Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutFT DgnComps 1383157 - DrainageINDIANA DEPARTMENT OF TRANSPORTATION
DESIGN DIVISION
INDIANAPOLIS, INDIANA 46204-2228
INTER-DEPARTMENT COMMUNICATION
October 20, 2009
MEMORANDUM
TO: Coordinator 8
INDOT Central Office
FROM: Bill P. Schmidt, P.E.
Hydraulics Engineer
SUBJECT: HYDRAULICS REVIEW
Structure: 146th Street in Hamilton County (west part of county)
From 0.2 miles west of County Line Rd (with Boone County) to 0.2 miles west
of Springmill Road.
Des. #: 0810287
Project: culverts
Crossing: various (see below)
Consultant: various (United Consulting is major)
PART 1
Little Eagle Creek Avenue culvert (Station 23+20 S-1-A)
The proposed 48-inch diameter concrete pipe is approved.
Drainage Area = 22 acres
Q100 = 61.4 cfs
Proposed Backwater = 1.43 ft. (see below)
Proposed Outlet Velocity = 7.5 ft/s
Existing Backwater = no existing structure
The proposed backwater exceeds 0.14 feet, but is contained within the channel.
146th St at Bear Creek (Station 118+80 PR-A)
The proposed 16 ft. span by 6 ft. high (sumped 1 ft., so effectively 5 ft. high) concrete
box structure is approved.
Drainage Area = 321 acres
Q100 = 359 cfs
Proposed Backwater = 0.73 ft.
Proposed Outlet Velocity = 10.0 ft/s
Existing Backwater = 3.84 ft.
The existing structure is a 72-inch span by 44-inch high corrugated metal pipe
arch.
Shelbourne Rd at UNT Bear Creek (Station 20+09 S-2-A)
The proposed 7 ft. span by 5 ft. high (sumped 1 ft., so effectively 4 ft. high) concrete
box structure is approved.
Drainage Area = 39 acres
Q100 = 63.4 cfs
Proposed Backwater = 0.48 ft.
Proposed Outlet Velocity = 4.3 ft/s
Existing Backwater = 2.27 ft.
The existing structure is a 51-inch span by 32-inch high corrugated metal pipe
arch.
PART 2
146th St (Station 181+60 PR-2)
The proposed 7 ft. span by 4 ft. high concrete box structure is approved.
Drainage Area = 137 acres
Q100 = 113 cfs
Proposed Backwater = 1.09 ft. (see below)
Proposed Outlet Velocity = 7.9 ft/s
Existing Backwater = no existing structure
The proposed backwater exceeds 0.14 feet, but is contained within the channel.
Towne Road (Station 21+41 S-3-A)
The proposed 7 ft. span by 4 ft. high concrete box structure is approved.
Drainage Area = 128 acres
Q100 = 104 cfs
Proposed Backwater = 0.47 ft.
Proposed Outlet Velocity = 4.2 ft/s
Existing Backwater = 2.96 ft.
The existing structure is a 12-inch diameter corrugated metal pipe.
Towne Road (Station 18+60 S-3-A)
The proposed 49-inch span by 32-inch high concrete elliptical pipe is approved.
Drainage Area = 16.2 acres
Q100 = 28.1 cfs
Proposed Backwater = 0.76 ft.
Proposed Outlet Velocity = 5.5 ft/s
Existing Backwater = no existing structure
The proposed backwater exceeds 0.14 feet, but is contained within the R/W.
146th St (Station 205+60 PR-A)
The proposed 9 ft. span by 3 ft. high concrete box structure is approved.
Drainage Area = 119 acres
Q100 = 96 cfs
Proposed Backwater = 0.50 ft. (see below)
Proposed Outlet Velocity = 6.8 ft/s
Existing Backwater = no existing structure
The proposed backwater exceeds 0.14 feet, but is contained within the channel.
Frontage Road (Station 70+21 PR-FRN2)
The proposed 9 ft. span by 3 ft. high concrete box structure is approved.
Drainage Area = 71.5 acres
Q100 = 84 cfs
Proposed Backwater = 0.38 ft.
Proposed Outlet Velocity = 4.4 ft/s
Existing Backwater = 1.72 ft.
The existing structure is an 18-inch diameter corrugated metal pipe.
Towne Road (Station 29+00 S-3-A)
The proposed 53-inch span by 34-inch high concrete elliptical pipe is approved.
Drainage Area = 47.7 acres
Q100 = 35.6 cfs
Proposed Backwater = 0.95 ft.
Proposed Outlet Velocity = 5.8 ft/s
Existing Backwater = 2.04 ft.
The existing structure is a 12-inch diameter corrugated metal pipe.
146th St (Station 214+00 PR-A)
The proposed 36-inch diameter concrete pipe is approved.
Drainage Area = 4.1 acres
Q100 = 8.2 cfs
Proposed Backwater = 0.67 ft.
Proposed Outlet Velocity = 4.6 ft/s
Existing Backwater = 2.36 ft.
The existing structure is a 12-inch diameter corrugated metal pipe.
146th St (Station 222+08 PR-A)
The proposed 98-inch span by 63-inch high concrete elliptical pipe is approved.
Drainage Area = 176 acres
Q100 = 129 cfs
Proposed Backwater = 1.15 ft.
Proposed Outlet Velocity = 6.7 ft/s
Existing Backwater = 2.18 ft.
The existing structure is a 21-inch diameter corrugated metal pipe.
PART 3
1) Structures 271+50 & 297+00 appear to be oversized. Backwater is 0.3 ft. Does it need to be
that low? 12” diameter round pipes to 45”x29” concrete elliptical pipes; is this something the
county wanted?
2) Structure 292+84; says proposed backwater is 1.73 ft. Then in the comments it states that the
backwater is less than 1.0 ft. above natural flood profile. This doesn’t make sense?
3) The last two structures 77+30 & 80+00 are new alignment. It says it is good because the
backwater is less than 1.0 ft. New alignment structures should lave less than 0.14 ft.
backwater unless it is contained in the channel or right-of-way. If so, it doesn’t appear to
be documented?
Note: The consultant (RW Armstrong) for Part 3 was contacted October 5, 2009 about
the issues noted above. There has not been a response to the issues.
If you have any questions or comments, please contact me at (317) 232 - 5148.
WPS
cc: file
Storm Sewer Design Report
w. 146 th Street
Added Travel Lanes
Designed: BSC 6/5/12
Checked: WJW 6/5/12
PART 2 -FROM 600' WEST OF TOWNE ROAD TO 600' FEET WEST OF
DITCH ROAD
Des. No. :0810287
Hamilton County, Indiana
Beam Longest & Neff, L.L.C .
Consulting Engineers
8126 Castleton Road
Indianapolis, Indiana 46250
June 5,2012
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Inlets.xlsx
Sheet: Inlets-Lt
JOB:DES.KJR DATE:09/27/09
ITEM:CHK.BSC DATE:09/27/09
REV,BSC DATE:06/01/12
CHK.WJW DATE:06/01/12
Assumptions:
per Figure 36-7A Assume minimum Tc due to small watersheds
per Figure 36-7A per NOAA Precipitation Intensity Data Server
per Figure 36-7A
1 2 7 8 9 10 11 12 15 16 17 18
Area
Width Area Length
Drainage
Area "A"
Runoff
Coefficient
(c)
Q = CIA
Eqn 29-8.1
Grade
"S0"
Cross
Slope Sx
Previous
Runby
Total Gutter
Flow
Depth
"d" T/W
Total
Spread
"T"
Spread in
Pavement
Ts
Intercept
"Qi"
Runby
"Qr"
ft ft ac cfs %ft/ft cfs cfs ft ft ft cfs cfs
200+35.0 0.290 Per Floyd E. Burroughs (Brett Walls)
Sag 201+08.3 40.00 105.0 0.096 0.750 0.535 0.30%0.020 0.392 0.927 0.158 7.92 5.92 0.252 15 1.436 0.000
+201+40.0 40.00 100.0 0.092 0.750 0.510 0.30%0.020 0.167 0.676 0.141 7.04 5.04 0.284 15 0.574 0.102
+202+40.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.165 0.878 0.147 7.35 5.35 0.272 15 0.712 0.167
+203+80.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.159 0.872 0.147 7.34 5.34 0.273 15 0.708 0.165
+205+20.0 40.00 120.0 0.110 0.850 0.693 0.40%0.020 0.160 0.853 0.145 7.27 5.27 0.275 15 0.694 0.159
+206+40.0 53.00 100.0 0.122 0.950 0.855 0.40%0.020 0.000 0.855 0.146 7.28 5.28 0.275 15 0.696 0.160 Roundabout runoff - Length is conservative (est)
in roundabout
+208+20.0 55.00 70.0 0.088 0.950 0.621 0.40%0.020 0.225 0.847 0.145 7.25 5.25 0.276 15 0.696 0.151
+208+90.0 40.00 195.0 0.179 0.800 1.060 0.40%0.020 0.000 1.060 0.158 7.89 5.89 0.253 15 0.835 0.225
Ridge 210+85.0
-212+85.0 40.00 200.0 0.184 0.750 1.019 0.60%0.020 0.000 1.019 0.144 7.21 5.21 0.277 15 0.794 0.226
-214+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.226 1.245 0.147 7.36 5.36 0.272 15 0.926 0.319
-216+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.319 1.338 0.151 7.56 5.56 0.264 15 0.982 0.357
-218+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.357 1.376 0.153 7.64 5.64 0.262 15 1.004 0.372
-220+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.372 1.391 0.153 7.67 5.67 0.261 15 1.013 0.379
-222+10.0 40.00 125.0 0.115 0.750 0.637 0.47%0.020 0.379 1.016 0.151 7.53 5.53 0.266 15 0.799 0.217
Sag 222+60.7 40.00 95.0 0.087 0.750 0.484 0.30%0.020 0.449 0.933 0.159 7.94 5.94 0.252 15 1.441 0.000
+223+05.0 40.00 149.3 0.137 0.750 0.761 0.41%0.020 0.316 1.076 0.158 7.89 5.89 0.254 15 0.844 0.232
+224+54.3 40.00 180.0 0.165 0.750 0.917 0.60%0.020 0.344 1.261 0.156 7.81 5.81 0.256 15 0.946 0.316
+226+34.3 40.00 195.0 0.179 0.750 0.994 0.60%0.020 0.340 1.334 0.159 7.97 5.97 0.251 15 0.990 0.344
+228+29.3 40.00 260.0 0.239 0.750 1.325 0.60%0.020 0.000 1.325 0.159 7.95 5.95 0.251 15 0.985 0.340
Ridge 230+89.3
-233+90.0 40.00 300.7 0.276 0.750 1.533 0.80%0.020 0.000 1.533 0.159 7.96 5.96 0.251 15 1.094 0.438
-235+50.0 40.00 160.0 0.147 0.750 0.815 0.80%0.020 0.438 1.254 0.148 7.38 5.38 0.271 15 0.931 0.322
-236+60.0 40.00 110.0 0.101 0.750 0.561 0.43%0.020 0.322 0.883 0.146 7.28 5.28 0.275 15 0.713 0.170
Sag 237+00.0 40.00 90.0 0.083 0.750 0.459 0.30%0.020 0.477 0.936 0.159 7.95 5.95 0.252 15 1.443 0.000
+237+50.0 40.00 160.0 0.147 0.750 0.815 0.53%0.020 0.437 1.252 0.159 7.96 5.96 0.251 15 0.945 0.307
+239+10.0 40.00 300.0 0.275 0.750 1.529 0.80%0.020 0.000 1.529 0.159 7.95 5.95 0.252 15 1.092 0.437
Ridge 242+10.0
-244+70.0 40.00 260.0 0.239 0.750 1.325 0.60%0.020 0.000 1.325 0.159 7.95 5.95 0.251 15 0.985 0.340
-246+45.0 40.00 175.0 0.161 0.750 0.892 0.53%0.020 0.340 1.232 0.159 7.93 5.93 0.252 15 0.933 0.299
-247+23.5 40.00 78.5 0.072 0.750 0.400 0.50%0.020 0.299 0.699 0.129 6.47 4.47 0.309 0.000 0.699 Begin Superelevation Transition
-248+84.3 40.00 160.8 0.148 0.750 0.820 1.21%0.038 0.699 1.518 0.187 4.91 2.91 0.407 0.000 1.518
-251+85.0 40.00 300.7 0.276 0.750 1.532 0.50%0.038 1.518 3.051 0.286 7.53 5.53 0.266 II 2.104 0.946 Runby will be collected by slotted drain
INLET SPACING COMPUTATION SHEET - LEFT SIDE "PR-A"
071087 146th Street
GUTTER DISCHARGE
Inlet Spacings - Lt side Line "PR-A"
5 min
7.40 in/hr
2.0 ft
Time of Concentration, Tc:
Rainfall Intensity, I:
LOCATION
Type of Facility:Non-Freeway 4 ≥ Lane
Design Frequency:10 year
Allowable Spread, Ts:Gutter Width, W:6.0 ft
RemarksW/TStation
Casting
Type
GUTTER DISCHARGE
19314
INLET DISCHARGE
(1/2 Lane)
Structure
JOB:DES.KJR DATE:09/27/09
ITEM:CHK.BSC DATE:09/27/09
REV.BSC DATE:06/01/12
CHK.WJW DATE:06/01/12
Casting
Type
Length
(ft)V0 ft/s)
Inlet Area
sft
II 2.81 5.7 2.60
5 3.90 8.9 3.60
10 2.88 7.6 5.50
15 3.90 8.9 3.60
Gutter
Width
W
Spread
T
Grate
Length L So Sx V0
V
Eqn 36-
10.5 Total Q
Intercept
"Qi"
Slotted
Drain
Equation
36-10.11
Water
Depth
d Inlet Area
Perimeter
Opening
Intercept
"Qi"
Slotted
Drain
Eqn 36-
10.15
ft ft ft ft/ft ft/ft ft/s ft/s cfs cfs ft ft sqft ft cfs ft
200+35
Sag 201+08 15 0.16 3.60 6.90 1.44
+201+40 15 2 7.04 3.9 0.59 0.003 0.02 8.9 1.37 0.63 1.00 0.68 0.574
+202+40 15 2 7.35 3.9 0.57 0.004 0.02 8.9 1.63 0.56 1.00 0.88 0.712
+203+80 15 2 7.34 3.9 0.57 0.004 0.02 8.9 1.63 0.56 1.00 0.87 0.708
+205+20 15 2 7.27 3.9 0.58 0.004 0.02 8.9 1.62 0.56 1.00 0.85 0.694
+206+40 15 2 7.28 3.9 0.58 0.004 0.02 8.9 1.62 0.56 1.00 0.86 0.696
+208+20 15 2 7.25 3.9 0.58 0.004 0.02 8.9 1.62 0.56 1.00 0.85 0.690
+208+90 15 2 7.89 3.9 0.54 0.004 0.02 8.9 1.71 0.54 1.00 1.06 0.835
Ridge 210+85
-212+85 15 2 7.21 3.9 0.58 0.006 0.02 8.9 1.97 0.47 1.00 1.02 0.794
-214+85 15 2 7.36 3.9 0.57 0.008 0.02 8.9 2.31 0.40 1.00 1.24 0.926
-216+85 15 2 7.56 3.9 0.56 0.008 0.02 8.9 2.36 0.39 1.00 1.34 0.982
-218+85 15 2 7.64 3.9 0.56 0.008 0.02 8.9 2.37 0.39 1.00 1.38 1.004
-220+85 15 2 7.67 3.9 0.55 0.008 0.02 8.9 2.38 0.39 1.00 1.39 1.013
-222+10 15 2 7.53 3.9 0.56 0.004733 0.02 8.9 1.81 0.51 1.00 1.02 0.799
Sag 222+61 15 0.16 3.60 6.90 1.44
+223+05 15 2 7.89 3.9 0.54 0.004133 0.02 8.9 1.74 0.53 1.00 1.08 0.844
+224+54 15 2 7.81 3.9 0.55 0.006 0.02 8.9 2.08 0.45 1.00 1.26 0.946
+226+34 15 2 7.97 3.9 0.54 0.006 0.02 8.9 2.11 0.44 1.00 1.33 0.990
+228+29 15 2 7.95 3.9 0.54 0.006 0.02 8.9 2.11 0.44 1.00 1.33 0.985
Ridge 230+89
-233+90 15 2 7.96 3.9 0.54 0.008 0.02 8.9 2.44 0.38 1.00 1.53 1.094
-235+50 15 2 7.38 3.9 0.57 0.008 0.02 8.9 2.32 0.40 1.00 1.25 0.931
-236+60 15 2 7.28 3.9 0.58 0.004267 0.02 8.9 1.68 0.55 1.00 0.88 0.713
Sag 237+00 15 0.16 3.60 6.90 1.44
