58449.4 103.71 100yr 40.00 29820.8 86650.0 2091.5 -58920.7 103.68 100yr 40.25 29820.8 87122.9 2090.0 -59392.1 103.65Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 3 of 757 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 40.50 29820.8 87596.3 2088.5 -59864.1 103.61 100yr 40.75 29820.8 88069.2 2087.2 -60335.6 103.58 100yr 41.00 29820.8 88542.0 2085.8 -60807.1 103.55 100yr 41.25 29820.8 89015.5 2084.5 -61279.2 103.52 100yr 41.50 29820.8 89488.3 2083.2 -61750.8 103.49 100yr 41.75 29820.8 89961.2 2082.0 -62222.4 103.46 100yr 42.00 29820.8 90434.1 2080.8 -62694.1 103.43 100yr 42.25 29820.8 90907.5 2079.6 -63166.3 103.40 100yr 42.50 29820.8 91380.3 2078.5 -63638.1 103.38 100yr 42.75 29820.8 91853.2 2077.4 -64109.8 103.35 100yr 43.00 29820.8 92326.1 2076.3 -64581.6 103.32 100yr 43.25 29820.8 92799.5 2075.2 -65054.0 103.30 100yr 43.50 29820.8 93272.4 2074.2 -65525.8 103.27 100yr 43.75 29820.8 93745.2 2073.2 -65997.7 103.24 100yr 44.00 29820.8 94218.6 2072.3 -66470.1 103.22 100yr 44.25 29820.8 94691.5 2071.3 -66942.1 103.19 100yr 44.50 29820.8 95164.4 2070.4 -67414.0 103.17 100yr 44.75 29820.8 95637.2 2069.5 -67886.0 103.14 100yr 45.00 29820.8 96110.6 2068.7 -68358.5 103.12 100yr 45.25 29820.8 96583.5 2067.8 -68830.6 103.10 100yr 45.50 29820.8 97056.4 2067.0 -69302.6 103.07 100yr 45.75 29820.8 97529.3 2066.1 -69774.6 103.05 100yr 46.00 29820.8 98002.7 2065.3 -70247.2 103.03 100yr 46.25 29820.8 98475.5 2064.6 -70719.3 103.01 100yr 46.50 29820.8 98948.4 2063.8 -71191.4 102.99 100yr 46.75 29820.8 99421.8 2063.0 -71664.1 102.96 100yr 47.00 29820.8 99894.7 2062.3 -72136.2 102.94 100yr 47.25 29820.8 100367.5 2061.6 -72608.4 102.92 100yr 47.50 29820.8 100840.4 2060.9 -73080.5 102.90 100yr 47.75 29820.8 101313.8 2060.2 -73553.2 102.88 100yr 48.00 29820.8 101786.7 2059.5 -74025.4 102.86 100yr 48.25 29820.8 102259.6 2058.8 -74497.6 102.84 100yr 48.50 29820.8 102732.4 2058.2 -74969.8 102.82 100yr 48.75 29820.8 103205.8 2057.5 -75442.6 102.80 100yr 49.00 29820.8 103678.7 2056.9 -75914.8 102.78 100yr 49.25 29820.8 104151.6 2056.3 -76387.1 102.77 100yr 49.50 29820.8 104625.0 2055.7 -76859.9 102.75 100yr 49.75 29820.8 105097.8 2055.1 -77332.1 102.73 100yr 50.00 29820.8 105570.7 2054.5 -77804.4 102.71 100yr 50.25 29820.8 106043.6 2053.9 -78276.7 102.69 100yr 50.50 29820.8 106517.0 2053.3 -78749.6 102.68 100yr 50.75 29820.8 106989.9 2052.8 -79221.9 102.66 100yr 51.00 29820.8 107462.7 2052.2 -79694.2 102.64 100yr 51.25 29820.8 107935.6 2051.7 -80166.6 102.63 100yr 51.50 29820.8 108409.0 2051.2 -80639.4 102.61 100yr 51.75 29820.8 108881.9 2050.7 -81111.8 102.59 100yr 52.00 29820.8 109354.7 2050.2 -81584.2 102.58 100yr 52.25 29820.8 109828.1 2049.7 -82057.1 102.56 100yr 52.50 29820.8 110301.0 2049.2 -82529.4 102.55 100yr 52.75 29820.8 110773.9 2048.7 -83001.8 102.53 100yr 53.00 29820.8 111246.8 2048.2 -83474.2 102.52 100yr 53.25 29820.8 111720.2 2047.8 -83947.2 102.50 100yr 53.50 29820.8 112193.0 2047.3 -84419.6 102.49 100yr 53.75 29820.8 112665.9 2046.9 -84892.0 