+237+50 15 2 7.96 3.9 0.54 0.005333 0.02 8.9 1.99 0.47 1.00 1.25 0.945
+239+10 15 2 7.95 3.9 0.54 0.008 0.02 8.9 2.44 0.38 1.00 1.53 1.092
Ridge 242+10
-244+70 15 2 7.95 3.9 0.54 0.005999 0.02 8.9 2.11 0.44 1.00 1.33 0.985
-246+45 15 2 7.93 3.9 0.54 0.005267 0.02 8.9 1.97 0.47 1.00 1.23 0.933
-247+23
-248+84
-251+85 II 2 7.53 2.81 0.56 0.005 0.038 5.7 2.85 0.29 1.00 3.05 2.104 11.5
INLET CAPACITY COMPUTATION SHEET - LEFT SIDE "PR-A"
SAG INLET
Casting
Type
Values for V0 (Fig. 36-10A)
6.90
Inlet
Station
E0
Eqn:36-
10.2
5.98
INLET ON GRADE
071087 146th Street
Rf
Eqn 36-
10.4
Rs
Eqn 36-
10.6
Perimeter Opening
(ft)
10.60
1.50
Inlet Spacings - Lt side Line "PR-A"
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Inlets.xlsx
Sheet: Inlets-Rt
JOB:DES.KJR DATE:09/27/09
ITEM:CHK.BSC DATE:09/27/09
REV,BSC DATE:06/01/12
CHK.WJW DATE:06/01/12
Assumptions:
per Figure 36-7A Assume minimum Tc due to small watersheds
per Figure 36-7A per NOAA Precipitation Intensity Data Server
per Figure 36-7A
1 2 7 8 9 10 11 12 15 16 17 18
Area
Width Area Length
Drainage
Area "A"
Runoff
Coefficient
(c)
Q = CIA
Eqn 29-8.1
Grade
"S0"
Cross
Slope Sx
Previous
Runby
Total Gutter
Flow
Depth
"d" T/W
Total
Spread
"T"
Spread in
Pavement
Ts
Intercept
"Qi"
Runby
"Qr"
ft ft ac cfs %ft/ft cfs cfs ft ft ft cfs cfs
200+35.0 0.290 Per Floyd E. Burroughs (Brett Walls)
Sag 201+08.3 40.00 105.0 0.096 0.750 0.535 0.30%0.020 0.392 0.927 0.158 7.92 5.92 0.252 15 1.436 0.000
+201+40.0 40.00 100.0 0.092 0.750 0.510 0.30%0.020 0.167 0.676 0.141 7.04 5.04 0.284 15 0.574 0.102
+202+40.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.165 0.878 0.147 7.35 5.35 0.272 15 0.712 0.167
+203+80.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.159 0.872 0.147 7.34 5.34 0.273 15 0.708 0.165
+205+20.0 40.00 120.0 0.110 0.850 0.693 0.40%0.020 0.160 0.853 0.145 7.27 5.27 0.275 15 0.694 0.159
+206+40.0 53.00 100.0 0.122 0.950 0.855 0.40%0.020 0.000 0.855 0.146 7.28 5.28 0.275 15 0.696 0.160 Roundabout runoff - Length is conservative (est)
in roundabout
+208+20.0 55.00 70.0 0.088 0.950 0.621 0.40%0.020 0.225 0.847 0.145 7.25 5.25 0.276 15 0.696 0.151
+208+90.0 40.00 195.0 0.179 0.800 1.060 0.40%0.020 0.000 1.060 0.158 7.89 5.89 0.253 15 0.835 0.225
Ridge 210+85.0
-212+85.0 40.00 200.0 0.184 0.750 1.019 0.60%0.020 0.000 1.019 0.144 7.21 5.21 0.277 15 0.794 0.226
-214+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.226 1.245 0.147 7.36 5.36 0.272 15 0.926 0.319
-216+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.319 1.338 0.151 7.56 5.56 0.264 15 0.982 0.357
-218+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.357 1.376 0.153 7.64 5.64 0.262 15 1.004 0.372
-220+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.372 1.391 0.153 7.67 5.67 0.261 15 1.013 0.379
-222+10.0 40.00 125.0 0.115 0.750 0.637 0.47%0.020 0.379 1.016 0.151 7.53 5.53 0.266 15 0.799 0.217
Sag 222+60.7 40.00 95.0 0.087 0.750 0.484 0.30%0.020 0.450 0.934 0.159 7.94 5.94 0.252 15 1.442 0.000
+223+05.0 40.00 150.0 0.138 0.750 0.764 0.41%0.020 0.315 1.080 0.158 7.90 5.90 0.253 15 0.847 0.233
+224+55.0 40.00 180.0 0.165 0.750 0.917 0.60%0.020 0.344 1.261 0.156 7.81 5.81 0.256 15 0.946 0.315
+226+35.0 40.00 195.0 0.179 0.750 0.994 0.60%0.020 0.339 1.333 0.159 7.97 5.97 0.251 15 0.989 0.344
+228+30.0 40.00 259.3 0.238 0.750 1.321 0.60%0.020 0.000 1.321 0.159 7.94 5.94 0.252 15 0.982 0.339
Ridge 230+89.3
-233+90.0 40.00 300.7 0.276 0.750 1.533 0.80%0.020 0.000 1.533 0.159 7.96 5.96 0.251 15 1.094 0.438
-235+50.0 40.00 160.0 0.147 0.750 0.815 0.80%0.020 0.438 1.254 0.148 7.38 5.38 0.271 15 0.931 0.322
-236+60.0 40.00 110.0 0.101 0.750 0.561 0.43%0.020 0.322 0.883 0.146 7.28 5.28 0.275 15 0.713 0.170
Sag 237+00.0 40.00 90.0 0.083 0.750 0.459 0.30%0.020 0.477 0.936 0.159 7.95 5.95 0.252 15 1.443 0.000
+237+50.0 40.00 160.0 0.147 0.750 0.815 0.53%0.020 0.437 1.252 0.159 7.96 5.96 0.251 15 0.945 0.307
+239+10.0 40.00 300.0 0.275 0.750 1.529 0.80%0.020 0.000 1.529 0.159 7.95 5.95 0.252 15 1.092 0.437
Ridge 242+10.0
-244+70.0 40.00 260.0 0.239 0.750 1.325 0.60%0.020 0.000 1.325 0.159 7.95 5.95 0.251 15 0.985 0.340
-246+45.0 40.00 175.0 0.161 0.750 0.892 0.53%0.020 0.340 1.232 0.159 7.93 5.93 0.252 15 0.933 0.299
-246+88.3 40.00 43.3 0.040 0.750 0.221 0.50%0.020 0.299 0.520 0.116 5.79 3.79 0.345 0.000 0.520 Begin Superelevation Transition
-247+00.0 40.00 11.7 0.011 0.750 0.060 0.21%0.017 0.520 0.579 0.132 8.00 6.00 0.250 II 0.445 0.000 Extend slotted drain to 247+55
-247+55.0 40.00 185.0 0.170 0.750 0.943 0.21%0.000 0.000 0.943 0.034 128.31 126.31 0.016 II 0.107 0.000 Extend slotted drain to 248+85
-251+83.3 40.00 298.3 0.274 0.750 1.520 0.50%0.038 0.000 1.520 0.220 5.80 3.80 0.345 0.000 1.520 Begin Superelevation Transition
-252+55.0 40.00 71.7 0.066 0.750 0.365 1.06%0.021 1.520 1.886 0.167 7.87 5.87 0.254 0.000 1.886 Calculate point where spread exceeds allowable
-252+85.0 40.00 30.0 0.028 0.750 0.153 1.06%0.014 1.886 2.039 0.148 10.43 8.43 0.192 II 1.054 0.984 Extend slotted drain to 252+55
INLET DISCHARGE
071087 146th Street
GUTTER DISCHARGE
Inlet Spacings - Rt side Line "PR-A"
6.0 ft
LOCATION
(1/2 Lane)
5 min
7.40 in/hr
2.0 ft
Time of Concentration, Tc:
Rainfall Intensity, I:
Gutter Width, W:
Structure
INLET SPACING COMPUTATION SHEET - RIGHT SIDE "PR-A"
Type of Facility:Non-Freeway 4 ≥ Lane
Design Frequency:10 year
Allowable Spread, Ts:
RemarksW/TStation
Casting
Type
19314
GUTTER DISCHARGE
JOB:DES.KJR DATE:09/27/09
ITEM:CHK.BSC DATE:09/27/09
REV.BSC DATE:06/01/12
CHK.WJW DATE:06/01/12
Casting
Type
Length
(ft)V0 ft/s)
Inlet Area
sft
II 2.81 5.7 2.60
5 3.90 8.9 3.60
10 2.88 7.6 5.50
15 3.90 8.9 3.60
Gutter
Width
W
Spread
T
Grate
Length L So Sx V0
V
Eqn 36-
10.5 Total Q
Intercept
"Qi"
Slotted
Drain
Equation
36-10.11
Water
Depth
d Inlet Area
Perimeter
Opening
Intercept
"Qi"
Slotted
Drain
Eqn 36-
10.15
Safety
Factor of
2
ft ft ft ft/ft ft/ft ft/s ft/s cfs cfs ft ft sqft ft cfs ft
200+35
Sag 201+08 15 0.16 3.60 6.90 1.44
+201+40 15 2 7.04 3.9 0.59 0.30%0.02 8.9 1.37 0.63 1.00 0.68 0.574
+202+40 15 2 7.35 3.9 0.57 0.40%0.02 8.9 1.63 0.56 1.00 0.88 0.712
+203+80 15 2 7.34 3.9 0.57 0.40%0.02 8.9 1.63 0.56 1.00 0.87 0.708
+205+20 15 2 7.27 3.9 0.58 0.40%0.02 8.9 1.62 0.56 1.00 0.85 0.694
+206+40 15 2 7.28 3.9 0.58 0.40%0.02 8.9 1.62 0.56 1.00 0.86 0.696
+208+20 15 2 7.25 3.9 0.58 0.40%0.020 8.9 1.62 0.56 1.00 0.85 0.690
+208+90 15 2 7.89 3.9 0.54 0.40%0.020 8.9 1.71 0.54 1.00 1.06 0.835
Ridge 210+85
-212+85 15 2 7.21 3.9 0.58 0.60%0.020 8.9 1.97 0.47 1.00 1.02 0.794
-214+85 15 2 7.36 3.9 0.57 0.80%0.020 8.9 2.31 0.40 1.00 1.24 0.926
-216+85 15 2 7.56 3.9 0.56 0.80%0.020 8.9 2.36 0.39 1.00 1.34 0.982
-218+85 15 2 7.64 3.9 0.56 0.80%0.020 8.9 2.37 0.39 1.00 1.38 1.004
-220+85 15 2 7.67 3.9 0.55 0.80%0.020 8.9 2.38 0.39 1.00 1.39 1.013
-222+10 15 2 7.53 3.9 0.56 0.47%0.020 8.9 1.81 0.51 1.00 1.02 0.799
Sag 222+61 15 0.16 3.60 6.90 1.44
+223+05 15 2 7.90 3.9 0.54 0.41%0.020 8.9 1.74 0.53 1.00 1.08 0.847
+224+55 15 2 7.81 3.9 0.55 0.60%0.020 8.9 2.08 0.45 1.00 1.26 0.946
+226+35 15 2 7.97 3.9 0.54 0.60%0.020 8.9 2.11 0.44 1.00 1.33 0.989
+228+30 15 2 7.94 3.9 0.54 0.60%0.020 8.9 2.11 0.44 1.00 1.32 0.982
Ridge 230+89
-233+90 15 2 7.96 3.9 0.54 0.80%0.020 8.9 2.44 0.38 1.00 1.53 1.094
-235+50 15 2 7.38 3.9 0.57 0.80%0.020 8.9 2.32 0.40 1.00 1.25 0.931
-236+60 15 2 7.28 3.9 0.58 0.43%0.020 8.9 1.68 0.55 1.00 0.88 0.713
Sag 237+00 15 0.16 3.60 6.90 1.44
+237+50 15 2 7.96 3.9 0.54 0.53%0.020 8.9 1.99 0.47 1.00 1.25 0.945
+239+10 15 2 7.95 3.9 0.54 0.80%0.020 8.9 2.44 0.38 1.00 1.53 1.092
Ridge 242+10
-244+70 15 2 7.95 3.9 0.54 0.60%0.020 8.9 2.11 0.44 1.00 1.33 0.985
-246+45 15 2 7.93 3.9 0.54 0.53%0.020 8.9 1.97 0.47 1.00 1.23 0.933
-246+88
-247+00 II 2 8.00 2.81 0.54 0.21%0.017 5.7 1.10 0.50 1.00 0.58 0.445 6.5
-247+55 II 2 128.31 2.81 0.04 0.21%0.000 5.7 0.44 0.08 1.00 0.94 0.107 166.5
-251+83
-252+55
-252+85 II 2 10.43 2.81 0.43 1.06%0.014 5.7 2.67 0.15 1.00 2.04 1.054 26.6
071087 146th Street
Rf
Eqn 36-
10.4
Rs
Eqn 36-
10.6
Perimeter Opening
(ft)
10.60
1.50
Inlet Spacings - Rt side Line "PR-A"
5.98
INLET ON GRADE
INLET CAPACITY COMPUTATION SHEET - RIGHT SIDE "PR-A"
SAG INLET
Casting
Type
Values for V0 (Fig. 36-10A)
6.90
Inlet
Station
E0
Eqn:36-
10.2
JOB:DES. BSC DATE: 09/27/09ITEM:CHK. KJR DATE: 09/27/09Assumptions:per Figure 36-7AAssume minimum Tc due to small watershedsper Figure 36-7Aper NOAA Precipitation Intensity Data Serverper Figure 36-7A1 2 7 89101112 15161718Area Width Area LengthDrainage Area "A"Runoff Coefficient (c)Q = CIA Eqn 29-8.1Grade "S0"Cross Slope SxPrevious RunbyTotal Gutter FlowDepth "d" T/WTotal Spread "T"Spread in Pavement TsIntercept "Qi"Runby "Qr"ft ftaccfs % ft/ft cfs cfs ft ft ftcfs cfs 10+00.0*0.00.000 0.750 0.000 0.32%0.0200.940 0.940 0.157 7.875.870.25450.7630.178Runby from Sta. 14+51.3Sag11+02.8*125.00.103 0.750 0.572 0.32%0.0200.730 1.303 0.178 8.896.890.22552.6230.00011+25.0*120.80.100 0.750 0.553 1.12%0.0200.000 0.553 0.102 5.103.100.392None0.0000.553Ridge12+45.8 0.00014+51.3*205.50.169 0.750 0.940 0.32%0.0200.000 0.940 0.157 7.875.870.254None0.0000.940=Sta. 10+00193148.0 ftINLET DISCHARGEINLET SPACING COMPUTATION SHEET - ROUNDABOUT INTERIOR(1/2 Lane)Gutter Width, W:Allowable Spread, Ts:Type of Facility:Non-Freeway 4 ≥ LaneDesign Frequency:10 year071087 146th StreetGUTTER DISCHARGEInlet Spacings - Roundabout Interior5 min7.40 in/hr2.0 ftTime of Concentration, Tc:Rainfall Intensity, I:LOCATIONGUTTER DISCHARGEStructureRemarksW/TStationCasting TypeP:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Inlets.xlsxSheet: Inlets-RA
JOB:DES. BSC DATE: 09/27/09ITEM:CHK. KJR DATE: 09/27/09Casting TypeLength (ft)V0 ft/s)Inlet Areasft5 3.90 8.93.6010 2.88 7.65.5015 3.90 8.93.60Gutter Width WSpread TGrate Length LSoSxV0 V Eqn 36-10.5Total QIntercept "Qi"Water Depth d Inlet AreaPerimeter OpeningIntercept "Qi"Slotted Drain Eqn 36-10.15 Safety Factor of 2ft ft ftft/ft ft/ft ft/s ft/scfs cfs ft sqft ftcfsft 10+00 52 7.87 3.9 0.54 0.0032 0.02 8.9 1.53 0.59 1.00 0.94 0.763Sag 11+03 50.18 3.60 10.60 2.6211+25 NoneRidge 12+46 14+51 NoneINLET CAPACITY COMPUTATION SHEET - ROUNDABOUT INTERIORSAG INLETCasting TypeValues for V0 (Fig. 36-10A)INLET ON GRADE6.90Inlet StationE0 Eqn:36-10.2071087 146th StreetRf Eqn 36-10.4Rs Eqn 36-10.6Perimeter Opening (ft)10.601.50Inlet Spacings - Roundabout Interior
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
1.
2.
Weir Flow, QW = 3.3 P (h)1.5 where:P =
h=
Orifice Flow, QO = CA(2gh)0.5 where: C =
A=
g=
h=
Therefore, QO = 4.81 A(h)0.5
3.
Inlet
Depth
(ft)
Pipe Catch Basin, 18" 0.375
Pipe Catch Basin, 24" 0.500
Inlet E7, F7 or G7 0.500
Node 58
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=100 ft
=Cultivated (Cover > 20%)
= 0.17
=2.66 in
Calculate:
Upper elevation = 919.60
Lower elevation = 918.00
= 0.0160 ft/ft
=0.42·(n·L)0.8 = 13.0 min
(P2)0.5S0.4
Shallow Concentrated Flow - NRCS Upland Method per IDM 29-7.07
=340 ft
=Unpaved
Calculate:
Upper elevation = 918.00
Lower elevation = 915.43
= 0.0076 ft/ft
= 1.43 ft/s
=0.00 ft/s
= L/60V = 4.0 min
Pipe Flow - Manning's Equation per IDM 29-7.09(01)
=128 ft
=3.0 ft
= 0.0030 ft/ft
=Concrete
=0.012
= 5.63 ft/s
= L/V = 0.4 minTravel time, t3
Description of Pipe Material
Manning's n per IDM Figure 31-10A
Per IDM Equation 29-7.11, Velocity, V,= (0.593/n)·D2/3·S0.5
Flow Length, L
Pipe Diameter, D
s
when surface description is unpaved
when surface description is paved
Travel time, t2
Per IDM Equation 29-7.7, Velocity, V,=16.393·S0.5
Per IDM Equation 29-7.8, Velocity, V,=20.653 ·S0.5
Land slope, S
per Hamilton County GIS
per topographic survey
S
S
Overland flow time per IDM Equation 29-7.5, t1
Flow length, L
Surface Description (paved or unpaved)
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
Land slope, S
per Hamilton County GIS
per Hamilton County GIS
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
General
Hydraulic computations for the offsite drainage basins are shown in the Hydraulic Review submittal.
Inlet capacity equations in ponding situations are taken from "Inlet Grate Capacities" published by Neenah Foundry Company,
Catalog "R" 12th Edition. They are as follows:
Perimeter of grate in feet per Neenah Foundry
head in feet
0.60
Net open area per Neenah Foundry
32.2 ft/s 2
depth in feet of water over the grate
071087 146th Street, Hamilton Co
Hydraulic Calculations
Given the water depth criteria for orifice flow, the following INDOT inlets will be in weir flow at or below the following depths
due to the height of the casting:
Compute Time of Concentration
Pipe End Section 213+75 Rt. "PR-A"
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
Roadside Ditch Parameters:
=2.0 ft
=4 ft
=4 :1
=4 :1
=0.030
=0.0030 ft/ft
=25 ft
= 20.00 ft
= 20.49 ft
=A/PW = 1.17 ft
= L/60V = 0.1 min
=t1+t2... = 17.5 min
Description of Surface or Drainage Area per
IDM Figures 29-8A & 29-8B Width (ft)
Length
(ft)
Area A
(acres) C x A
Drainage Area 4: Cultivated Field * *2.50 0.75
Median: Lawns, Heavy Soil, Flat 10.66 385.00 0.09 0.01
Travel Lanes: Street, Asphalt 58.66 385.00 0.52 0.49
Utility Strip Lt.: Lawns, Heavy Soil, Flat 5.00 500.00 0.06 0.01
Bike Path Lt.: Street, Asphalt 10.00 500.00 0.11 0.10
Roadside Ditch Lt.: Lawns, Heavy, Steep 89.33 500.00 1.03 0.31
Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 450.00 0.05 0.01
Bike Path Rt.: Street, Asphalt 10.00 450.00 0.10 0.10
Roadside Ditch Rt.: Lawns, Heavy, Steep 42.00 450.00 0.43 0.13
Frontage Rd: Street, Asphalt 12.00 450.00 0.12 0.11
Subtotal = 5.01 2.02
0.40
Q10 k factor per IDM 29-8.04 1.00
Weighted C = 0.40
* Corresponds to Drainage Area 4 in Culvert Summary Report
=
=
=
= 4.55 in/hr
= 3.25 in/hr
= 4.33 in/hr
Calculation of discharge per IDM Equation 29-8.1
Q10 = CI10A
where C = 0.40
I10 = 4.33
A = 5.01
Therefore, Q10 = 8.68 cfs
Runoff
Coefficient,
0.30
0.95
The drainage area outside the R/W corresponds to Drainage Area 4 in the culvert computations. The drainage area within
the R/W consists of the roadside ditch from 211+00 to 216+00 Lt; the pavement and median from 211+00 to 214+85; and
the roadside ditch from 212+00 to 216+50 Rt.
0.15
0.95
0.15
0.95
0.30
I10 at higher duration
Interpolated I10
Compute Discharge
Higher duration on rainfall intensity chart 30.0 min
I10 at lower duration
Time of Concentration, Tc 17.5 min
Lower duration on rainfall intensity chart 15.0 min
Compute Rainfall Intensity
Foreslope, Zf
Channel Flow - Manning's Equation per IDM 29-7.09(02)
Maximum Allowable Water Depth, ym
Bottom Width, wb
Backslope, Zb
Manning's n from IDM Figure 30-4B for Earth, grass, some weeds
Slope, S
Flow Length, L
Top Width, wt wb + Zf·ym +Zb·ym =
2
Wetted Perimeter, PW (ym
2 + (Zb·ym)2)0.5 + (ym
2 + (Zf·ym)2)0.5 + wb =
Hydraulic Radius, R
Cross Sectional Flow Area, A =
(wb + wt)·ym = 24.00 sft
Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5
= 3.01 ft/sn
Travel time, t4
Total Time of Concentration, Tc
Compute Drainage Area & Weighted Runoff Coeffecient
Weighted C =
0.15
0.95
0.30
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
Node 25
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=5 ft
=Grass (short prairie)
= 0.15
=2.66 in
=0.0400 ft/ft
=0.42·(n·L)0.8 = 0.7 min
(P2)0.5S0.4
Sheet Flow across pavement at 214+90
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=29 ft
=Smooth
= 0.011
=2.66 in
=0.0200 ft/ft
=0.42·(n·L)0.8 = 0.5 min
(P2)0.5S0.4
Flow in gutter to inlet at 216+85
Shallow Concentrated Flow - NRCS Upland Method per IDM 29-7.07
=195 ft
=Paved
Calculate:
Upper elevation = 918.00
Lower elevation = 915.43
= 0.0080 ft/ft
=0.00 ft/s
= 1.85 ft/s
= L/60V = 1.8 min
Pipe Flow - Manning's Equation per IDM 29-7.09(01)
=30 ft
=1.0 ft
Slope, S (ft/ft)=0.0050 ft/ft Assumed flat slope
=Concrete
=0.012
= 3.49 ft/s
= L/60V = 0.1 min
Ditch Inlet 221+37 Rt "PR-A"
when surface description is paved
Travel time, t3
Per IDM Equation 29-7.7, Velocity, V,=16.393·S0.5
Per IDM Equation 29-7.8, Velocity, V,=20.653 ·S0.5
per IDM Figure 31-10A
Travel time, t4
Per IDM Equation 29-7.11, Velocity, V,= (0.593/n)·D2/3·S0.5
Flow Length, L
Pipe Diameter, D
Description of Pipe Material
Manning's n
Land slope, S
Overland flow time per IDM Equation 29-7.5, t2
Pipe flow from inlet to ditch
Flow length, L
Surface Description (paved or unpaved)
Land slope, S
per Hamilton County GIS
per topographic survey
S
when surface description is unpaved
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
Flow length, L
Surface Description per IDM Figure 29-7B
Compute Time of Concentration
Sheet Flow across grass median at 214+90
Flow length, L
= 72.3 cfsn
Since Qd≥Q10, ditch is adequate.
Analyze Ditch using IDM Equation 30-4.7
Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2
Overland flow time per IDM Equation 29-7.5, t1
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
Land slope, S
Size Ditch
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
Roadside Ditch Parameters:
=2.0 ft
=4 ft
=4 :1
=4 :1
=0.030
=0.0080 ft/ft
=452 ft
= 20.00 ft
= 20.49 ft
=A/PW = 1.17 ft
= L/60V = 1.5 min
=t1+t2+t3... = 4.6 min Use 5 min
Description of Surface or Drainage Area per
IDM Figures 29-8A & 29-8B Width (ft)
Length
(ft)
Area A
(acres) C x A
Median: Lawns, Heavy Soil, Flat 5.33 600.00 0.07 0.01
Travel Lanes: Street, Asphalt 29.33 600.00 0.40 0.38
Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 558.00 0.06 0.01
Bike Path Rt.: Street, Asphalt 10.00 558.00 0.13 0.12
Roadside Ditch Rt.: Lawns, Heavy, Steep 42.00 558.00 0.54 0.16
Frontage Rd: Street, Asphalt 12.00 558.00 0.15 0.14
Subtotal = 1.35 0.82
0.61
Q10 k factor per IDM 29-8.04 1.00
Weighted C = 0.61
Calculation of discharge per IDM Equation 29-8.1
Q10 = CI10A
where C = 0.61
I10 = 6.12
A = 1.35
Therefore, Q10 = 5.04 cfs
Weighted C =
= 4.92 ft/sn
Compute Drainage Area & Weighted Runoff Coeffecient
Travel time, t5
Total Time of Concentration, Tc
24.00 sft(wb + wt)·ym =
Hydraulic Radius, R
Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5
2
Wetted Perimeter, PW (ym
2 + (Zb·ym)2)0.5 + (ym
2 + (Zf·ym)2)0.5 + wb =
Cross Sectional Flow Area, A =
Slope, S
Flow Length, L
Top Width, wt wb + Zf·ym +Zb·ym =
Foreslope, Zf
Backslope, Zb
Manning's n from IDM Figure 30-4B for Earth, grass, some weeds
Maximum Allowable Water Depth, ym
Bottom Width, wb
Channel Flow - Manning's Equation per IDM 29-7.09(02)
Ditch flow from Sta. 216+85 to 221+37 "PR-A"
Since Qd≥Q10, ditch is adequate.
Analyze Ditch using IDM Equation 30-4.7
Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2
0.15
0.95
Compute Discharge
Size Ditch
n
0.30
0.95
= 118.1 cfs
0.15
0.95
The drainage area within the R/W consists of the roadside ditch from 216+50 to 222+08 Rt. and the pavement and
median from 214+85 to 220+85.
Runoff
Coefficient,
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
= 5.04 cfs
=2.0 ft
Solve for capacity for both weir and orifice flow
Weir Flow
QW =Where P =
Orifice Flow
QO =Where A =
Node 19
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=5 ft
=Grass (short prairie)
= 0.15
=2.66 in
=0.0400 ft/ft
=0.42·(n·L)0.8 = 0.7 min
(P2)0.5S0.4
Sheet Flow across bike path at 233+90
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=10 ft
=Smooth
= 0.011
=2.66 in
=0.0200 ft/ft
=0.42·(n·L)0.8 = 0.2 min
(P2)0.5S0.4
Sheet Flow to ditch at 233+90
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=25 ft
=Grass (short prairie)
= 0.15
=2.66 in
=0.2500 ft/ft
=0.42·(n·L)0.8 = 1.3 min
(P2)0.5S0.4
Roadside Ditch Parameters:
=2.0 ft
=4 ft
=4 :1
=4 :1
=0.030
=0.0030 ft/ft
=690 ft
= 20.00 ft
Ditch Inlet 227+00 Rt "PR-A"
105.47 cfs 11.3 ft
19.44 cfs 3.3 sq. ft
The correct flow type has the lower value, therefore:
Total discharge entering inlet, Qi
►► The inlet is adequate in orifice flow
Analyze Type 7 Casting
Size Inlet
Maximum Allowable Water Depth, ym
Compute Time of Concentration
Sheet Flow across buffer strip at 233+90
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
Land slope, S
Overland flow time per IDM Equation 29-7.5, t1
Flow length, L
Surface Description per IDM Figure 29-7B
Ditch flow from Sta. 233+90 to 227+00 "PR-A"
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
Land slope, S
Overland flow time per IDM Equation 29-7.5, t2
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
Channel Flow - Manning's Equation per IDM 29-7.09(02)
Maximum Allowable Water Depth, ym
Bottom Width, wb
Foreslope, Zf
Backslope, Zb
Manning's n from IDM Figure 30-4B for Earth, grass, some weeds
Slope, S
Flow Length, L
Top Width, wt wb + Zf·ym +Zb·ym =
24.00 sft2Cross Sectional Flow Area, A =
(wb + wt)·ym =
Land slope, S
Overland flow time per IDM Equation 29-7.5, t2
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
=20.49 ft
=A/PW = 1.17 ft
= L/60V = 3.8 min
=t1+t2+t3... = 4.7 min Use 5 min
Description of Surface or Drainage Area per
IDM Figures 29-8A & 29-8B Width (ft)
Length
(ft)
Area A
(acres) C x A
Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 1182.00 0.14 0.02
Bike Path Rt.: Street, Asphalt 10.00 1182.00 0.27 0.26
Roadside Ditch Rt.: Lawns, Heavy, Steep 42.50 1182.00 1.15 0.35
Frontage Rd: Street, Asphalt 10.00 1182.00 0.27 0.26
Subtotal = 1.83 0.89
0.48
Q10 k factor per IDM 29-8.04 1.00
Weighted C = 0.48
Calculation of discharge per IDM Equation 29-8.1
Q10 = CI10A
where C = 0.48
I10 = 6.12
A = 1.83
Therefore, Q10 = 5.38 cfs
= 5.38 cfs
=2.0 ft
Solve for capacity for both weir and orifice flow
Weir Flow
QW =Where P =
Orifice Flow
QO =Where A =
Node 92
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=5 ft
=Grass (short prairie)
= 0.15
=2.66 in
= 0.0400 ft/ft
=0.42·(n·L)0.8 = 0.8 min
(P2)0.5S0.4
Pipe End Section 234+00 Rt. "PR-A"
Wetted Perimeter, PW (ym
2 + (Zb·ym)2)0.5 + (ym
2 + (Zf·ym)2)0.5 + wb =
Hydraulic Radius, R
Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5
= 3.01 ft/sn
Travel time, t5
Total Time of Concentration, Tc
0.15
0.95
0.30
Compute Drainage Area & Weighted Runoff Coeffecient
The drainage area within the R/W consists of the roadside ditch from 222+08 to 233+90 Rt.
Runoff
Coefficient,
0.95
Weighted C =
Compute Discharge
Size Ditch
Analyze Ditch using IDM Equation 30-4.7
Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2
= 72.3 cfsn
Since Qd≥Q10, ditch is adequate.
Size Inlet
Total discharge entering inlet, Qi
Maximum Allowable Water Depth, ym
Analyze Pipe Catch Basin, 18"
54.14 cfs 5.8 ft
6.13 cfs 1.0 sq. ft
The correct flow type has the lower value, therefore:►► The inlet is adequate in orifice flow
Compute Time of Concentration
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
S
Overland flow time per IDM Equation 29-7.5, t1
Sheet Flow across median at 242+00
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
Sheet Flow across pavement at 242+00
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=29 ft
=Smooth
= 0.011
=2.66 in
=0.0200 ft/ft
=0.42·(n·L)0.8 = 0.5 min
(P2)0.5S0.4
Flow in gutter to inlet at 239+10
Shallow Concentrated Flow - NRCS Upland Method per IDM 29-7.07
=290 ft
=Paved
Calculate:
Upper elevation = 918.00
Lower elevation = 915.43
= 0.0080 ft/ft
=0.00 ft/s
= 1.85 ft/s
= L/60V = 2.6 min
Pipe Flow - Manning's Equation per IDM 29-7.09(01)
=35 ft
=1.0 ft
Slope, S (ft/ft)=0.0050 ft/ft Assumed flat slope
=Concrete
=0.012
= 3.49 ft/s
= L/60V = 0.2 min
Roadside Ditch Parameters:
=2.0 ft
=4 ft
=4 :1
=4 :1
=0.030
=0.0030 ft/ft
=510 ft
=20.00 ft
=20.49 ft
=A/PW = 1.17 ft
= L/60V = 2.8 min
=t1+t2... = 6.9 min
Channel Flow - Manning's Equation per IDM 29-7.09(02)
Surface Description (paved or unpaved)
Land slope, S
Per IDM Equation 29-7.8, Velocity, V,=20.653 ·S0.5
Pipe Diameter, D
Description of Pipe Material
Manning's n
Maximum Allowable Water Depth, ym
Bottom Width, wb
Foreslope, Zf
Backslope, Zb
Manning's n from IDM Figure 30-4B for Earth, grass, some weeds
Slope, S
Flow Length, L
Top Width, wt wb + Zf·ym +Zb·ym =
Cross Sectional Flow Area, A =
(wb + wt)·ym = 24.00 sft2
Wetted Perimeter, PW (ym
2 + (Zb·ym)2)0.5 + (ym
2 + (Zf·ym)2)0.5 + wb =
Hydraulic Radius, R
Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5
= 3.01 ft/sn
Travel time, t4
Total Time of Concentration, Tc
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
Land slope, S
Overland flow time per IDM Equation 29-7.5, t2
Flow length, L
per Hamilton County GIS
per topographic survey
S
Per IDM Equation 29-7.7, Velocity, V,=16.393·S0.5 when surface description is unpaved
when surface description is paved
Travel time, t3
Pipe flow from inlet to ditch
Flow Length, L
per IDM Figure 31-10A
Per IDM Equation 29-7.11, Velocity, V,= (0.593/n)·D2/3·S0.5
Travel time, t4
Channel flow from 239+10 to 234+00
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
Description of Surface or Drainage Area per
IDM Figures 29-8A & 29-8B Width (ft)
Length
(ft)
Area A
(acres) C x A
Median Rt.: Lawns, Heavy Soil, Flat 5.33 810.00 0.10 0.02
Travel Lanes: Street, Asphalt 29.33 810.00 0.55 0.52
Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 810.00 0.09 0.01
Bike Path Rt.: Street, Asphalt 10.00 810.00 0.19 0.18
Roadside Ditch Rt.: Lawns, Heavy, Steep 42.50 810.00 0.79 0.24
Frontage Rd: Street, Asphalt 10.00 810.00 0.19 0.18
Subtotal = 1.91 1.15
0.60
Q10 k factor per IDM 29-8.04 1.00
Weighted C = 0.60
* Corresponds to Drainage Area 4 in Culvert Summary Report
=
=
=
= 6.12 in/hr
= 5.22 in/hr
= 5.78 in/hr
Calculation of discharge per IDM Equation 29-8.1
Q10 = CI10A
where C = 0.60
I10 = 5.78
A = 1.91
Therefore, Q10 = 6.62 cfs
Sheet flow across drive
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=6 ft
=Smooth
= 0.011
=2.66 in
= 0.0200 ft/ft
=0.42·(n·L)0.8 = 0.1 min
(P2)0.5S0.4
Compute Drainage Area & Weighted Runoff Coeffecient
The drainage area within the R/W consists of the median, eastbound lanes and the roadside ditch from 233+90 to 242+00
Rt.
Runoff
Coefficient,
0.30
0.15
0.95
0.15
0.95
0.95
Weighted C =
Compute Rainfall Intensity
Time of Concentration, Tc 6.9 min
Lower duration on rainfall intensity chart 5.0 min
Higher duration on rainfall intensity chart 10.0 min
I10 at lower duration
I10 at higher duration
Interpolated I10
Compute Discharge
Size Ditch
Analyze Ditch using IDM Equation 30-4.7
Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2
= 72.3 cfsn
Since Qd≥Q10, ditch is adequate.
Drive Pipe 54+50 "FRN3"
Time of Concentration
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
S
Overland flow time per IDM Equation 29-7.5, t1
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
Sheet flow from drive to beginning of ditch
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=36 ft
=Grass (Dense)
= 0.24
=2.66 in
= 0.2500 ft/ft
=0.42·(n·L)0.8 = 2.5 min
(P2)0.5S0.4
Channel flow to culvert
Roadside Ditch Parameters:
=1.0 ft
=0 ft
=4 :1
=4 :1
=0.030
=0.0030 ft/ft
=225 ft
=8.00 ft
=8.25 ft
=A/PW = 0.48 ft
= L/60V = 2.3 min
=t1+t2... = 4.9 min Use 5 min
Calculation of discharge per IDM Equation 29-8.1
Q10 = CI10A
where C = 0.95
I10 = 6.12
A = 0.38 (measured in CAD)
Therefore, Q10 = 2.21 cfs
Sheet flow across drive
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=6 ft
=Smooth
= 0.011
=2.66 in
= 0.0200 ft/ft
=0.42·(n·L)0.8 = 0.1 min
(P2)0.5S0.4
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Per HCSOTable 201-3 Two-year 24-hour rainfall, P 2
S
Overland flow time per IDM Equation 29-7.5, t2
Channel Flow - Manning's Equation per IDM 29-7.09(02)
Maximum Allowable Water Depth, ym
Bottom Width, wb
Foreslope, Zf
Backslope, Zb
Manning's n from IDM Figure 30-4B for Earth, grass, some weeds
Slope, S
Flow Length, L
Top Width, wt wb + Zf·ym +Zb·ym =
4.00 sft2
Wetted Perimeter, PW (ym
2 + (Zb·ym)2)0.5 + (ym
2 + (Zf·ym)2)0.5 + wb =
Cross Sectional Flow Area, A =
(wb + wt)·ym =
Hydraulic Radius, R
Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5
= 1.66 ft/sn
Travel time, t4
Total Time of Concentration, Tc
Compute Discharge
Size Ditch
Flow length, L
Analyze Ditch using IDM Equation 30-4.7
Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2
= 6.7 cfsn
Since Qd≥Q10, ditch is adequate.