102.47Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 4 of 758 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 54.00 29820.8 113138.8 2046.4 -85364.4 102.46 100yr 54.25 29820.8 113612.2 2046.0 -85837.4 102.44 100yr 54.50 29820.8 114085.0 2045.6 -86309.9 102.43 100yr 54.75 29820.8 114557.9 2045.2 -86782.3 102.41 100yr 55.00 29820.8 115030.8 2044.7 -87254.8 102.40 100yr 55.25 29820.8 115504.2 2044.3 -87727.8 102.39 100yr 55.50 29820.8 115977.1 2043.9 -88200.2 102.37 100yr 55.75 29820.8 116449.9 2043.6 -88672.7 102.36 100yr 56.00 29820.8 116923.3 2043.2 -89145.7 102.35 100yr 56.25 29820.8 117396.2 2042.8 -89618.2 102.33 100yr 56.50 29820.8 117869.1 2042.4 -90090.7 102.32 100yr 56.75 29820.8 118341.9 2042.1 -90563.2 102.31 100yr 57.00 29820.8 118815.4 2041.7 -91036.3 102.29 100yr 57.25 29820.8 119288.2 2041.3 -91508.8 102.28 100yr 57.50 29820.8 119761.1 2041.0 -91981.3 102.27 100yr 57.75 29820.8 120234.0 2040.6 -92453.8 102.26 100yr 58.00 29820.8 120707.4 2040.3 -92926.9 102.24 100yr 58.25 29820.8 121180.2 2040.0 -93399.5 102.23 100yr 58.50 29820.8 121653.1 2039.6 -93872.0 102.22 100yr 58.75 29820.8 122126.5 2039.3 -94345.1 102.21 100yr 59.00 29820.8 122599.4 2039.0 -94817.6 102.20 100yr 59.25 29820.8 123072.3 2038.7 -95290.2 102.19 100yr 59.50 29820.8 123545.1 2038.4 -95762.7 102.17 100yr 59.75 29820.8 124018.5 2038.1 -96235.8 102.16 100yr 60.00 29820.8 124491.4 2037.8 -96708.4 102.15 100yr 60.25 29820.8 124964.3 2037.5 -97181.0 102.14 100yr 60.50 29820.8 125437.1 2037.2 -97653.6 102.13 100yr 60.75 29820.8 125910.5 2036.9 -98126.7 102.12 100yr 61.00 29820.8 126383.4 2036.6 -98599.3 102.11 100yr 61.25 29820.8 126856.3 2036.3 -99071.9 102.10 100yr 61.50 29820.8 127329.7 2036.1 -99545.0 102.09 100yr 61.75 29820.8 127802.6 2035.8 -100017.6 102.08 100yr 62.00 29820.8 128275.4 2035.5 -100490.2 102.07 100yr 62.25 29820.8 128748.3 2035.3 -100962.8 102.06 100yr 62.50 29820.8 129221.7 2035.0 -101435.9 102.05 100yr 62.75 29820.8 129694.6 2034.8 -101908.6 102.04 100yr 63.00 29820.8 130167.4 2034.5 -102381.2 102.03 100yr 63.25 29820.8 130640.3 2034.3 -102853.8 102.02 100yr 63.50 29820.8 131113.7 2034.0 -103327.0 102.01 100yr 63.75 29820.8 131586.6 2033.8 -103799.6 102.00 100yr 64.00 29820.8 132059.5 2033.5 -104272.2 101.99 100yr 64.25 29820.8 132532.9 2033.3 -104745.4 101.98 100yr 64.50 29820.8 133005.7 2033.1 -105218.0 101.97 100yr 64.75 29820.8 133478.6 2032.8 -105690.7 101.96 100yr 65.00 29820.8 133951.5 2032.6 -106163.3 101.95 100yr 65.25 29820.8 134424.9 2032.4 -106636.5 101.94 100yr 65.50 29820.8 134897.7 2032.2 -107109.1 101.93 100yr 65.75 29820.8 135370.6 2031.9 -107581.8 101.93 100yr 66.00 29820.8 135843.5 2031.7 -108054.4 101.92 100yr 66.25 29820.8 136316.9 2031.5 -108527.6 101.91 100yr 66.50 29820.8 136789.8 2031.3 -109000.3 101.90 100yr 66.75 29820.8 137262.6 2031.1 -109473.0 101.89 100yr 67.00 29820.8 137736.0 2030.9 -109946.2 101.88 100yr 67.25 29820.8 138208.9 2030.7 -110418.8 101.87Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 5 of 759 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 67.50 29820.8 138681.8 2030.5 -110891.5 101.87 100yr 67.75 29820.8 139154.6 2030.3 -111364.2 101.86 100yr 68.00 29820.8 139628.0 2030.1 -111837.4 101.85 100yr 68.25 29820.8 140100.9 2029.9 -112310.1 101.84 100yr 68.50 29820.8 140573.8 2029.7 -112782.8 101.83 100yr 68.75 29820.8 141046.7 2029.5 -113255.4 101.82 100yr 69.00 29820.8 141520.1 2029.3 -113728.6 101.82 100yr 69.25 29820.8 141992.9 2029.2 -114201.3 101.81 100yr 69.50 29820.8 142465.8 2029.0 -114674.0 101.80 100yr 69.75 29820.8 142939.2 2028.8 -115147.2 101.79 100yr 70.00 29820.8 143412.1 2028.6 -115619.9 101.79 100yr 70.25 29820.8 143884.9 2028.4 -116092.6 101.78 100yr 70.50 29820.8 144357.8 2028.3 -116565.3 101.77 100yr 70.75 29820.8 144831.2 2028.1 -117038.5 101.76 100yr 71.00 29820.8 145304.1 2027.9 -117511.2 101.76 100yr 71.25 29820.8 145777.0 2027.7 -117983.9 101.75 100yr 71.50 29820.8 146249.8 2027.6 -118456.6 101.74 100yr 71.75 29820.8 146723.2 2027.4 -118929.9 101.73 100yr 72.00 29820.8 147196.1 2027.2 -119402.6 101.73 100yr 72.25 29820.8 147669.0 2027.1 -119875.3 101.72 100yr 72.50 29820.8 148141.8 2026.9 -120348.0 101.71 100yr 72.75 29820.8 148615.3 2026.7 -120821.2 101.71 100yr 73.00 29820.8 149088.1 2026.6 -121293.9 101.70 100yr 73.25 29820.8 149561.0 2026.4 -121766.6 101.69 100yr 73.50 29820.8 150034.4 2026.2 -122239.9 101.69 100yr 73.75 29820.8 150507.3 2026.1 -122712.6 101.68 100yr 74.00 29820.8 150980.1 2025.9 -123185.3 101.67 100yr 74.25 29820.8 151453.0 2025.8 -123658.0 101.67 100yr 74.50 29820.8 151926.4 2025.6 -124131.3 101.66 100yr 74.75 29820.8 152399.3 2025.4 -124604.0 101.65 100yr 75.00 29820.8 152872.1 2025.3 -125076.7 101.65 100yr 75.25 29820.8 153345.0 2025.1 -125549.4 101.64 100yr 75.50 29820.8 153818.4 2025.0 -126022.7 101.63 100yr 75.75 29820.8 154291.3 2024.8 -126495.4 101.63 100yr 76.00 29820.8 154764.2 2024.7 -126968.1 101.62 100yr 76.25 29820.8 155237.6 2024.5 -127441.4 101.61 100yr 76.50 29820.8 155710.4 2024.4 -127914.1 101.61 100yr 76.75 29820.8 156183.3 2024.2 -128386.8 101.60 100yr 77.00 29820.8 156656.2 2024.1 -128859.5 101.60 100yr 77.25 29820.8 157129.6 2024.0 -129332.8 101.59 100yr 77.50 29820.8 157602.5 2023.8 -129805.5 101.58 100yr 77.75 29820.8 158075.3 2023.7 -130278.2 101.58 100yr 78.00 29820.8 158548.2 2023.5 -130751.0 101.57 100yr 78.25 29820.8 159021.6 2023.4 -131224.2 101.57 100yr 78.50 29820.8 159494.5 2023.3 -131697.0 101.56 100yr 78.75 29820.8 159967.3 2023.1 -132169.7 101.55 100yr 79.00 29820.8 160440.7 2023.0 -132643.0 101.55 100yr 79.25 29820.8 160913.6 2022.9 -133115.7 101.54 100yr 79.50 29820.8 161386.5 2022.7 -133588.4 101.54 100yr 79.75 29820.8 161859.4 2022.6 -134061.2 101.53 100yr 80.00 29820.8 162332.8 2022.5 -134534.5 101.53 100yr 80.25 29820.8 162805.6 2022.3 -135007.2 101.52 100yr 80.50 29820.8 163278.5 2022.2 -135479.9 101.52 100yr 80.75 29820.8 163751.4 2022.1 -135952.7 101.51Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 6 of 760 Inflow Outflow Change in Simulation