Overland flow time per IDM Equation 29-7.5, t1
Per IDM Figure 29-7B, Manning's n
Check Drive Pipes Hydraulic Capacity vs. Appendix A
Surface Description per IDM Figure 29-7B
Any 15-in pipe is adequate
Drive Pipe 59+44 "FRN3"
Time of Concentration
Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2
S
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
Sheet flow from drive to beginning of ditch
Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05
=52 ft
=Grass (Dense)
= 0.24
=2.66 in
= 0.2500 ft/ft
=0.42·(n·L)0.8 = 3.4 min
(P2)0.5S0.4
Channel flow to culvert
Roadside Ditch Parameters:
=1.0 ft
=0 ft
=4 :1
=4 :1
=0.030
=0.0030 ft/ft
=140 ft
=8.00 ft
=8.25 ft
=A/PW = 0.48 ft
= L/60V = 1.4 min
=t1+t2... = 4.9 min Use 5 min
Calculation of discharge per IDM Equation 29-8.1
Q10 = CI10A
where C = 0.95
I10 = 6.12
A = 0.27 (measured in CAD)
Therefore, Q10 = 1.57 cfs
Node 18
Calculation of discharge per IDM Equation 29-8.1
Q10 = CI10A
where C = 0.95
I10 = 6.12
A = 0.20
Therefore, Q10 = 1.16 cfs
Ditch Inlet 78+50 Lt "FRN2"
Flow Length, L
Top Width, wt wb + Zf·ym +Zb·ym =
S
Per HCSOTable 201-3 Two-year 24-hour rainfall, P 2
Flow length, L
Surface Description per IDM Figure 29-7B
Per IDM Figure 29-7B, Manning's n
Overland flow time per IDM Equation 29-7.5, t2
Compute Time of Concentration
Assume 5 minutes due to small drainage area
Backslope, Zb
Manning's n from IDM Figure 30-4B for Earth, grass, some weeds
Slope, S
Channel Flow - Manning's Equation per IDM 29-7.09(02)
Maximum Allowable Water Depth, ym
Bottom Width, wb
Foreslope, Zf
4.00 sft2
Wetted Perimeter, PW (ym
2 + (Zb·ym)2)0.5 + (ym
2 + (Zf·ym)2)0.5 + wb =
Cross Sectional Flow Area, A =
(wb + wt)·ym =
Hydraulic Radius, R
Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5
= 1.66 ft/sn
Travel time, t4
Total Time of Concentration, Tc
Compute Discharge
Size Ditch
Analyze Ditch using IDM Equation 30-4.7
6.7 cfsn
Since Qd≥Q10, ditch is adequate.
Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2
=
Check Drive Pipes Hydraulic Capacity vs. Appendix A
Any 15-in pipe is adequate
Compute Discharge
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/03/09
ITEM:CHK. JWA DATE: 01/10/10
071087 146th Street, Hamilton Co
Hydraulic Calculations
= 1.16 cfs
=1.0 ft
For water depth ≤ 0.71 ft, use h = 1/2 water depth. For water depth > 0.71 ft, h = 0.71+(d-0.71)/2
h = 0.86 ft
Weir Flow
QW =Where P =
Orifice Flow
QO =Where A =
Size Inlet
Total discharge entering inlet, Qi
Maximum Allowable Water Depth, ym
Analyze Inlet, P12
The correct flow type has the lower value, therefore:►► The inlet is adequate in orifice flow
51.92 cfs 19.90 ft
45.81 cfs 10.3 sq. ft
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology
BEAM, LONGEST and NEFF, L.L.C.
JOB:071087 146th Street, Hamilton Co DES. BSC DATE: 11/02/09
ITEM:Geopak Drainage Input CHK. JWA DATE: 01/10/10
Frequency Options:
Coefficient
Peaking
1.0 per IDM 29-8.05
1.2 per IDM 29-8.05
Intensity Options:
Min. Tc = 5.0 min
Pipe calculated using Full Flow Velocity per 29-7.09(01)
Intensity iterpolated from rainfall table
Junction Losses:
Loss Velocity calculated at Full Flow
Junction Losses calculated using Method 1 where:
Frequencies: 2 5 10 25 50 100
Duration (min) in/hr in/hr in/hr in/hr in/hr in/hr
5 4.63 5.43 6.12 7.17 8.09 9.12
10 3.95 4.63 5.22 6.12 6.90 7.78
15 3.44 4.03 4.55 5.33 6.01 6.77
20 3.04 3.56 4.02 4.71 5.31 5.99
30 2.46 2.88 3.25 3.81 4.29 4.84
40 2.05 2.41 2.71 3.18 3.59 4.05
50 1.76 2.06 2.33 2.73 3.07 3.47
60 1.54 1.80 2.03 2.38 2.68 3.03
90 1.07 1.23 1.42 1.63 1.91 2.24
120 0.83 0.95 1.11 1.37 1.60 1.87
180 0.59 0.72 0.84 1.04 1.22 1.42
240 0.47 0.58 0.68 0.84 0.99 1.15
300 0.40 0.49 0.58 0.71 0.83 0.97
360 0.35 0.43 0.50 0.62 0.72 0.85
420 0.31 0.38 0.44 0.55 0.64 0.75
480 0.28 0.34 0.40 0.49 0.57 0.67
540 0.25 0.31 0.36 0.45 0.52 0.61
600 0.23 0.28 0.33 0.41 0.48 0.56
720 0.20 0.24 0.29 0.35 0.41 0.48
840 0.17 0.22 0.25 0.31 0.36 0.42
960 0.16 0.19 0.23 0.28 0.32 0.38
1080 0.14 0.17 0.20 0.25 0.29 0.34
1200 0.13 0.16 0.19 0.23 0.27 0.31
1440 0.11 0.14 0.16 0.20 0.23 0.27
Rainfall Item Identification => Hamilton Co
Rainfall Item Description => Rainfall Intensities
Intensity Duration Table
Computation
Frequency:
10-Year
50-Year
Hj = Kj · V2/(2g)
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab: Input
BEAM, LONGEST and NEFF, L.L.C.
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Output
JOB:071087 146th Street, Hamilton Co DES.BSC DATE:06/04/12
ITEM:Geopak Drainage Output CHK.WJW DATE:06/05/12
Structure
Depth
Cumulative
Discharge Velocity
Cumulative
Discharge
ft min Acre cfs ft/s cfs
26 Inlet Type B-15 PR-A 201+08.30 X 917.20 3.01 914.19 914.10 Pipe 2 12 in 5.00 0.10 0.75 0.44 2.47 914.55 914.38 0.70 914.67 914.45
29 Inlet Type B-15 PR-A 201+08.30 X 917.20 3.01 914.19 914.11 Pipe 2 12 in 5.00 0.10 0.75 0.44 2.47 914.55 914.39 0.70 914.67 914.46
30 Inlet Type B-15 PR-A 201+40.00 X 917.22 3.00 914.22 914.14 Pipe 2 12 in 5.00 0.09 0.75 0.42 2.36 914.57 914.41 0.67 914.69 914.48
32 Inlet Type B-15 PR-A 201+40.00 X 917.22 3.00 914.22 914.09 Pipe 2 12 in 5.00 0.09 0.75 0.42 2.52 914.57 914.36 0.67 914.69 914.43
33 Inlet Type B-15 PR-A 202+40.00 X 917.58 3.00 914.58 914.45 Pipe 2 12 in 5.00 0.13 0.75 0.59 2.77 915.01 914.76 0.94 915.16 914.85
35 Inlet Type B-15 PR-A 202+40.00 X 917.58 3.64 913.94 913.80 Pipe 2 12 in 5.00 0.13 0.75 0.59 2.77 914.37 914.12 0.94 914.52 914.20
37 Inlet Type B-15 PR-A 203+80.00 X 918.14 4.00 914.14 914.00 Pipe 2 12 in 5.00 0.13 0.75 0.59 2.78 914.57 914.31 0.94 914.72 914.40
39 Inlet Type B-15 PR-A 203+80.00 X 918.14 4.46 913.68 913.36 Pipe 2 12 in 5.00 0.13 0.75 0.59 3.55 914.11 913.63 0.94 914.26 913.70
41 Inlet Type B-15 PR-A 205+20.00 X 918.70 3.50 915.20 914.89 Pipe 2 12 in 5.00 0.11 0.85 0.57 2.77 915.62 915.20 0.91 915.77 915.29
42 Inlet Type C-15 PR-A 205+20.00 X 918.66 4.01 914.64 913.82 Pipe 2 12 in 5.40 0.22 0.85 1.13 5.44 915.15 914.13 1.79 915.30 914.22
44 Inlet Type B-15 PR-A 206+40.00 X 918.93 3.48 915.45 914.85 Pipe 2 12 in 5.00 0.12 0.95 0.71 3.74 915.93 915.14 1.13 916.10 915.22
40 Inlet Type C-15 PR-A 206+40.00 X 919.00 5.26 913.74 913.11 Pipe 2 15 in 5.95 0.62 0.83 3.04 5.47 914.54 913.69 4.85 914.86 913.88
48 Inlet Type HA PR-A 206+83.33 921.02 6.42 914.60 914.00 Pipe 2 15 in 5.62 0.29 0.83 1.46 4.50 915.14 914.38 2.33 915.30 914.49
47 Inlet Type HA PR-A 207+26.94 X 919.59 3.70 915.89 915.06 Pipe 2 12 in 5.00 0.20 0.75 0.93 4.04 916.47 915.39 1.48 916.65 915.49
46 Inlet Type B-15 PR-A 208+20.00 X 920.44 4.12 916.32 916.01 Pipe 2 12 in 5.00 0.09 0.95 0.51 2.66 916.71 916.30 0.81 916.85 916.38
50 Inlet Type C-15 PR-A 208+20.00 X 920.17 5.67 914.51 912.30 Pipe 2 12 in 5.34 0.27 0.85 1.37 5.79 915.08 912.64 2.18 915.28 912.74
52 Inlet Type B-15 PR-A 208+90.00 X 920.20 3.41 916.79 916.40 Pipe 2 12 in 5.00 0.18 0.80 0.88 3.97 917.35 916.73 1.39 917.53 916.82
54 Inlet Type B-15 PR-A 208+90.00 X 920.18 3.50 916.68 915.94 Pipe 2 12 in 5.00 0.18 0.80 0.88 3.97 917.23 916.26 1.39 917.42 916.35
55 Inlet Type B-15 PR-A 212+85.00 X 919.91 3.26 916.65 916.52 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 917.19 916.90 1.34 917.37 917.01
59 Inlet Type B-15 PR-A 212+85.00 X 919.91 3.50 916.41 916.26 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.89 916.95 916.58 1.34 917.13 916.67
60 Manhole Type J4 PR-A 212+85.00 X 919.90 7.42 912.48 911.80 Pipe 2 36 in 18.24 5.19 0.41 9.01 4.70 913.49 912.75 14.44 913.79 913.01
58 PES 36 PR-A 213+75.00 X 915.45 2.38 913.07 912.82 Pipe 2 36 in 17.50 5.01 0.40 8.59 4.64 914.30 913.75 13.61 914.73 913.99
61 Inlet Type B-15 PR-A 214+85.00 X 918.54 3.81 914.73 914.59 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 915.27 914.97 1.34 915.45 915.08
64 Inlet Type B-15 PR-A 214+85.00 X 918.54 4.24 914.30 914.16 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 914.84 914.54 1.34 915.02 914.65
65 Inlet Type B-15 PR-A 216+85.00 X 916.94 3.00 913.94 913.82 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 914.48 914.20 1.34 914.66 914.30
67 Inlet Type B-15 PR-A 216+85.00 X 916.94 3.00 913.94 913.80 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 914.48 914.19 1.34 914.66 914.29
70 Inlet Type B-15 PR-A 218+85.00 X 915.34 3.00 912.34 912.22 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 912.88 912.60 1.34 913.06 912.70
71 Inlet Type B-15 PR-A 218+85.00 X 915.34 3.00 912.34 912.21 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 912.88 912.59 1.34 913.06 912.70
74 Inlet Type B-15 PR-A 220+85.00 X 913.74 3.83 909.91 909.62 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.92 910.45 909.94 1.34 910.63 910.03
75 Inlet Type B-15 PR-A 220+85.00 X 913.74 3.00 910.74 910.62 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 911.28 911.00 1.34 911.46 911.10
25 Inlet Type E-7 PR-A 221+37.00 X 909.75 4.58 905.17 904.29 Pipe 2 15 in 5.00 1.35 0.61 5.04 6.20 906.69 905.08 8.00 907.68 905.41
79 Inlet Type B-15 PR-A 222+10.00 X 912.80 3.40 909.40 908.51 Pipe 2 12 in 5.00 0.12 0.75 0.53 4.39 909.82 908.72 0.84 909.94 908.77
81 Inlet Type B-15 PR-A 222+10.00 X 912.80 3.11 909.69 909.24 Pipe 2 12 in 5.00 0.12 0.75 0.53 3.43 910.09 909.49 0.84 910.23 909.56
78 Manhole Type J-15 PR-A 222+60.00 X 912.70 6.07 906.63 905.85 Pipe 2 12 in 5.28 0.34 0.75 1.54 5.89 907.27 906.22 2.45 907.51 906.33
82 Inlet Type C-15 PR-A 222+60.00 X 912.70 3.56 909.14 908.34 Pipe 2 12 in 5.36 0.20 0.75 0.92 5.14 909.64 908.62 1.46 909.76 908.69
83 Manhole Type C4 PR-A 222+95.00 X 912.74 8.12 904.62 904.29 Pipe 2 30 in 11.29 4.66 0.58 13.71 5.61 906.03 905.54 21.97 906.61 905.88
80 Inlet Type B-15 PR-A 223+05.00 X 912.78 3.51 909.27 908.87 Pipe 2 12 in 5.00 0.14 0.75 0.63 3.62 909.72 909.15 1.00 909.87 909.22
85 Inlet Type C-15 PR-A 223+05.00 X 912.78 4.70 908.08 907.72 Pipe 2 12 in 5.54 0.34 0.75 1.53 5.65 908.74 908.09 2.43 908.96 908.21
86 Inlet Type B-15 PR-A 224+55.00 X 913.65 4.00 909.65 909.02 Pipe 2 12 in 5.00 0.17 0.75 0.76 4.84 910.15 909.28 1.20 910.32 909.35
88 Inlet Type B-15 PR-A 224+55.00 X 913.65 4.64 909.01 908.85 Pipe 2 12 in 5.00 0.17 0.75 0.76 3.76 909.51 909.16 1.20 909.68 909.24
89 Manhole Type C4 PR-A 224+55.00 X 913.61 8.36 905.25 904.78 Pipe 2 30 in 10.51 4.32 0.57 12.68 5.19 906.55 906.03 20.19 907.11 906.61
20 Inlet Type B-15 PR-A 226+35.00 X 914.73 5.00 909.73 909.01 Pipe 2 12 in 5.00 0.18 0.75 0.82 4.96 910.26 909.28 1.30 910.44 909.35
94 Inlet Type B-15 PR-A 226+35.00 X 914.73 5.00 909.73 909.42 Pipe 2 12 in 5.00 0.18 0.75 0.82 4.83 910.26 909.69 1.30 910.44 909.76
90 Manhole Type C4 PR-A 226+35.00 X 914.66 8.72 905.94 905.42 Pipe 2 30 in 9.92 4.16 0.56 12.24 5.40 907.22 906.59 19.47 907.67 907.11
149 Manhole Type C4 PR-A 227+00.00 X 915.06 8.93 906.14 905.96 Pipe 2 30 in 9.67 3.98 0.55 11.63 4.69 907.44 907.22 18.50 907.96 907.67
19 Inlet Type E-7 PR-A 227+00.00 X 910.58 3.00 907.58 907.41 Pipe 2 18 in 5.00 1.83 0.48 5.38 6.00 908.94 908.17 8.53 909.51 908.42
96 Inlet Type B-15 PR-A 228+30.00 X 915.90 4.00 911.90 911.27 Pipe 2 12 in 5.00 0.24 0.75 1.10 5.34 912.54 911.58 1.74 912.75 911.67
95 Inlet Type B-15 PR-A 228+30.00 X 915.90 5.00 910.90 910.59 Pipe 2 12 in 5.00 0.24 0.75 1.10 5.18 911.54 910.90 1.74 911.75 911.00
91 Manhole Type C4 PR-A 228+30.00 X 915.84 8.74 907.10 906.72 Pipe 2 24 in 9.18 2.15 0.62 7.11 4.86 908.15 907.67 11.29 908.54 907.96
93 Manhole Type C4 PR-A 231+00.00 X 917.19 9.28 907.91 907.12 Pipe 2 24 in 6.90 1.91 0.60 6.62 4.03 908.93 908.15 10.50 909.28 908.54
98 Inlet Type B-15 PR-A 233+90.00 X 915.20 4.00 911.20 910.57 Pipe 2 12 in 5.00 0.28 0.75 1.27 5.54 911.90 910.91 2.01 912.13 911.01
101 Inlet Type B-15 PR-A 233+90.00 X 915.20 4.67 910.53 909.84 Pipe 2 12 in 5.00 0.28 0.75 1.27 5.57 911.22 910.17 2.01 911.46 910.27
92 PES 24 PR-A 234+00.00 X 910.82 2.00 908.82 907.93 Pipe 2 24 in 6.90 1.91 0.60 6.62 4.21 910.15 908.93 10.50 910.58 909.28
103 Inlet Type B-15 PR-A 235+50.00 X 913.92 3.90 910.02 909.72 Pipe 2 12 in 5.00 0.15 0.75 0.68 3.69 910.49 910.00 1.07 910.64 910.08
104 Inlet Type B-15 PR-A 235+50.00 X 913.92 3.51 910.41 910.27 Pipe 2 12 in 5.00 0.15 0.75 0.68 2.90 910.88 910.61 1.07 911.04 910.70
108 Inlet Type C-15 PR-A 236+60.00 X 913.13 3.33 909.80 909.72 Pipe 2 12 in 5.80 0.33 0.75 1.48 3.61 910.45 910.24 2.35 910.72 910.38
111 Inlet Type C-15 PR-A 236+60.00 X 913.13 3.33 909.80 909.71 Pipe 2 15 in 5.73 0.33 0.75 1.49 3.39 910.36 910.20 2.36 910.54 910.33
107 Inlet Type C-15 PR-A 237+00.00 X 913.02 3.06 909.96 909.85 Pipe 2 12 in 5.45 0.23 0.75 1.04 2.13 910.58 910.45 1.65 910.91 910.72
112 Inlet Type C-15 PR-A 237+00.00 X 913.02 3.06 909.96 909.85 Pipe 2 12 in 5.45 0.23 0.75 1.04 2.63 910.49 910.36 1.65 910.71 910.54
109 Inlet Type B-15 PR-A 237+50.00 X 913.15 3.00 910.15 910.01 Pipe 2 12 in 5.00 0.15 0.75 0.68 1.47 910.62 910.58 1.07 910.98 910.91
113 Inlet Type B-15 PR-A 237+50.00 X 913.15 3.00 910.15 910.01 Pipe 2 12 in 5.00 0.15 0.75 0.68 1.83 910.62 910.49 1.07 910.82 910.71
115 Inlet Type B-15 PR-A 239+10.00 X 914.40 3.46 910.94 910.80 Pipe 2 12 in 5.00 0.28 0.75 1.26 3.43 911.63 911.28 2.00 911.86 911.40
116 Inlet Type B-15 PR-A 239+10.00 X 914.40 3.00 911.40 911.25 Pipe 2 12 in 5.00 0.28 0.75 1.26 3.43 912.09 911.73 2.00 912.32 911.86
119 Inlet Type B-15 PR-A 244+70.00 X 915.10 3.48 911.62 911.48 Pipe 2 12 in 5.00 0.24 0.75 1.10 3.30 912.26 911.92 1.74 912.47 912.04
10-Year Return Period
HGL
Upstream
HGL
DownstreamPipe DescriptionRightLine Remarks
Structure
Modelling Results
Geopak
Drainage
Node - ID
Tc Used
Cumulative
Area
Description Station Left50-Year Return Period
HGL
Upstream
HGL
Downstream
Casting
Elevation
Downstream
Invert
Cumulative
C Value
Upstream
Invert
BEAM, LONGEST and NEFF, L.L.C.