Time Volume Volume Sys Storage Difference Error hrs ft3 ft3 ft3 ft3 % 100yr 81.00 29820.8 164224.8 2021.9 -136425.9 101.50 100yr 81.25 29820.8 164697.6 2021.8 -136898.7 101.50 100yr 81.50 29820.8 165170.5 2021.7 -137371.4 101.49 100yr 81.75 29820.8 165643.9 2021.6 -137844.7 101.49 100yr 82.00 29820.8 166116.8 2021.4 -138317.5 101.48 100yr 82.25 29820.8 166589.7 2021.3 -138790.2 101.48 100yr 82.50 29820.8 167062.5 2021.2 -139263.0 101.47 100yr 82.75 29820.8 167535.9 2021.1 -139736.2 101.47 100yr 83.00 29820.8 168008.8 2020.9 -140209.0 101.46 100yr 83.25 29820.8 168481.7 2020.8 -140681.7 101.46 100yr 83.50 29820.8 168954.5 2020.7 -141154.5 101.45 100yr 83.75 29820.8 169427.9 2020.6 -141627.8 101.45 100yr 84.00 29820.8 169900.8 2020.5 -142100.5 101.44 100yr 84.25 29820.8 170373.7 2020.3 -142573.3 101.44 100yr 84.50 29820.8 170847.1 2020.2 -143046.6 101.43 100yr 84.75 29820.8 171320.0 2020.1 -143519.3 101.43 100yr 85.00 29820.8 171792.8 2020.0 -143992.1 101.42 100yr 85.25 29820.8 172265.7 2019.9 -144464.8 101.42 100yr 85.50 29820.8 172739.1 2019.8 -144938.1 101.41 100yr 85.75 29820.8 173212.0 2019.7 -145410.9 101.41 100yr 86.00 29820.8 173684.8 2019.5 -145883.6 101.40 100yr 86.25 29820.8 174157.7 2019.4 -146356.4 101.40 100yr 86.50 29820.8 174631.1 2019.3 -146829.7 101.39 100yr 86.75 29820.8 175104.0 2019.2 -147302.5 101.39 100yr 87.00 29820.8 175576.9 2019.1 -147775.2 101.39 100yr 87.25 29820.8 176050.3 2019.0 -148248.5 101.38 100yr 87.50 29820.8 176523.1 2018.9 -148721.3 101.38 100yr 87.75 29820.8 176996.0 2018.8 -149194.0 101.37 100yr 88.00 29820.8 177468.9 2018.7 -149666.8 101.37 100yr 88.25 29820.8 177942.3 2018.6 -150140.1 101.36 100yr 88.50 29820.8 178415.1 2018.5 -150612.9 101.36 100yr 88.75 29820.8 178888.0 2018.4 -151085.6 101.35 100yr 89.00 29820.8 179360.9 2018.3 -151558.4 101.35 100yr 89.25 29820.8 179834.3 2018.2 -152031.7 101.35 100yr 89.50 29820.8 180307.2 2018.1 -152504.5 101.34 100yr 89.75 29820.8 180780.0 2018.0 -152977.2 101.34 100yr 90.00 29820.8 181252.9 2017.9 -153450.0 101.33 100yr 90.00 29820.8 181252.9 2017.9 -153450.0 101.33Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc.Page 7 of 761 Water Quality CN Calculation Rolling Hill-storm chambers Area Description Area (ac)%imp Area- imp (ac)I impervious 0.924 100 0.924 open 0.634 0 0.000 total 1.558 0.924 59.3 Rv = .05 +.009 I =0.58 WQ-CN 95.3 WQv 3,301 62 Rolling Hills Carmel Indiana May 2021 1. Select the chamber model:3. Enter the total number of end caps: Chamber Type 3 No. of End Caps 8 2. Enter the total number of chambers:4. Enter storage system footprint (ft²): No. of Chambers 108 6,143.00 Depth Per Per Total Depth Per Per Total (in)Chamber (cf)End Cap (cf)System (cf)(in)Chamber (cf)End Cap (cf)System (cf) 0 0.00 0.00 0.00 34 79.47 12.13 12,169.95 1 0.00 0.00 204.77 35 82.14 12.45 12,549.27 2 0.00 0.00 409.53 36 84.74 12.75 12,923.95 3 0.00 0.00 614.30 37 87.28 13.03 13,294.65 4 0.00 0.00 819.07 38 89.76 13.30 13,661.42 5 0.00 0.00 1,023.83 39 92.16 13.55 14,022.91 6 0.00 0.00 1,228.60 40 94.50 13.78 14,380.41 7 0.00 0.00 1,433.37 41 96.75 14.00 14,732.03 8 0.00 0.00 1,638.13 42 98.93 14.20 15,079.02 9 0.00 0.00 1,842.90 43 101.01 14.39 15,419.49 10 3.55 0.59 2,280.54 44 103.00 14.56 15,754.02 11 7.06 1.17 2,715.54 45 104.87 14.72 16,080.73 12 10.55 1.75 3,149.24 46 106.63 14.87 16,400.27 13 14.01 2.33 3,581.00 47 108.25 14.99 16,710.59 14 17.45 2.90 4,011.41 48 109.71 15.09 17,010.44 15 20.85 3.46 4,439.19 49 110.98 15.17 17,297.89 16 24.23 4.02 4,865.67 50 112.01 15.24 17,569.73 17 27.58 4.57 5,290.15 51 112.63 15.29 17,814.92 18 30.90 5.11 5,712.65 52 113.08 15.32 18,048.99 19 34.19 5.64 6,133.15 53 113.39 15.33 18,273.89 20 37.45 6.16 6,551.66 54 113.57 15.33 18,490.32 21 40.68 6.67 6,968.18 55 113.57 15.33 18,695.09 22 43.89 7.17 7,383.35 56 113.57 15.33 18,899.85 23 47.06 7.66 7,795.89 57 113.57 15.33 19,104.62 24 50.19 8.13 8,205.74 58 113.57 15.33 19,309.39 25 53.30 8.59 8,614.24 59 113.57 15.33 19,514.15 26 56.37 9.04 9,020.10 60 113.57 15.33 19,718.92 27 59.41 9.48 9,423.97 61 113.57 15.33 19,923.69 28 62.40 9.90 9,824.51 62 113.57 15.33 20,128.45 29 65.37 10.31 10,223.70 63 113.57 15.33 20,333.22 30 68.29 10.71 10,619.60 64 113.57 15.33 20,537.99 31 71.16 11.08 11,012.12 65 113.57 15.33 20,742.75 32 73.98 11.45 11,401.40 66 113.57 15.33 20,947.52 33 76.75 11.80 11,787.34 StormKeeper™ Stage Storage StormKeeper™ Stage Storage 63 Appendix “C” Storm Sewer Design 64 EX52341EX101103108107110111104106112113105103a114115109102Know what'sCallbelow.before you dig.GRAPHIC SCALENREVISIONS: 3961 Perry Boulevard Whitestown, IN 46075 Ph. 317-769-2916 www.innovativeeci.com ENGINEERING & CONSULTINGExhibit CStorm Basins19122Rolling Hills Townhomes Carmel, Indiana ECL Development, LLC 12965 Old Meridian Street Carmel, IN 46032 317-669-620965 Rolling HillsIECI#19122BASINroad pmt roof conc lawn WTD.BASIN AREA(SF.)@.85 @.85 @.90 @.85@ 0.2 "C" FACTORAREA (Ac.)107 149641194 4652 5380 2803458 0.7221.40.343.91 0.96108 53141077 18203412076 0.605.00.126.12 0.45110 993993 0.205.00.026.12 0.03111 234299608 72216600 0.6815.30.544.53 1.66115 142594334 012948631 0.465.00.336.12 0.91west pond 63412207 8483286 0.525.00.156.12 0.46east pond 25752575 0.205.00.066.12 0.07"Q""I"TCBASIN #66 Tc-Calc. Time of Concentration WorksheetPROJECT: Rolling Hills Based on TR-55JOB #: 19122Typical values for Manning's nTypical values for Manning's nOverland Flow2 year, 24 hour rainfall =2.90inchesChannel Flow short grassE 0.150 grass0.030 dense grass F 0.240 concrete0.015 pavementA 0.011 rip-rap0.035 woods (dense) I 0.800 woods (light) H 0.400 cult <=20% res. H 0.060 cult >20% res. H 0.170 Overland flowseg. 1 Overland flowseg. 