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Output
JOB:071087 146th Street, Hamilton Co DES.BSC DATE:06/04/12
ITEM:Geopak Drainage Output CHK.WJW DATE:06/05/12
Structure
Depth
Cumulative
Discharge Velocity
Cumulative
Discharge
ft min Acre cfs ft/s cfs
10-Year Return Period
HGL
Upstream
HGL
DownstreamPipe DescriptionRightLine Remarks
Structure
Modelling Results
Geopak
Drainage
Node - ID
Tc Used
Cumulative
Area
Description Station Left50-Year Return Period
HGL
Upstream
HGL
Downstream
Casting
Elevation
Downstream
Invert
Cumulative
C Value
Upstream
Invert
22 Inlet Type B-15 PR-A 244+70.00 X 915.10 4.00 911.10 910.95 Pipe 2 12 in 5.00 0.24 0.75 1.10 3.30 911.74 911.39 1.74 911.95 911.51
121 Inlet Type B-15 PR-A 246+45.00 X 914.05 3.96 910.09 909.94 Pipe 2 12 in 5.00 0.17 0.75 0.76 2.98 910.59 910.30 1.20 910.76 910.40
122 Inlet Type B-15 PR-A 246+45.00 X 914.05 3.96 910.09 909.93 Pipe 2 12 in 5.00 0.17 0.75 0.76 3.07 910.59 910.28 1.20 910.76 910.38
125 Cleanout Port Type II PR-A 247+00.00 X 913.89 4.01 909.88 909.72 Pipe 2 12 in 5.00 0.05 0.75 0.23 2.33 910.12 909.91 0.37 910.20 909.97
127 Cleanout Port Type II PR-A 247+55.00 X 914.02 3.99 910.03 909.45 Pipe 2 12 in 5.00 0.17 0.75 0.78 3.83 910.54 909.75 1.24 910.71 909.84
133 Cleanout Port Type II PR-A 251+85.00 X 910.96 2.96 908.00 907.91 Pipe 2 12 in 5.00 0.50 0.75 2.28 4.24 909.01 908.55 3.61 909.51 908.72
134 Cleanout Port Type II PR-A 252+85.00 X 911.37 4.01 907.36 905.00 Pipe 2 12 in 5.00 0.37 0.75 1.69 8.22 908.19 905.31 2.68 908.50 905.40
18 Inlet Type P-12A PR-FRN2 78+25.00 X 915.20 0.99 914.21 914.08 Pipe 2 12 in 5.00 0.20 0.95 1.18 3.37 914.88 914.54 1.87 915.09 914.66
A few inlets do not meet the minimum velocity requirements. This is a Level 3 design exception.
BEAM, LONGEST and NEFF, L.L.C.
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Scour
JOB:071087 146th Street, Hamilton Co DES.BSC DATE:06/04/12
ITEM:Scour Computations CHK.WJW DATE:06/05/12
For design of a riprap apron, HEC 14 Eqn 10.4 is used:See attached sketch of apron dimensions 1.87 for all computations
Dimension
ά β Θ
W S 6.94 0.53 0.08
where:LS 17.10 0.47 0.10
ft/s %min min cfs HS Rc ft CS Ch CS Ch a L Type
150 Outlet Storm Sewer PR-A 201+08.30 X Pipe 2 12 in 2.875 0.30%5.00 30.00 0.70 0.00 0.25 0.03 1.04 1.00 5.871 2.069 0.828 2.51 1.03 1.00 14.326 1.905 0.828 5.65 3 ft 7 ft Uniform B
151 Outlet Storm Sewer PR-A 201+08.30 X Pipe 2 12 in 2.875 0.30%5.00 30.00 0.70 0.00 0.25 0.03 1.04 1.00 5.871 2.069 0.828 2.51 1.03 1.00 14.326 1.905 0.828 5.65 3 ft 7 ft Uniform B
27 Outlet Storm Sewer PR-A 201+40.00 X Pipe 2 12 in 2.841 0.30%5.00 30.00 0.67 0.00 0.25 0.03 1.04 1.00 5.871 2.023 0.828 2.46 1.03 1.00 14.326 1.868 0.828 5.54 3 ft 7 ft Uniform B
28 Outlet Storm Sewer PR-A 201+40.00 X Pipe 2 12 in 2.875 0.50%5.00 30.00 0.67 0.00 0.25 0.03 1.07 1.00 6.040 2.023 0.828 2.53 1.04 1.00 14.465 1.868 0.828 5.59 3 ft 7 ft Uniform B
31 Outlet Storm Sewer PR-A 202+40.00 X Pipe 2 12 in 3.166 0.50%5.00 30.00 0.94 0.00 0.25 0.05 1.07 1.00 6.040 2.419 0.828 3.02 1.04 1.00 14.465 2.189 0.828 6.55 4 ft 8 ft Uniform B
34 Outlet Storm Sewer PR-A 202+40.00 X Pipe 2 12 in 3.166 0.50%5.00 30.00 0.94 0.00 0.25 0.05 1.07 1.00 6.040 2.419 0.828 3.02 1.04 1.00 14.465 2.189 0.828 6.55 4 ft 8 ft Uniform B
36 Outlet Storm Sewer PR-A 203+80.00 X Pipe 2 12 in 3.166 0.50%5.00 30.00 0.94 0.00 0.25 0.05 1.07 1.00 6.040 2.419 0.828 3.02 1.04 1.00 14.465 2.189 0.828 6.55 4 ft 8 ft Uniform B
38 Outlet Storm Sewer PR-A 203+80.00 X Pipe 2 12 in 4.039 1.00%5.00 30.00 0.94 0.00 0.25 0.05 1.14 1.00 6.435 2.419 0.828 3.22 1.09 1.00 15.161 2.189 0.828 6.87 4 ft 8 ft Uniform B
43 Outlet Storm Sewer PR-A 205+49.02 X Pipe 2 12 in 6.126 2.00%5.40 30.00 1.79 0.00 0.25 0.11 1.28 1.00 7.225 3.409 0.828 5.1 1.17 1.00 16.273 2.967 0.828 9.99 6 ft 11 ft Uniform B
45 Outlet Storm Sewer PR-A 205+82.16 X Pipe 2 15 in 6.132 1.00%5.95 30.00 4.85 0.00 0.31 0.24 1.14 1.00 6.435 4.341 0.828 7.17 1.09 1.00 15.161 3.676 0.828 14.31 8 ft 16 ft Uniform B
49 Outlet Storm Sewer PR-A 208+48.51 X Pipe 2 12 in 3.028 0.50%5.00 30.00 0.81 0.00 0.25 0.04 1.07 1.00 6.040 2.240 0.828 2.8 1.04 1.00 14.465 2.044 0.828 6.12 3 ft 8 ft Uniform B
51 Outlet Storm Sewer PR-A 209+06.64 X Pipe 2 12 in 6.557 2.00%5.34 30.00 2.18 0.00 0.25 0.14 1.28 1.00 7.225 3.778 0.828 5.65 1.17 1.00 16.273 3.251 0.828 10.95 6 ft 12 ft Uniform B
53 Outlet Storm Sewer PR-A 208+90.00 X Pipe 2 12 in 4.499 1.00%5.00 30.00 1.39 0.00 0.25 0.08 1.14 1.00 6.435 2.978 0.828 3.97 1.09 1.00 15.161 2.632 0.828 8.26 4 ft 10 ft Uniform B
56 Outlet Storm Sewer PR-A 212+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
57 Outlet Storm Sewer PR-A 210+39.82 X Pipe 2 36 in 5.404 0.28%18.24 30.00 14.44 0.00 0.75 0.13 1.04 1.00 5.871 2.402 0.828 8.76 1.02 1.00 14.187 2.175 0.828 19.16 9 ft 21 ft Uniform B
62 Outlet Storm Sewer PR-A 214+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
63 Outlet Storm Sewer PR-A 214+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
66 Outlet Storm Sewer PR-A 216+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
68 Outlet Storm Sewer PR-A 216+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
69 Outlet Storm Sewer PR-A 218+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
72 Outlet Storm Sewer PR-A 218+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
73 Outlet Storm Sewer PR-A 220+85.00 X Pipe 2 12 in 4.429 1.00%5.00 30.00 1.34 0.00 0.25 0.07 1.14 1.00 6.435 2.921 0.828 3.89 1.09 1.00 15.161 2.587 0.828 8.12 4 ft 10 ft Uniform B
76 Outlet Storm Sewer PR-A 220+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B
24 Outlet Storm Sewer PR-A 222+00.84 X Pipe 2 15 in 6.919 1.00%5.00 30.00 8.00 0.00 0.31 0.47 1.14 1.00 6.435 5.661 0.828 9.35 1.09 1.00 15.161 4.652 0.828 18.1 10 ft 20 ft Uniform A
77 Outlet Storm Sewer PR-A 222+60.00 X Pipe 2 12 in 6.592 2.00%5.28 30.00 2.45 0.00 0.25 0.16 1.28 1.00 7.225 4.022 0.828 6.02 1.17 1.00 16.273 3.435 0.828 11.57 7 ft 13 ft Uniform B
84 Outlet Storm Sewer PR-A 222+15.16 X Pipe 2 30 in 6.651 0.30%11.29 30.00 21.97 0.00 0.63 0.36 1.04 1.00 5.871 3.780 0.828 11.58 1.03 1.00 14.326 3.252 0.828 24.3 12 ft 26 ft Uniform A
87 Outlet Storm Sewer PR-A 224+55.00 X Pipe 2 12 in 5.473 2.00%5.00 30.00 1.20 0.00 0.25 0.06 1.28 1.00 7.225 2.756 0.828 4.12 1.17 1.00 16.273 2.457 0.828 8.28 5 ft 10 ft Uniform B
21 Outlet Storm Sewer PR-A 226+35.00 X Pipe 2 12 in 5.616 2.00%5.00 30.00 1.30 0.00 0.25 0.07 1.28 1.00 7.225 2.878 0.828 4.3 1.17 1.00 16.273 2.553 0.828 8.6 5 ft 10 ft Uniform B
97 Outlet Storm Sewer PR-A 228+30.00 X Pipe 2 12 in 5.997 2.00%5.00 30.00 1.74 0.00 0.25 0.10 1.28 1.00 7.225 3.355 0.828 5.02 1.17 1.00 16.273 2.925 0.828 9.85 6 ft 11 ft Uniform B
99 Outlet Storm Sewer PR-A 233+90.00 X Pipe 2 12 in 6.200 2.00%5.00 30.00 2.01 0.00 0.25 0.13 1.28 1.00 7.225 3.621 0.828 5.42 1.17 1.00 16.273 3.130 0.828 10.54 6 ft 12 ft Uniform B
100 Outlet Storm Sewer PR-A 234+04.52 X Pipe 2 12 in 6.238 2.00%5.00 30.00 2.01 0.00 0.25 0.13 1.28 1.00 7.225 3.621 0.828 5.42 1.17 1.00 16.273 3.130 0.828 10.54 6 ft 12 ft Uniform B
102 Outlet Storm Sewer PR-A 235+50.00 X Pipe 2 12 in 4.171 1.00%5.00 30.00 1.07 0.00 0.25 0.05 1.14 1.00 6.435 2.593 0.828 3.45 1.09 1.00 15.161 2.327 0.828 7.3 4 ft 9 ft Uniform B
105 Outlet Storm Sewer PR-A 235+50.00 X Pipe 2 12 in 3.287 0.50%5.00 30.00 1.07 0.00 0.25 0.05 1.07 1.00 6.040 2.593 0.828 3.24 1.04 1.00 14.465 2.327 0.828 6.97 4 ft 8 ft Uniform B
106 Outlet Storm Sewer PR-A 236+60.00 X Pipe 2 12 in 4.302 0.30%5.80 30.00 2.35 0.00 0.25 0.15 1.04 1.00 5.871 3.931 0.828 4.78 1.03 1.00 14.326 3.367 0.828 9.98 5 ft 11 ft Uniform B
110 Outlet Storm Sewer PR-A 236+60.00 X Pipe 2 15 in 3.924 0.30%5.73 30.00 2.36 0.00 0.31 0.09 1.04 1.00 5.871 2.964 0.828 4.47 1.03 1.00 14.326 2.621 0.828 9.64 5 ft 11 ft Uniform B
114 Outlet Storm Sewer PR-A 239+10.00 X Pipe 2 12 in 4.043 0.50%5.00 30.00 2.00 0.00 0.25 0.12 1.07 1.00 6.040 3.613 0.828 4.52 1.04 1.00 14.465 3.124 0.828 9.35 5 ft 11 ft Uniform B
117 Outlet Storm Sewer PR-A 239+10.00 X Pipe 2 12 in 4.043 0.50%5.00 30.00 2.00 0.00 0.25 0.12 1.07 1.00 6.040 3.613 0.828 4.52 1.04 1.00 14.465 3.124 0.828 9.35 5 ft 11 ft Uniform B
118 Outlet Storm Sewer PR-A 244+70.00 X Pipe 2 12 in 3.839 0.50%5.00 30.00 1.74 0.00 0.25 0.10 1.07 1.00 6.040 3.355 0.828 4.19 1.04 1.00 14.465 2.925 0.828 8.76 5 ft 10 ft Uniform B
23 Outlet Storm Sewer PR-A 244+70.00 X Pipe 2 12 in 3.839 0.50%5.00 30.00 1.74 0.00 0.25 0.10 1.07 1.00 6.040 3.355 0.828 4.19 1.04 1.00 14.465 2.925 0.828 8.76 5 ft 10 ft Uniform B
120 Outlet Storm Sewer PR-A 246+45.00 X Pipe 2 12 in 3.386 0.50%5.00 30.00 1.20 0.00 0.25 0.06 1.07 1.00 6.040 2.756 0.828 3.45 1.04 1.00 14.465 2.457 0.828 7.36 4 ft 9 ft Uniform B
123 Outlet Storm Sewer PR-A 246+45.00 X Pipe 2 12 in 3.494 0.55%5.00 30.00 1.20 0.00 0.25 0.06 1.08 1.00 6.096 2.756 0.828 3.48 1.05 1.00 14.604 2.457 0.828 7.43 4 ft 9 ft Uniform B
124 Outlet Storm Sewer PR-A 247+00.00 X Pipe 2 12 in 2.453 0.48%5.00 30.00 0.37 0.00 0.25 0.01 1.07 1.00 6.040 1.479 0.828 1.85 1.04 1.00 14.465 1.415 0.828 4.24 3 ft 6 ft Uniform B
126 Outlet Storm Sewer PR-A 247+55.00 X Pipe 2 12 in 4.338 0.98%5.00 30.00 1.24 0.00 0.25 0.07 1.14 1.00 6.435 2.801 0.828 3.73 1.08 1.00 15.021 2.493 0.828 7.75 4 ft 9 ft Uniform B
132 Outlet Storm Sewer PR-A 251+85.00 X Pipe 2 12 in 5.292 0.32%5.00 30.00 3.61 0.00 0.25 0.27 1.04 1.00 5.871 4.940 0.828 6 1.03 1.00 14.326 4.122 0.828 12.22 6 ft 14 ft Uniform A
135 Outlet Storm Sewer PR-A 252+85.00 X Pipe 2 12 in 9.229 4.68%5.00 30.00 2.68 0.00 0.25 0.18 1.66 1.00 9.370 4.217 0.828 8.18 1.40 1.00 19.472 3.583 0.828 14.44 9 ft 16 ft Uniform B
17 Outlet Storm Sewer PR-FRN2 78+25.00 X Pipe 2 12 in 3.934 0.31%5.00 30.00 1.87 0.00 0.25 0.11 1.04 1.00 5.871 3.481 0.828 4.23 1.03 1.00 14.326 3.023 0.828 8.96 5 ft 10 ft Uniform B
142 Outlet Culvert PR-FRN3 54+27.99 X Pipe 3 15 in 4.537 0.30%5.00 30.00 3.54 0.00 0.31 0.16 1.04 1.00 5.871 3.675 0.828 5.54 1.03 1.00 14.326 3.172 0.828 11.66 6 ft 13 ft Revetment
141 Outlet Culvert PR-FRN3 59+65.99 X Pipe 3 15 in 4.010 0.30%5.00 30.00 2.51 0.00 0.31 0.10 1.04 1.00 5.871 3.062 0.828 4.61 1.03 1.00 14.326 2.698 0.828 9.92 5 ft 11 ft Revetment
TW = Tailwater Depth (ft) = 0.4DD50 = riprap size (ft)1.00
D = Culvert Diameter (ft)g = 32.2 ft/s2
Q50
t = Tc if >
30 min
Storm Sewer Outfall
Slope of
Pipe, S Minimum Riprap to be Placed
F3 LS
Per Eqn 34-4.5
F1
Median
Riprap
Size D50
Coefficients per IDM Figure 34-4AMaterial Standard Deviation, σ =
CS where S = 0%
1.00
D50 =0.2·D·[Q50/(g0.5D2.5)]4/3·(D/TW)=0.5·Q4/3
g2/3·D7/3
a = W S but not less than 3D
L = LS +1 but not less than 4D
Hydraulic
Radius
Width of Scour Hole, WS Length of Scour Hole, LS
Per IDM Figure 34-4A Per Eqn 34-4.5
Slope
Correction
Slope
Correction
Drop
Height
F3
CS where S ≥ 2%
1.28
1.17
WS F2
Per IDM Figure 34-4A
Pipe DescriptionRightGeopak
Drainage
Node - ID
Node
Description Station LeftLine F1
Velocity
V50 Tc
Height
Above
Bed
F2
Drop
Height
Outlet Type
BEAM, LONGEST and NEFF, L.L.C.
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Areas
JOB:071087 146th Street DES.BSC DATE:06/04/12
ITEM:Geopak Drainage Areas CHK.WJW DATE:06/04/12
Drainage Area Time of Conc.Time Used Intensity Discharge
Acres min min in/hr cfs
Identification Runoff C Drainage Area Time of Conc.Time Used Intensity Discharge
18 0.95 0.20 5.00 5.00 6.12 1.18
19 0.48 1.83 5.00 5.00 6.12 5.38
20 0.75 0.18 5.00 5.00 6.12 0.82
22 0.75 0.24 5.00 5.00 6.12 1.10
25 0.61 1.35 5.00 5.00 6.12 5.04
26 0.75 0.00 5.00 5.00 6.12 0.01
29 0.75 0.10 5.00 5.00 6.12 0.44
30 0.75 0.09 5.00 5.00 6.12 0.42
32 0.75 0.09 5.00 5.00 6.12 0.42
33 0.75 0.13 5.00 5.00 6.12 0.59
35 0.75 0.13 5.00 5.00 6.12 0.59
37 0.75 0.13 5.00 5.00 6.12 0.59
39 0.75 0.13 5.00 5.00 6.12 0.59
40 0.95 0.12 5.00 5.00 6.12 0.71
41 0.85 0.11 5.00 5.00 6.12 0.57
42 0.85 0.11 5.00 5.00 6.12 0.57
44 0.95 0.12 5.00 5.00 6.12 0.71
46 0.95 0.09 5.00 5.00 6.12 0.51
47 0.75 0.20 5.00 5.00 6.12 0.93
48 0.75 0.17 5.00 5.00 6.12 0.78
50 0.95 0.09 5.00 5.00 6.12 0.51
52 0.8 0.18 5.00 5.00 6.12 0.88
54 0.8 0.18 5.00 5.00 6.12 0.88
55 0.75 0.18 5.00 5.00 6.12 0.85
58 0.4 5.01 17.50 17.50 4.29 8.59
59 0.75 0.18 5.00 5.00 6.12 0.85
61 0.75 0.18 5.00 5.00 6.12 0.85
64 0.75 0.18 5.00 5.00 6.12 0.85
65 0.75 0.18 5.00 5.00 6.12 0.85
67 0.75 0.18 5.00 5.00 6.12 0.85
70 0.75 0.18 5.00 5.00 6.12 0.85
71 0.75 0.18 5.00 5.00 6.12 0.85
74 0.75 0.18 5.00 5.00 6.12 0.85
75 0.75 0.18 5.00 5.00 6.12 0.85
78 0.75 0.09 5.00 5.00 6.12 0.40
79 0.75 0.12 5.00 5.00 6.12 0.53
80 0.75 0.14 5.00 5.00 6.12 0.63
81 0.75 0.12 5.00 5.00 6.12 0.53
82 0.75 0.09 5.00 5.00 6.12 0.40
85 0.75 0.14 5.00 5.00 6.12 0.63
86 0.75 0.17 5.00 5.00 6.12 0.76
88 0.75 0.17 5.00 5.00 6.12 0.76
92 0.6 1.91 6.90 6.90 5.78 6.62
94 0.75 0.18 5.00 5.00 6.12 0.82
95 0.75 0.24 5.00 5.00 6.12 1.10
96 0.75 0.24 5.00 5.00 6.12 1.10
Area ID*
Runoff
C
BEAM, LONGEST and NEFF, L.L.C.
P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Areas
JOB:071087 146th Street DES.BSC DATE:06/04/12
ITEM:Geopak Drainage Areas CHK.WJW DATE:06/04/12
Drainage Area Time of Conc.Time Used Intensity Discharge
Acres min min in/hr cfsArea ID*
Runoff
C
98 0.75 0.28 5.00 5.00 6.12 1.27
101 0.75 0.28 5.00 5.00 6.12 1.27
103 0.75 0.15 5.00 5.00 6.12 0.68
104 0.75 0.15 5.00 5.00 6.12 0.68
107 0.75 0.08 5.00 5.00 6.12 0.38
108 0.75 0.10 5.00 5.00 6.12 0.46
109 0.75 0.15 5.00 5.00 6.12 0.68
111 0.75 0.10 5.00 5.00 6.12 0.46
112 0.75 0.08 5.00 5.00 6.12 0.38
113 0.75 0.15 5.00 5.00 6.12 0.68
115 0.75 0.28 5.00 5.00 6.12 1.26
116 0.75 0.28 5.00 5.00 6.12 1.26
119 0.75 0.24 5.00 5.00 6.12 1.10
121 0.75 0.17 5.00 5.00 6.12 0.76
122 0.75 0.17 5.00 5.00 6.12 0.76
125 0.75 0.05 5.00 5.00 6.12 0.23
127 0.75 0.17 5.00 5.00 6.12 0.78
133 0.75 0.50 5.00 5.00 6.12 2.28
134 0.75 0.37 5.00 5.00 6.12 1.69
140 0.95 0.27 5.00 5.00 6.12 1.58
A. Coefficient for Culvert-Outlet Scour, Cohesionless Materials
Property α β θ
Depth, dS 2.27 0.39 0.06
Width, WS 6.94 0.53 0.08
Length, LS 17.10 0.47 0.10
Volume, VS 127.08 1.24 0.18
B. Coefficient CS for Outlet Above the Bed
HS Depth Width Length Volume
0 1.00 1.00 1.00 1.00
1 1.22 1.51 0.73 1.28
2 1.26 1.54 0.73 1.47
4 1.34 1.66 0.73 1.55
HS is the height above bed in pipe diameters, ft.
C. Coefficient Ch for Culvert Slope
Slope % Depth Width Length Volume
0 1.00 1.00 1.00 1.00
2 1.03 1.28 1.17 1.30
5 1.08 1.28 1.17 1.30
> 7 1.12 1.28 1.17 1.30
COEFFICIENTS FOR SCOUR-HOLE ESTIMATION
Figure 34-4A
DES: BSC 2/2/10
CHK: KJR 2/8/10
DES: BSC 2/2/10 CHK: KJR 2/8/10
Designed: BSC 3/24/10
Checked: SAS 3/24/10
Appendix A
Drive Pipe Hydraulics
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/22/2008
ITEM:CHK. JWA DATE: 12/22/2008
a. Project Data
1-7.
b. Studies and Regulatory Requirements
1-4.
Design Storm:
Allowable Backwater Q100
Roadway Serviceability Q10
Allowable Velocity Q10
1.
2.
3.
Minimum slope =0.30%
Pipe Length =60 ft
Freeboard =0.5 ft
100.00
Bell
Outside
Diameter
Joint
Thickness
t
Allowable
Water Depth
Allowable
Water
Elevation
(in) (in) (ft) (ft)
26.00 5.50 2.21 102.21
29.00 5.50 2.46 102.46
35.00 5.50 2.96 102.96
42.25 6.13 3.51 103.51
c. Applicable Design Criteria per Indiana Design Manual (IDM) Figure 31-3A (attached)
to accommodate 40' class IV drives
Step 2: Determine Hydrology
Step 4: Data Summary
Assumed Upstream Invert =
Analysis of the downstream channel was performed using the computer program HY-8. A triangular channel and 4-foot trapezoidal
channel were modeled for circular RCP pipes. Modeling revealed that under peak conditions, the flow control was on the inlet, meaning the
shape of the tailwater channel has negligible effect on the peak culvert capacity. Therefore, only triangular ditch shapes will be modeled for
other circular pipes. To be conservative, the side slopes of the channels have been set to 3:1.
Establish minimum culvert parameters:
per 30-6.03(01) Step 3
15
18
24
Step 3: Analyze Downstream Channel
Reinforced Concrete Circular Pipes
Diameter of pipe
(in)
The purpose of these calculations is to determine guidelines for several commonly used pipe sizes at a range of slopes. These
guidelines will be established modeling several different situations under the least efficient hydraulic parameters.
Minimum cover requirements and the method for calculating the allowable water depth entering the culvert are shown in Figure
1 (attached.) Allowable water depth calculations are shown below:
a. Methodology
Once the guidelines are established the designer can compare actual site parameters to the minimal guidelines. If the designer
determines the pipe size provided is effective under more restrictive conditions, it can therefore be inferred that the pipe is
adequately designed.
per 30-3.03(01)
N/A
Hydraulic Calculations
Project specific data is shown elsewhere.
Drive Pipe Hydraulic Design
DESIGN PROCEDURES PER 31-6.0
Step 1: Site Date & Project Information
Project specific data is shown elsewhere.
Project specific data is shown elsewhere.
30
P:\Project\081011\Design\08 - Drainage\Drive Pipes\Drive Pipes.xls Tab:PR-D
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/22/2008
ITEM:CHK. JWA DATE: 12/22/2008
N/A
Hydraulic Calculations
Drive Pipe Hydraulic Design
Corrugation
Depth
Minimum
Cover
Allowable
Water Depth
Allowable
Water
Elevation
(in) (ft) (ft) (ft)
0.50 1.00 2.79 102.79
0.50 1.00 3.04 103.04
0.50 1.00 3.54 103.54
0.50 1.00 4.04 104.04
1.0 ft
Outside
Diameter
Pipe
Thickness
t
Allowable
Water Depth
Allowable
Water
Elevation
(in) (in) (ft) (ft)
18.00 1.50 2.88 102.88
22.00 2.00 3.17 103.17
28.00 2.00 3.67 103.67
36.00 3.00 4.25 104.25
1.0 ft
Outside
Diameter
Pipe
Thickness
t
Allowable
Water Depth
Allowable
Water
Elevation
(in) (in) (ft) (ft)
15.300 0.150 2.76 102.76
18.701 0.351 3.03 103.03
24.803 0.402 3.53 103.53
31.496 0.748 4.06 104.06
INDOT
Deformed
Pipe Area
Wall
Thickness
t
Allowable
Water Depth
Allowable
Water
Elevation
(ft2) (in) (ft) (ft)
14 x 23 1.8 2.75 1.90 101.90
19 x 30 3.3 3.25 2.35 102.35
22 x 34 4.1 3.50 2.63 102.63
24 x 38 5.1 3.75 2.81 102.81
27 x 42 6.3 3.75 3.06 103.06
1.0 ft
INDOT
Deformed
Pipe Area
Corrugation
Depth
Allowable
Water Depth
Allowable
Water
Elevation
(ft2) (in) (ft) (ft)
13 x 17 1.1 0.50 2.63 102.63
15 x 21 1.6 0.50 2.79 102.79
18 x 24 2.2 0.50 3.04 103.04
20 x 28 2.9 0.50 3.21 103.21
24 x 35 4.5 0.50 3.54 103.54
29 x 42 6.5 0.50 3.96 103.96
Circular, PVC Smooth Wall Pipes
Trench Cover, Tc =
Diameter of pipe
(in)
24
30
15
18
Height x Width
Trench Cover, Tc =
Circular, Corrugated Metal Pipes (H20 Loading)
18
24
Deformed, Reinforced Concrete, Smooth Interior Pipe
15
Diameter of pipe
(in)
15
18
24
30
Trench Cover, Tc =
(in)
Deformed, Corrugated Interior Pipe (H20 Loading)
Height x Width
(in)
30
Circular, HDPE Dual Wall Pipes
Diameter of pipe
(in)
P:\Project\081011\Design\08 - Drainage\Drive Pipes\Drive Pipes.xls Tab:PR-D
D4
165 #/syd HMA Surface Type B on
220 #/syd HMA Intermediate Type B on
880 #/syd HMA Base Type B on
Subgrade Treatment IIIA
D4
Subgrade Treatment
Minimum Freeboard = 0.5’
DRIVE CULVERT SECTION VIEW
t*Diameteror Rise, D1.0’ Allowable Water Depth = D + t + Tc + 0.5
* Use joint thickness for circular, concrete pipe and wall
thickness for deformed, concrete pipe.Cover (Tc)DES: BSC 12/22/08
CHK: JWA 12/22/08
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 12/22/2008
ITEM:CHK. JWA DATE: 12/22/2008
N/A
Hydraulic Calculations
Drive Pipe Hydraulic Design
4.
Embedment Depth:0.00
Manning's n:
Manning's n:
Inlet Type:
Improved Inlet Edge:
Face Width, Bf:15 in.= 2.50 ft
18 in.= 3.00 ft
24 in.= 4.00 ft
30 in.= 5.00 ft
Side Taper:6:1
Face Height, E:
Inlet Depression:No
Corrugated Metal, Circular pipes:
Embedment Depth:0.00
Manning's n:
Inlet Type:
Improved Inlet Edge:
Face Width, Bf:15 in.= 2.50 ft
18 in.= 3.00 ft
24 in.= 4.00 ft
30 in.= 5.00 ft
Side Taper:6:1
Face Height, E:
Inlet Depression:No
Embedment Depth:0.00
Manning's n:
Inlet Type:
Improved Inlet Edge:
Inlet Depression:No
Embedment Depth:0.00
Manning's n:
Inlet Type:
Improved Inlet Edge:
Inlet Depression:No
5.
Side-Tapered, Circular
Channel slope and pipe slope are set to the same value. Manning's n for the channel is set to 0.025 for a straight, uniform, clean
channel after weathering per IDM Figure 30-4B
Corrugated HDPE*, PVC*, Smooth Interior, Reinforced Concrete & Non-Reinforced Concrete, Circular pipes:
per E 715-MPES-01
per E 715-MPES-01
per E 715-MPES-01
per IDM Figure 31-10A
always the same as pipe height
Step 5: Design Discharge Qd
HY-8 modeling parameters:
(closest match to end section, see IDM Fig. 31-9A)
per E 715-MPES-01
Roadway is programmed at constant elevation equal to the allowable water depth in the incoming roadside ditch, which is
calculated above. The surface is set to paved since the culvert is presumably within the R/W, within which drives are paved.
The top width is 40-feet in accordance with Class IV drives.
0.012 (all others)per IDM Figure 31-10A
per E 715-PCES-01
Beveled Edge Top (15-26°) Wingwall
per E 715-PCES-01
0.010 (PVC)per HDS 5 Table 4
Side-Tapered, Circular (closest match to end section, see IDM Fig. 31-9A)
per E 715-PCES-01
per E 715-PCES-01
* HDPE and PVC pipes modeled as concrete with different n values in HY-8 due to the limited inlet types for PVC and
HDPE.
0.012 per IDM Figure 31-10A
(closest match to varying taper rate)
0.024
(closest match to varying taper rate)
always the same as pipe height
Beveled Edge Top (15-26°) Wingwall
0.024 per IDM Figure 31-10A
Conventional (only option in HY-8)
Deformed, Reinforced Concrete, Smooth Interior Pipe:
Grooved Edge with headwall (Used most efficient choice there is no
equivalent to end section)
Deformed, Corrugated Interior Pipe:
Conventional (only option in HY-8)
For the purpose of these calculations, the ditch foreslope and backslope are assumed at least as high as the roadway edge of
pavement elevation.
Headwall (Used most efficient choice there is no
equivalent to end section)
Since the constant roadway elevation was set in the model equal to the minimum freeboard, the first discharge at which overtopping occurs
represents the drive pipe capacity under minimum cover conditions. Results are shown in the tables on the following pages.