2 Shallow Concentrated FlowChannel FlowBasin Length S n T_t Length S n T_t Length S Paved/Un Vel. T_t Length a Pw r S n Vel. T_tT_cname (ft) %(min) (ft) %(min) (ft) % (P or U) (ft/s) (min) (ft) (s.f.) (ft) (ft) %(ft/s) (min)(min)107 87 0.70 0.24020.40 2.00 0.0110.0130 1.10 P2.13 1.000.00 0.021.4108 10 4.00 0.2401.80 2.00 0.0110.0571.00P2.03 0.500.00 0.05.0110 6 2.00 0.2401.60 2.00 0.0110.076 1.00U1.61 0.800.00 0.05.0111 93 2.00 0.24014.10 2.00 0.0110.0154 1.30P2.32 1.10 6.00 49.000.121.00 0.0152.44 0.015.3115 20 2.10 0.0110.30 2.00 0.0110.0137 1.00U1.61 1.400.00 0.05.0west pond 5 4.00 0.2401.00 2.00 0.0110.001.00 P2.03 0.0186 0.07 0.580.122.70 0.0351.70 1.85.0east pond 37 22.00 0.2402.60 1.00 0.2400.001.00 P2.03 0.00 6.00 49.000.121.00 0.0152.44 0.05.0Page 167 68 107 Depth Weir Orifice Casting Neenah R3287-10V 0.00 0.00 0.00 Area 2.1 ft2 0.05 0.14 1.15 Perimeter 5.5 ft 0.10 0.39 1.62 3/4 P 4.125 ft 0.11 0.45 1.70 1/2 A 1.05 ft2 0.18 0.95 2.18 Q=3.0*P*D^1.5 (Weir)0.19 1.02 2.24 Q=4.89*A*D^0.5 (Orifice)0.78 8.52 4.53 0.79 8.69 4.56 0.80 8.85 4.59 0.81 9.02 4.62 i = 3.91 0.82 9.19 4.65 C= 0.72 A= 0.34 0.96 108 Depth Weir Orifice Casting Neenah R3287-10V 0.00 0.00 0.00 Area 2.1 ft2 0.01 0.01 0.51 Perimeter 5.5 ft 0.02 0.04 0.73 3/4 P 4.125 ft 0.03 0.06 0.89 1/2 A 1.05 ft2 0.04 0.10 1.03 Q=3.0*P*D^1.5 (Weir)0.10 0.39 1.62 Q=4.89*A*D^0.5 (Orifice)0.11 0.45 1.70 0.60 5.75 3.98 0.61 5.90 4.01 0.62 6.04 4.04 i = 6.12 0.63 6.19 4.08 C= 0.60 A= 0.12 0.44 Civil Engineering • Land Planning • Development Consultants Q=CiA GRATE FLOW IN CFS Q= C x I x A = Structure Number Q=CiA GRATE FLOW IN CFS Q= C x I x A = Sump Grate Ponding Depth Calculation Structure Number 0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1Discharge, cfsDepth Over Grate, ft Grate Discharge Weir Orifice -1 0 1 2 3 4 5 6 0 0.2 0.4 0.6 0.8Discharge, cfsDepth Over Grate, ft Grate Discharge Weir Orifice 69 110 Depth Weir Orifice Casting Neenah R4342 0.00 0.00 0.00 Area 2 ft2 0.01 0.01 0.49 Perimeter 6 ft 0.02 0.04 0.69 3/4 P 4.5 ft 0.12 0.56 1.69 1/2 A 1 ft2 0.13 0.63 1.76 Q=3.0*P*D^1.5 (Weir)0.14 0.71 1.83 Q=4.89*A*D^0.5 (Orifice)0.40 3.42 3.09 0.41 3.54 3.13 2.81 63.59 8.20 0.45 4.08 3.28 i = 6.12 0.50 4.77 3.46 C= 0.20 A= 0.02 0.03 111 Depth Weir Orifice Casting Neenah R3287-10V 0.00 0.00 0.00 Area 2.1 ft2 0.05 0.14 1.15 Perimeter 5.5 ft 0.13 0.58 1.85 3/4 P 4.125 ft 0.14 0.65 1.92 1/2 A 1.05 ft2 0.26 1.64 2.62 Q=3.0*P*D^1.5 (Weir)0.27 1.74 2.67 Q=4.89*A*D^0.5 (Orifice)0.35 2.56 3.04 0.40 3.13 3.25 0.67 6.79 4.20 0.68 6.94 4.23 i = 4.53 0.69 7.09 4.27 C= 0.68 A= 0.54 1.66 GRATE FLOW IN CFS Q= C x I x A = Civil Engineering • Land Planning • Development Consultants Structure Number Q=CiA Q= C x I x A = Structure Number Q=CiA GRATE FLOW IN CFS Sump Grate Ponding Depth Calculation -10 0 10 20 30 40 50 60 70 0 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3Discharge, cfsDepth Over Grate, ft Grate Discharge Weir Orifice 0 1 2 3 4 5 6 7 8 9 0 0.2 0.4 0.6 0.8Discharge, cfsDepth Over Grate, ft Grate Discharge Weir Orifice 0 2 4 6 8 10 12 0 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3Discharge, cfsDepth Over Grate, ft Grate Discharge Weir Orifice 0 1 2 3 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1Discharge, cfsDepth Over Grate, ft Grate Discharge Weir Orifice 70 115 Depth Weir Orifice Casting Neenah R4342 0.00 0.00 0.00 Area 2 ft2 0.08 0.31 1.38 Perimeter 6 ft 0.09 0.36 1.47 3/4 P 4.5 ft 0.10 0.43 1.55 1/2 A 1 ft2 0.16 0.86 1.96 Q=3.0*P*D^1.5 (Weir)0.17 0.95 2.02 Q=4.89*A*D^0.5 (Orifice)1.10 15.57 5.13 1.20 17.75 5.36 1.30 20.01 5.58 1.40 22.36 5.79 i = 6.12 1.50 24.80 5.99 C= 0.47 A= 0.31 0.90 GRATE FLOW IN CFS Q= C x I x A = Sump Grate Ponding Depth Calculation Structure Number Q=CiA 0 5 10 15 20 25 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6Discharge, cfsDepth Over Grate, ft Grate Discharge Weir Orifice 71 Appendix “D” 100 Yr Overflow Routing 72 EX52341EX101103108107110111104106112113105103a114115109102WSEL 857.91MFPG 858.91213465WSEL 858.03MFPG 859.03WSEL 857.39MFPG 858.39WSEL 855.91MFPG 856.91WSEL 856.10MFPG 857.10WSEL 856.11MFPG 857.11Know what'sCallbelow.before you dig.GRAPHIC SCALENREVISIONS: 3961 Perry Boulevard Whitestown, IN 46075 Ph. 317-769-2916 www.innovativeeci.com ENGINEERING & CONSULTINGExhibit D100 yr overflow map19122Rolling Hills Townhomes Carmel, Indiana ECL Development, LLC 12965 Old Meridian Street Carmel, IN 46032 317-669-620973 100 year flow rates Str #A (sq ft)A (acres)C Tc i Q100 107 14964 0.34 0.72 21.42 6.76 1.67 108 5314 0.12 0.60 5.00 11.20 0.81 110 993 0.02 0.20 5.00 11.20 0.05 111 23429 0.54 0.68 15.25 6.95 2.55 115 14259 0.33 0.46 5.00 11.20 1.67 west pond 6341 0.15 0.52 5.00 11.20 0.85 east pond 2575 0.06 0.20 5.00 11.20 0.13 Date:06/14/21 Description: Project Name:Rolling Hills Project No.20120 Designed By:bg 74 Flow Location 1 b =0.00 ft base width of channel g1 = 3.00 ft side slope of channel g2 = 3.00 ft side slope of channel d = 0.41 ft depth of channel S = 1.00 %longitudinal slope of channel n = 0.025 Manning's roughness factor A =0.50 ft2 cross-sectional area of channel Rh =0.16 ft hydraulic radius Capacity Q100=0.88 cfs Depth=0.41 ft depth of channel 1 Flow 0.85 Actual 0.85 857.50 0.41 857.91 858.91 Flood Routing Channel Flow Channel Lining: Flow Location Contributing Areas west pond Depth WS Elevation MFPG Total Elevation Natural Channel (good condition) 75 Flow Location 2 b =0.00 ft base width of channel g1 = 100.00 ft side slope of channel g2 = 100.00 ft side slope of channel d = 0.13 ft depth of channel S = 3.00 %longitudinal slope of channel n = 0.025 Manning's roughness factor A =1.69 ft2 cross-sectional area of channel Rh =0.06 ft hydraulic radius Capacity Q100=2.81 cfs Depth=0.13 ft depth of channel 2 Flow 2.55 Actual 2.55 857.90 0.13 858.03 859.03 Flood Routing Channel Flow Channel Lining:Natural Channel (good condition) Flow Location Contributing Areas 111 MFPG Total Elevation Depth WS Elevation 76 Flow Location 3 b =0.00 ft base width of channel g1 = 0.00 ft side slope of channel g2 = 100.00 ft side slope of channel d = 0.29 ft depth of channel S = 0.30 %longitudinal slope of channel n = 0.025 Manning's roughness factor A =4.21 ft2 cross-sectional area of channel Rh =0.14 ft hydraulic radius Capacity Q100=3.70 cfs Depth=0.29 ft depth of channel 3 Flow 0.85 2.55 0.05 Actual 3.45 857.10 0.29 