P:\Project\081011\Design\08 - Drainage\Drive Pipes\Drive Pipes.xls Tab:PR-D
DES:BSC 12/22/08CHK:JWA12/22/08Shape:Diameter:Material: CMP RCNRCP & HDPE*PVC CMP RCNRCP & HDPE*PVC CMP RCP PVCNRCP & HDPE*CMP RC PVCNRCP & HDPE*Cover, Tc:1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%5.68 7.18 8.87 9.20 9.07 11.04 13.70 14.07 18.85 21.62 26.60 26.26 33.00 36.47 43.28 43.460.36%5.72 7.26 8.94 9.27 9.14 11.16 13.81 14.12 18.98 21.84 27.07 26.67 33.05 36.78 43.77 43.880.40%5.75 7.31 8.99 9.32 9.18 11.24 13.88 14.19 19.06 21.99 27.18 26.77 33.28 37.10 44.10 44.240.44%5.77 7.36 9.04 9.37 9.23 11.32 13.95 14.26 19.15 22.14 27.32 26.88 33.45 37.24 44.46 44.540.48%5.82 7.44 9.06 9.49 9.29 11.45 14.06 14.37 19.28 22.36 27.55 27.09 33.74 37.54 44.54 44.950.52%5.84 7.49 9.08 9.54 9.34 11.53 14.07 14.44 19.37 22.52 27.71 27.22 33.88 37.73 44.95 45.230.60%5.91 7.62 9.19 9.67 9.45 11.73 14.18 14.62 19.59 22.67 28.11 27.55 34.26 38.21 45.29 45.860.68%5.98 7.75 9.29 9.79 9.56 11.91 14.34 14.80 19.80 23.01 28.32 27.89 34.62 38.25 44.34 46.480.76%6.04 7.88 9.40 9.91 9.66 12.10 14.50 14.98 20.02 23.53 28.55 28.23 34.95 39.52 48.03 47.040.84%6.10 7.99 9.48 10.00 9.73 12.26 14.63 15.12 20.19 23.43 28.85 28.32 35.23 41.03 48.08 47.800.92%6.17 8.12 9.59 10.12 9.84 12.46 14.78 15.29 20.40 24.37 29.97 28.56 35.59 41.11 48.17 47.751.00%6.23 8.25 9.69 10.24 9.94 12.67 14.94 15.47 20.61 25.01 30.01 28.84 35.94 41.19 48.24 48.501.20%6.39 8.58 9.94 10.53 10.19 13.31 15.31 15.98 21.11 25.12 30.11 29.54 36.79 41.39 48.42 50.711.40%6.54 8.99 10.19 10.80 10.43 13.69 15.68 16.30 21.54 25.24 30.21 30.97 37.53 41.59 48.61 50.891.60%6.70 9.37 10.43 11.07 10.67 13.74 16.04 16.70 22.00 25.35 30.31 31.44 38.33 41.79 48.79 51.061.80%6.85 9.41 10.67 11.34 10.88 13.79 16.40 16.74 22.46 25.46 30.41 31.53 39.13 41.99 48.97 51.242.00%6.98 9.44 10.90 11.53 11.11 13.84 16.75 16.79 22.92 25.57 30.50 31.63 39.86 42.19 49.15 51.412.20%7.12 9.47 11.13 11.56 11.33 13.89 17.10 16.83 23.37 25.68 30.60 31.73 40.62 42.39 49.34 51.592.40%7.26 9.50 11.36 11.59 11.55 13.94 17.43 16.87 30.78 25.79 30.70 31.82 41.39 42.59 49.52 51.772.60%7.39 9.53 11.58 11.61 11.77 13.99 17.57 16.92 30.88 25.90 30.80 31.92 42.15 42.78 49.69 51.942.80%7.52 9.56 11.79 11.64 11.97 14.04 17.61 16.96 30.97 26.00 30.90 32.01 42.92 42.98 49.87 52.11Shape:Diameter:Material: CMP RCPNRCP & HDPE* PVCCMP RCPNRCP & HDPE*PVC CMP RCP PVCNRCP & HDPE*CMP RCP PVCNRCP & HDPE*Cover, Tc:1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%5.68 7.18 8.87 9.20 9.07 11.04 13.70 14.0718.8421.6226.79 26.4133.00 36.4744.15 44.450.36%5.72 7.26 8.94 9.27 9.14 11.16 13.81 14.12 18.98 21.8427.02 26.61 33.2236.7844.50 44.760.40%5.75 7.31 8.99 9.32 9.18 11.24 13.88 14.19 19.06 21.9927.17 26.75 33.3737.1044.73 44.970.44%5.77 7.36 9.04 9.37 9.23 11.32 13.95 14.26 19.15 22.14 27.32 26.8833.5237.2444.97 45.180.48%5.82 7.44 9.06 9.49 9.29 11.45 14.06 14.37 19.28 22.3627.56 27.0833.74 37.5444.96 45.490.52%5.84 7.49 9.08 9.54 9.34 11.53 14.07 14.44 19.3722.5127.71 27.2233.8937.7345.16 45.700.60%5.91 7.62 9.19 9.67 9.45 11.73 14.18 14.62 19.59 22.67 28.11 27.55 34.26 38.2145.58 46.220.68%5.98 7.75 9.29 9.79 9.56 11.91 14.34 14.80 19.80 23.01 28.32 27.89 34.62 38.2547.07 46.770.76%6.04 7.88 9.40 9.91 9.66 12.10 14.50 14.98 20.0223.52 28.56 28.2434.95 39.52 48.0347.320.84%6.10 7.99 9.48 10.00 9.73 12.26 14.63 15.12 20.19 23.43 28.85 28.32 35.23 41.0348.09 47.790.92%6.17 8.12 9.59 10.12 9.84 12.46 14.78 15.29 20.40 24.37 29.97 28.56 35.59 41.11 48.17 47.751.00%6.23 8.25 9.69 10.24 9.94 12.67 14.94 15.47 20.61 25.01 30.01 28.84 35.94 41.19 48.24 48.501.20%6.39 8.58 9.94 10.53 10.19 13.31 15.31 15.98 21.11 25.12 30.1129.5336.79 41.39 48.42 50.711.40%6.54 8.99 10.19 10.80 10.43 13.69 15.68 16.30 21.54 25.24 30.21 30.97 37.53 41.59 48.61 50.891.60%6.70 9.37 10.43 11.07 10.67 13.74 16.04 16.70 22.00 25.35 30.31 31.44 38.33 41.79 48.79 51.061.80%6.85 9.41 10.67 11.34 10.88 13.79 16.40 16.74 22.46 25.46 30.41 31.53 39.13 41.99 48.97 51.242.00%6.98 9.44 10.90 11.53 11.11 13.84 16.75 16.79 22.92 25.5730.5131.63 39.86 42.19 49.15 51.412.20%7.12 9.47 11.13 11.56 11.33 13.89 17.10 16.83 23.37 25.68 30.60 31.73 40.62 42.39 49.34 51.592.40%7.26 9.50 11.36 11.59 11.55 13.94 17.43 16.87 30.78 25.79 30.70 31.82 41.39 42.59 49.52 51.772.60%7.39 9.53 11.58 11.61 11.77 13.99 17.57 16.92 30.88 25.90 30.80 31.92 42.15 42.78 49.69 51.942.80%7.52 9.56 11.79 11.64 11.97 14.04 17.61 16.96 30.97 26.00 30.90 32.01 42.92 42.98 49.87 52.11SlopeCircular24-inchCircular15-inchCircular18-inch18-inch24-inchCircularCircularCircularRed text denotes where culverts with trapezoidal ditches perform differently from culverts with "V" ditches.* These discharges are also valid for RC pipe at the same cover.SlopeTRIANGULAR "V" DITCH WITH 3:1 SIDESCircular30-inch4' WIDE TRAPEZOIDAL DITCH WITH 3:1 SIDESCircular30-inch15-inch
DES: BSC 12/22/08CHK: JWA 12/22/08Shape:Size h x w (in.)14 x 23 19 x 3022 x 3424 x 38 27 x 42 13 x 17 15 x 21 18 x 2420 x 2824 x 35 29 x 42Cover, Tc:0 ft 0 ft 0 ft 0 ft 0 ft 1 ft 1 ft 1 ft 1 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%9.28 18.86 26.59 32.95 42.48 5.29 8.29 12.37 16.73 26.75 40.960.36%9.47 19.24 27.03 30.74 43.45 5.35 8.38 12.52 16.92 27.10 41.520.40%9.62 19.56 26.40 31.04 44.01 5.41 8.44 12.61 17.08 27.47 41.910.44%9.76 19.83 26.90 31.20 44.22 5.44 8.51 12.71 17.20 27.69 42.350.48%9.94 19.95 27.67 31.67 44.49 5.48 8.59 12.81 17.35 27.98 42.780.52%10.04 20.30 27.12 31.27 44.49 5.50 8.65 12.88 17.45 28.17 43.110.60%10.49 20.56 28.04 34.94 44.51 5.57 8.76 13.06 17.72 28.60 43.880.68%10.76 20.56 28.04 34.95 44.52 5.64 8.86 13.20 17.96 29.06 44.590.76%10.90 20.57 28.06 34.96 44.54 5.70 8.96 13.34 18.15 29.42 45.270.84%10.91 20.57 28.07 34.98 44.55 5.75 9.05 13.46 18.30 29.73 45.980.92%10.91 20.58 28.08 34.98 44.57 5.82 9.15 13.60 18.49 30.03 46.121.00%10.91 20.59 28.08 35.00 44.57 5.88 9.24 13.73 18.68 30.36 46.721.20%10.92 20.60 28.10 35.02 44.62 6.02 9.46 14.07 19.12 31.19 48.441.40%10.92 20.61 28.12 35.05 44.66 6.17 9.69 14.41 19.57 32.05 49.671.60%10.93 20.63 28.14 35.08 44.68 6.31 9.91 14.74 20.02 32.75 50.881.80%10.93 20.64 28.16 35.10 44.72 6.45 10.13 15.03 20.45 33.41 52.112.00%10.94 20.65 28.18 35.13 44.75 6.59 10.34 15.34 20.84 34.12 52.292.20%10.95 20.67 28.20 35.16 44.79 6.73 10.55 15.65 21.26 34.86 52.322.40%10.95 20.68 28.22 35.18 44.82 6.86 10.77 15.96 21.68 34.95 52.352.60%10.96 20.70 28.24 35.21 44.87 6.99 10.98 16.27 22.04 34.96 52.372.80%10.97 20.71 28.26 35.23 44.89 7.12 11.15 16.52 22.44 34.98 52.40Shape:Size h x w (in.)14 x 23 19 x 3022 x 3424 x 38 27 x 42 13 x 17 15 x 21 18 x 2420 x 2824 x 35 29 x 42Cover, Tc:0 ft 0 ft 0 ft 0 ft 0 ft 1 ft 1 ft 1 ft 1 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%9.67 19.61 27.59 34.34 44.46 5.37 8.44 12.57 17.11 28.05 44.300.36%9.81 19.88 27.98 34.74 44.47 5.41 8.50 12.64 17.23 28.24 44.610.40%9.88 20.07 28.02 34.92 44.48 5.43 8.53 12.70 17.31 28.37 44.840.44%9.97 20.27 28.02 34.92 44.47 5.46 8.57 12.76 17.39 28.49 45.040.48%10.10 20.54 28.03 34.9344.495.49 8.63 12.85 17.51 28.68 45.380.52%10.19 20.55 28.03 34.93 44.50 5.52 8.68 12.91 17.59 28.80 45.570.60%10.4220.56 28.04 34.94 44.515.58 8.78 13.05 17.79 29.11 46.020.68%10.6620.5628.05 34.96 44.535.648.8813.2017.95 29.43 46.500.76%10.90 20.57 28.0634.97 44.535.708.9713.34 18.1529.73 46.980.84%10.9020.57 28.07 34.98 44.55 5.75 9.05 13.46 18.3029.98 47.340.92%10.91 20.58 28.0834.99 44.56 5.819.15 13.60 18.4930.29 47.761.00%10.91 20.59 28.0834.99 44.58 5.879.24 13.73 18.6830.60 47.901.20%10.92 20.60 28.1035.03 44.616.02 9.46 14.07 19.1231.27 49.351.40%10.92 20.61 28.12 35.0544.656.17 9.69 14.41 19.5731.98 50.461.60%10.93 20.63 28.14 35.08 44.68 6.31 9.91 14.74 20.0232.69 51.611.80%10.93 20.64 28.16 35.10 44.72 6.45 10.13 15.03 20.45 33.4152.262.00%10.94 20.65 28.18 35.13 44.75 6.59 10.34 15.34 20.84 34.12 52.292.20%10.95 20.67 28.20 35.16 44.79 6.73 10.55 15.65 21.26 34.86 52.322.40%10.95 20.68 28.22 35.18 44.82 6.86 10.77 15.96 21.68 34.95 52.352.60%10.96 20.70 28.24 35.21 44.87 6.99 10.98 16.27 22.04 34.9652.382.80%10.97 20.71 28.26 35.23 44.89 7.12 11.15 16.52 22.44 34.98 52.40Red text denotes where culverts with trapezoidal ditches perform differently from culverts with "V" ditches.SlopeSlopeTRIANGULAR "V" DITCH WITH 3:1 SIDES4' WIDE TRAPEZOIDAL DITCH WITH 3:1 SIDESDeformed, Reinforced Concrete, Smooth Interior PipeDeformed, Reinforced Concrete, Smooth Interior PipeDeformed, Corrugated Interior PipeDeformed, Corrugated Interior Pipe
DES: BSC 12/22/08
CHK: JWA 12/22/08
33
Table 4--Manning’s n Values for Culverts.*
Type of Culvert Roughness or
Corrugation
Manning's n Reference
Concrete Pipe Smooth 0.010-0.011 (64, 66, 67, 70)
Concrete Boxes Smooth 0.012-0.015 (23)
Spiral Rib Metal Pipe Smooth 0.012-0.013 (65, 69)
Corrugated Metal Pipe,
Pipe-Arch and Box
(Annular and Helical
corrugations -- see Figure B-3,
Manning's n varies with barrel
size)
68 by 13 mm
2-2/3 by 1/2 in
Annular
68 by 13 mm
2-2/3 by 1/2 in
Helical
150 by 25 mm
6 by 1 in
Helical
125 by 25 mm
5 by 1 in
75 by 25 mm
3 by 1 in
150 by 50 mm
6 by 2 in
Structural Plate
230 by 64 mm
9 by 2-1/2 in
Structural Plate
0.022-0.027
0.011-0.023
0.022-0.025
0.025-0.026
0.027-0.028
0.033-0.035
0.033-0.037
(25)
(25, 68)
(25)
(25)
(25)
(25)
(25)
Corrugated Polyethylene Smooth 0.009-0.015 (71, 72)
Corrugated Polyethylene Corrugated 0.018-0.025 (73, 74)
Polyvinyl chloride (PVC) Smooth 0.009-0.011 (75, 76)
*NOTE: The Manning's n values indicated in this table were obtained in the laboratory and are
supported by the provided reference. Actual field values for culverts may vary depending on
the effect of abrasion, corrosion, deflection, and joint conditions.
DES: BSC 12/22/08
CHK: JWA 12/22/08
Type of Channel and Description Minimum Normal Maximum
EXCAVATED OR DREDGED
1. Earth, Straight and Uniform 0.016 0.018 0.020
a. Clean, recently completed 0.018 0.022 0.025
b. Clean, after weathering 0.022 0.025 0.030
c. Gravel, uniform section, clean 0.022 0.027 0.033
2. Earth, Winding and Sluggish
a. No vegetation 0.023 0.025 0.030
b. Grass, some weeds 0.025 0.030 0.033
c. Dense weeds or aquatic plants in deep channel 0.030 0.035 0.040
d. Earth bottom and rubble sides 0.025 0.030 0.035
e. Stony bottom and weedy sides 0.025 0.035 0.045
f. Cobble bottom and clean sides 0.030 0.040 0.050
3. Dragline, Excavated or Dredged
a. No vegetation 0.025 0.028 0.033
b. Light brush on banks 0.035 0.050 0.060
4. Rock Cut
a. Smooth and uniform 0.025 0.035 0.040
b. Jagged and irregular 0.035 0.040 0.050
5. Channel Not Maintained, Weeds and Brush Uncut
a. Dense weeds, high as flow depth 0.050 0.080 0.120
b. Clean bottom, brush on sides 0.040 0.050 0.080
c. Clean bottom, highest stage of flow 0.045 0.070 0.110
d. Dense brush, high stage 0.080 0.100 0.140
NATURAL STREAM
1. Minor Stream (top width at flood stage < 100 ft)
a. Stream on plain
(1) Clean, straight, full stage, no rifts or deep
pools 0.025 0.030 0.033
(2) Same as above, but more stones or weeds 0.030 0.035 0.040
(3) Clean, winding, some pools or shoals 0.033 0.040 0.045
(4) Same as above, but some weeds or stones 0.035 0.045 0.050
(5) Same as above, lower stages, more
ineffective slopes and sections 0.040 0.048 0.055
(6) Same as (4), but more stones 0.045 0.050 0.060
(7) Sluggish reaches, weedy, deep pools 0.050 0.070 0.080
(8) Very weedy reaches, deep pools, or
floodway with heavy stand of timber and
underbrush
0.075 0.100 0.150
DES: BSC 12/22/08
CHK: JWA 12/22/08
Functional
Classification
Allowable
Backwater
Roadway
Serviceability
Allowable
Velocity
Freeway Q100 Q100 Q50
Non-Freeway ≥ 4 Lanes Q100 Q100 Q50
Two-Lane Facility
AADT ≥ 3000 Q100 Q100 Q50
3000 > AADT ≥ 1000 Q100 Q25 Q25
AADT < 1000 Q100 Q10 Q10
Drive Q100 Q10 Q10
Note: The design-storm frequency for a culvert-extension structure is identical to that for a new
culvert structure. Traffic volume is for a 20-year projection.
DESIGN-STORM FREQUENCY, CULVERT
Figure 31-3A
DES: BSC 12/22/08
CHK: JWA 12/22/08
Type of Conduit Wall Description Manning’s n
Concrete Pipe Smooth Interior 0.012
Concrete Box Smooth Walls 0.012 - 0.015
Corrugated Metal Pipe or
Box, Annular or Helical Pipe
(see HDS #5)
2.75 in. x 0.5 in. corrugations
6 in. x 1 in. corrugations
5 in. x 1 in. corrugations
3 in. x 1 in. corrugations
6 in. x 2 in. structural plate
9.25 in. x 2.5 in. structural plate
0.024
0.024
0.024
0.024
0.033 - 0.035
0.033 - 0.037
Thermoplastic Pipe Smooth Interior 0.012
Note 1: The value indicated in this table is the recommended Manning’s n design value.