857.39 858.39 Flood Routing Channel Flow Channel Lining:Natural Channel (good condition) Flow Location Contributing Areas west pond 111 110 Elevation Depth WS Elevation MFPG Total 77 Flow Location 4 b =0.00 ft base width of channel g1 = 100.00 ft side slope of channel g2 = 100.00 ft side slope of channel d = 0.13 ft depth of channel S = 2.08 %longitudinal slope of channel n = 0.013 Manning's roughness factor A =1.69 ft2 cross-sectional area of channel Rh =0.06 ft hydraulic radius Capacity Q100=4.51 cfs Depth=0.13 ft depth of channel 4 Flow 3.45 0.81 Actual 4.26 855.78 0.13 855.91 856.91 Flood Routing Channel Flow Channel Lining:Concrete (average) Flow Location Contributing Areas flow pt 3 WS Elevation Depth Elevation Total 108 MFPG 78 Flow Location 5 b =0.00 ft base width of channel g1 = 100.00 ft side slope of channel g2 = 100.00 ft side slope of channel d = 0.10 ft depth of channel S = 2.00 %longitudinal slope of channel Channel Lining:Concrete (average) n = 0.013 Manning's roughness factor A =1.00 ft2 cross-sectional area of channel Rh =0.05 ft hydraulic radius Capacity Q100=2.19 cfs Depth=0.10 ft depth of channel Flow Location 5 Contributing Areas Flow 0.13 1.64 Actual Total 1.77 Elevation 856 Depth 0.10 WS Elevation 856.10 MFPG 857.10 Flood Routing Channel Flow east pond 115 71 Flow Location 6 b =0.00 ft base width of channel g1 = 0.00 ft side slope of channel g2 = 48.00 ft side slope of channel d = 0.32 ft depth of channel S = 1.00 %longitudinal slope of channel n = 0.013 Manning's roughness factor A =2.46 ft2 cross-sectional area of channel Rh =0.15 ft hydraulic radius Capacity Q100=7.95 cfs Depth=0.32 ft depth of channel 6 Flow 4.26 1.66 1.77 Actual 7.69 855.79 0.32 856.11 857.11 Flood Routing Channel Flow flow pt 5 Flow Location MFPG Total Elevation Depth WS Elevation Contributing Areas flow pt 4 107 Channel Lining:Concrete (average) 72 Weir Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.Thursday, Mar 25 2021 <Name> V-Notch Weir Crest = Sharp Angle (Deg)= 120 Total Depth (ft) = 1.50 Calculations Weir Coeff. Cw = 4.40 Compute by:Q vs Depth No. Increments = 15 Highlighted Depth (ft)= 1.40 Q (cfs)= 10.20 Area (sqft)= 3.39 Velocity (ft/s)= 3.01 Top Width (ft)= 4.85 0 1 2 3 4 5 6 7 8 Depth (ft)Depth (ft)<Name> -0.50 -0.50 0.00 0.00 0.50 0.50 1.00 1.00 1.50 1.50 2.00 2.00 Length (ft)Weir W.S.73 Hydraflow Express - Weir Report - 03/25/21 1 Depth Q Area (ft)(cfs)(sqft) 0.10 0.014 0.02 0.20 0.079 0.07 0.30 0.217 0.16 0.40 0.445 0.28 0.50 0.778 0.43 0.60 1.227 0.62 0.70 1.804 0.85 0.80 2.519 1.11 0.90 3.381 1.40 1.00 4.400 1.73 1.10 5.584 2.10 1.20 6.941 2.49 1.30 8.478 2.93 1.40 10.20 3.39 1.50 12.12 3.90 74 Hydraflow Express - Weir Report - 03/25/21 2 Veloc TopWidth Energy (ft/s)(ft)(ft) 0.80 0.35 0.11 1.14 0.69 0.22 1.39 1.04 0.33 1.61 1.39 0.44 1.80 1.73 0.55 1.97 2.08 0.66 2.13 2.42 0.77 2.27 2.77 0.88 2.41 3.12 0.99 2.54 3.46 1.10 2.66 3.81 1.21 2.78 4.16 1.32 2.90 4.50 1.43 3.01 4.85 1.54 3.11 5.20 1.65 75 Appendix “E” Full Size Exhibits 76