The actual field value for an older, existing pipeline may vary depending on the
effects of abrasion, corrosion, deflection and joint conditions. A concrete pipe
with poor joints and deteriorated walls may have an n value of 0.014 to 0.018. A
corrugated metal pipe with joint and wall problems may also have a higher n
value, and may experience shape changes which can adversely affect the general
hydraulic characteristics of the culvert.
Note 2: For further information concerning Manning’s n value for selected conduits,
consult Hydraulic Design of Highway Culverts, Federal Highway Administration,
HDS #5, p. 163.
RECOMMENDED MANNING’S n VALUE
Figure 31-10A
DES: BSC 12/22/08
CHK: JWA 12/22/08
DESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDES: BSC 12/22/08 CHK: JWA 12/22/08
DESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDES: BSC 12/22/08 CHK: JWA 12/22/08
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 3a
Culvert Box Culvert
Flow 91.88 cfs
Culvert Data
Culvert Width (including multiple
barrels)
7.0 ft
Culvert Height 4.0 ft
Outlet Depth 1.73 ft
Outlet Velocity 7.58 ft/s
Froude Number 1.01
Tailwater Depth 1.04 ft
Tailwater Velocity 2.57 ft/s
Tailwater Slope (SO)0.0031
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 140.70 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 47.938 ft
Width 22.162 ft
Depth 5.646 ft
Volume 2926.241 ft^3
DS at .4(LS)19.175 ft
Tailwater Depth (TW)1.044 ft
Velocity with TW and WS 3.340 ft/s
DES: BSC 2/2/10
CHK: KJR 2/8/10
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 3A INDOT Q100
Culvert Precast Box
Flow 77.56 cfs
Culvert Data
Culvert Width (including multiple
barrels)
9.0 ft
Culvert Height 3.0 ft
Outlet Depth 1.27 ft
Outlet Velocity 6.77 ft/s
Froude Number 1.06
Tailwater Depth 1.64 ft
Tailwater Velocity 0.84 ft/s
Tailwater Slope (SO)0.0030
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 133.90 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 43.325 ft
Width 19.567 ft
Depth 5.281 ft
Volume 2328.519 ft^3
DS at .4(LS)17.330 ft
Tailwater Depth (TW)1.637 ft
Velocity with TW and WS 1.814 ft/s
DES: BSC 2/2/10
CHK: KJR 2/8/10
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 1 INDOT
Culvert Circular
Flow 6.67 cfs
Culvert Data
Culvert Width (including multiple
barrels)
3.0 ft
Culvert Height 3.0 ft
Outlet Depth 0.81 ft
Outlet Velocity 4.32 ft/s
Froude Number 0.84
Tailwater Depth 0.64 ft
Tailwater Velocity 1.60 ft/s
Tailwater Slope (SO)0.0030
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 30.00 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 12.942 ft
Width 5.636 ft
Depth 1.830 ft
Volume 89.606 ft^3
DS at .4(LS)5.177 ft
Tailwater Depth (TW)0.638 ft
Velocity with TW and WS 1.277 ft/s
DES: BSC 2/2/10
CHK: KJR 2/8/10
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 2a
Culvert Deformed
Flow 104.59 cfs
Culvert Data
Culvert Width (including multiple
barrels)
8.2 ft
Culvert Height 5.3 ft
Outlet Depth 2.21 ft
Outlet Velocity 6.70 ft/s
Froude Number 0.79
Tailwater Depth 2.21 ft
Tailwater Velocity 1.22 ft/s
Tailwater Slope (SO)0.0020
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 115.80 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 46.573 ft
Width 20.510 ft
Depth 5.928 ft
Volume 3187.227 ft^3
DS at .4(LS)18.629 ft
Tailwater Depth (TW)2.208 ft
Velocity with TW and WS 1.614 ft/s
DES: BSC 2/2/10
CHK: KJR 2/8/10
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 2a INDOT Q100
Culvert Deformed
Flow 23.00 cfs
Culvert Data
Culvert Width (including multiple
barrels)
4.1 ft
Culvert Height 2.7 ft
Outlet Depth 1.15 ft
Outlet Velocity 5.48 ft/s
Froude Number 0.90
Tailwater Depth 0.46 ft
Tailwater Velocity 1.56 ft/s
Tailwater Slope (SO)0.0031
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 30.00 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 22.461 ft
Width 10.264 ft
Depth 2.978 ft
Volume 408.697 ft^3
DS at .4(LS)8.984 ft
Tailwater Depth (TW)0.463 ft
Velocity with TW and WS 4.097 ft/s
DES: BSC 2/2/10
CHK: KJR 2/8/10
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 3 INDOT Q50
Culvert Box Culvert
Flow 84.74 cfs
Culvert Data
Culvert Width (including multiple
barrels)
7.0 ft
Culvert Height 4.0 ft
Outlet Depth 2.47 ft
Outlet Velocity 4.90 ft/s
Froude Number 0.55
Tailwater Depth 2.47 ft
Tailwater Velocity 0.00 ft/s
Tailwater Slope (SO)0.0030
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 140.20 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 44.855 ft
Width 20.147 ft
Depth 5.491 ft
Volume 2603.130 ft^3
DS at .4(LS)17.942 ft
Tailwater Depth (TW)2.470 ft
Velocity with TW and WS 1.143 ft/s
DES: BSC 2/2/10
CHK: KJR 2/8/10
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 2a INDOT Q100
Culvert Deformed
Flow 28.91 cfs
Culvert Data
Culvert Width (including multiple
barrels)
4.4 ft
Culvert Height 2.8 ft
Outlet Depth 1.27 ft
Outlet Velocity 5.75 ft/s
Froude Number 0.90
Tailwater Depth 1.16 ft
Tailwater Velocity 0.56 ft/s
Tailwater Slope (SO)0.0030
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 129.30 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 28.659 ft
Width 12.786 ft
Depth 3.559 ft
Volume 701.957 ft^3
DS at .4(LS)11.464 ft
Tailwater Depth (TW)1.155 ft
Velocity with TW and WS 1.438 ft/s
DES: BSC 2/2/10
CHK: KJR 2/8/10
HY-8 Energy Dissipation Report
Scour Hole Geometry
Parameter Value Units
Select Culvert and Flow
Crossing Trial 3 INDOT Q100
Culvert Box Culvert
Flow 67.88 cfs
Culvert Data
Culvert Width (including multiple
barrels)
9.0 ft
Culvert Height 3.0 ft
Outlet Depth 1.82 ft
Outlet Velocity 4.14 ft/s
Froude Number 0.54
Tailwater Depth 1.82 ft
Tailwater Velocity 3.30 ft/s
Tailwater Slope (SO)0.0040
Scour Data
Time to Peak
Note:if Time to Peak is unknown, enter 30
min
Time to Peak 51.40 min
Cohesion Noncohesive
D16 Value 8.00 mm
D84 Value 18.00 mm
Tailwater Flow Depth after Culvert
Outlet
Normal Depth
Results
Assumptions
Soil Sigma 1.50
Scour Hole Dimensions
Length 36.978 ft
Width 16.888 ft
Depth 4.734 ft
Volume 1661.275 ft^3
DS at .4(LS)14.791 ft
Tailwater Depth (TW)1.822 ft
Velocity with TW and WS 1.541 ft/s
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
= 131.77 cfs
= 107.41 cfs
= 60.66 cfs
=10 ft
=4 :1
=4 :1
=0.0030 ft/ft
Calculate Actual Water Depth
=d
=
=
=A/PW
=D50 =0.25 ft per 904.04f
dwt PW RnQdVd
ft ft ft ft cfs ft/s
Q100 2.674 31.39 32.05 1.73 0.049 131.83 2.38
Q50 2.437 29.50 30.09 1.60 0.050 107.48 2.23
Q10 1.869 24.96 25.42 1.29 0.052 60.71 1.86
=
= 0.245 rad = 14.0 °
= 40.7 ° = 0.710 rad
0.93
a.
= 0.009 ft =0.11 in
= 0.008 ft =0.10 in
= 0.005 ft =0.06 in
b.
Median riprap particle size, D 50 =
Step 7: Determine Riprap Size from Equation 38-6.1
Per Equation 38-6.2, K1
(d0.5)·(K1)1.5
Evaluate correction factor C
0.001Vd
3
At Q10, D50
At Q50, D50
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
Backslope, Zb
DRAINAGE DITCH FROM RETENTION BASIN TO CULVERT 181+60 "PR-2" (Reach 3R)
DESIGN PROCEDURES PER 38-6.01(08)
Maximum INDOT Discharge in Channel, Q100
Bottom Width, wb
From Figure 38-6C, Riprap Angle of Repose, Φ
Cross Sectional Flow Area, A 2
Hydraulic Radius, R
wb + Zf·d +Zb·d
=(wb + wt)·d
(d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb
Step 1 See Culvert Hydraulic Report
Step 3: Develop Design Cross Sections
Channel Geometry
32.68
Water Depth
Top Width, wt
55.34
At Q100, D50
Step 6: Compute Bank Angle Correction Factor, K1
(1-sin2θ/sin2Φ)0.5
Bank Angle with Horizontal, θ
48.13
Determine size assuming no corrections
Foreslope, Zf
0.319·d1/6
2.25 + 5.23·log(d/D50)
Therefore, K1
=Where 1.5 ≤ d/D50 ≤ 185; n
Wetted Perimeter, PW
Assumed Riprap Type Uniform B
Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types
Step 2: Design Discharges
Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated.
Maximum INDOT Discharge in Channel, Q50 Reach 3R in HydroCAD model
Reach 3R in HydroCAD model
Maximum INDOT Discharge in Channel, Q10 Reach 3R in HydroCAD model
Steps 4 & 5: Compute Design Water Surface, Velocity and Depth
Slope, S
Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd
A
sft
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
C=Csg·Csf where
Csg =2.12/(Ss-1)1.5
=2.65
= 1.00
Csf =(SF/1.2)1.5 where
=2.00
= 2.15
= 2.15
= 0.019 ft =0.23 in
= 0.017 ft =0.21 in
= 0.011 ft =0.13 in
=
D100 = 0.67 ft
per 904.04f
D50 = 0.25 ft
per 904.04f
1.=8 in
=6 in
2. 12 in
12 in
3.No Use: 12 in
4.No Use: 12 in
=10 ft
=15 ft
Compute Thickness per 38-6.01(04)
At least D100
Final Riprap Type
where(davg)0.5·K1
1.5
Uniform B Gradation per 904.04f
Step 8: was already solved iteratively above
Step 9: Determine Wave Height Not applicable
At Q100, D50
At Q50, D50
Corrected median riprap particle size, D50 =
Therefore, C
Therefore, Csf
Stability Factor, SF
At least 2 x D50
At least:
Placed Underwater?
Maximum of criteria 1 & 2:
Exposed to floating debris, ice, waves, wind or bedforms?
Use 12 in. of Uniform B riprap
Step 11: Determine Longitudinal Extent of Protection
Per the previous computations in the culvert report, only the bends need protected. Protection extended upstream and downstream of
bends per 38-5.07.
0.001C·Va
3
for riprap per IDM 38-6.01(02)
At Q10, D50
Step 10: Select Final Riprap Size, Gradation and Thickness
Therefore, Csg
Ss
per IDM Figure 38-6F for sharp bends
Upstream protection = 1· wb
Downstream protection = 1.5· wb
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
C=1.5
Va =Vd = 2.38 ft/s
T=wt = 31.39 ft
g = 32.2 ft/s2
Rc =20.00 ft
= 0.41 ft
=V2/2g = 0.09 ft
=0.50 ft 0.50 ft
=3.59 ft Use: 3.75 ft
= 104.22 cfs
= 84.74 cfs
= 47.52 cfs
=8 ft
=4 :1
=4 :1
=0.0030 ft/ft
Calculate Actual Water Depth
=d
=
=
=A/PW
=D50 =0.67 ft per 904.04f
Step 12: Determine Vertical Extent of Protection
Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05
Protect Channel Depth including Freeboard for Q100
Therefore, freeboard =
=C·Va
2·T whereg·Rc
Superelevation of water surface, Z
per IDM Section 38-5.05
Step 13: Determine Filter Layer
Therefore, Z
Determine Freeboard per IDM 30-3.03(01)
Velocity Head, Hv
Minimum Freeboard
DRAINAGE DITCH FROM CULVERT 21+41 "S-3-A" TO CULVERT 181+60 "PR-2" (Reach 4R)
DESIGN PROCEDURES PER 38-6.01(08)
Geotextile will be used
Step 14: Design edge flanks and toe
Upstream and downstream flanks per Figure 38-6M will be constructed at the channel outlet. Toe treatment is not required since the
entire channel is to be lined.
Determine Channel Depth
Channel Depth, h d + Z + freeboard =
Step 1 See Culvert Hydraulic Report
Step 2: Design Discharges
Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated.
Maximum INDOT Discharge in Channel, Q100 Reach 4R in HydroCAD model
Maximum INDOT Discharge in Channel, Q50 Reach 4R in HydroCAD model
Maximum INDOT Discharge in Channel, Q10 Reach 4R in HydroCAD model
Step 3: Develop Design Cross Sections
Channel Geometry
Bottom Width, wb
Foreslope, Zf
Backslope, Zb
Slope, S
Steps 4 & 5: Compute Design Water Surface, Velocity and Depth
Water Depth
Top Width, wt wb + Zf·d +Zb·d
Cross Sectional Flow Area, A =
(wb + wt)·d
2
Wetted Perimeter, PW (d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb
Hydraulic Radius, R
Assumed Riprap Type Revetment
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
dwt PW RnQdVd
ft ft ft ft cfs ft/s
Q100 2.807 32.46 33.15 1.80 0.069 104.28 1.75
Q50 2.569 30.56 31.19 1.67 0.070 84.80 1.63
Q10 2.001 26.00 26.50 1.36 0.076 47.57 1.32
=
= 0.245 rad = 14.0 °
= 40.9 ° = 0.714 rad
0.93
a.
= 0.004 ft =0.05 in
= 0.003 ft =0.04 in
= 0.002 ft =0.02 in
b.
C=Csg·Csf where
Csg =2.12/(Ss-1)1.5
=2.65
= 1.00
Csf =(SF/1.2)1.5 where
=2.00
= 2.15
= 2.15
= 0.009 ft =0.10 in
= 0.006 ft =0.08 in
= 0.004 ft =0.05 in
Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types
Where 1.5 ≤ d/D50 ≤ 185; n =0.319·d1/6
2.25 + 5.23·log(d/D50)
Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd
A
sft
59.60
52.11
36.01
Step 6: Compute Bank Angle Correction Factor, K1
Per Equation 38-6.2, K1 (1-sin2θ/sin2Φ)0.5
Bank Angle with Horizontal, θ
From Figure 38-6C, Riprap Angle of Repose, Φ
Therefore, K1
Step 7: Determine Riprap Size from Equation 38-6.1
Determine size assuming no corrections
Median riprap particle size, D 50 =
0.001Vd
3
(d0.5)·(K1)1.5
At Q100, D50
At Q50, D50
At Q10, D50
Evaluate correction factor C
Ss for riprap per IDM 38-6.01(02)
Therefore, Csg
Stability Factor, SF per IDM Figure 38-6F for sharp bends
Therefore, Csf
Therefore, C
Corrected median riprap particle size, D50 =0.001C·Va
3
where(davg)0.5·K1
1.5
At Q100, D50
At Q50, D50
At Q10, D50
Step 8: was already solved iteratively above
Step 9: Determine Wave Height Not applicable
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
=
D100 = 1.50 ft
per 904.04f
D50 = 0.67 ft
per 904.04f
1.=18 in
=16 in
2. 12 in
18 in
3.No Use: 18 in
4.No Use: 18 in
=8 ft
=12 ft
C=1.5
Va =Vd = 1.75 ft/s
T=wt = 32.46 ft
g = 32.2 ft/s2
Rc =45.00 ft
= 0.10 ft
=V2/2g = 0.05 ft
=0.50 ft 0.50 ft
=3.41 ft Use: 3.50 ft
Step 10: Select Final Riprap Size, Gradation and Thickness
Final Riprap Type Revetment Gradation per 904.04f
Compute Thickness per 38-6.01(04)
At least D100
At least 2 x D50
At least:
Maximum of criteria 1 & 2:
Placed Underwater?
Exposed to floating debris, ice, waves, wind or bedforms?
Use 18 in. of Revetment riprap
Step 11: Determine Longitudinal Extent of Protection
Upstream and downstream flanks per Figure 38-6M will be constructed. Toe treatment is not required since the entire channel is to
be lined.
Upstream protection = 1· wb
Downstream protection = 1.5· wb
Step 12: Determine Vertical Extent of Protection
Protect Channel Depth including Freeboard for Q100
Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05
Superelevation of water surface, Z =
C·Va
2·T whereg·Rc
per IDM Section 38-5.05
Therefore, Z
Determine Freeboard per IDM 30-3.03(01)
Velocity Head, Hv
Minimum Freeboard Therefore, freeboard =
Determine Channel Depth
Channel Depth, h d + Z + freeboard =
Step 13: Determine Filter Layer
Geotextile will be used
Step 14: Design edge flanks and toe
Upstream and downstream flanks per Figure 38-6M will be constructed at the channel outlet. Toe treatment is not required since the
entire channel is to be lined.
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
= 28.59 cfs
= 23.37 cfs
= 13.08 cfs
=0 ft
=4 :1
=4.5 :1
=0.0030 ft/ft
Calculate Actual Water Depth
=d
=
=
=A/PW
=D50 =0.25 ft per 904.04f
dwt PW RnQdVd
ft ft ft ft cfs ft/s
Q100 1.314 20.52 20.84 0.96 0.055 28.65 1.43
Q50 1.193 19.54 19.83 0.89 0.057 23.41 1.33
Q10 0.904 17.23 17.45 0.71 0.061 13.14 1.07
=
= 0.245 rad = 14.0 °
= 40.7 ° = 0.710 rad
0.93
a.
= 0.003 ft =0.04 in
= 0.002 ft =0.02 in
= 0.001 ft =0.01 in
b.
At Q100, D50
At Q50, D50
At Q10, D50
Evaluate correction factor C
Median riprap particle size, D 50 =0.001Vd
3
(d0.5)·(K1)1.5
From Figure 38-6C, Riprap Angle of Repose, Φ
Therefore, K1
Step 7: Determine Riprap Size from Equation 38-6.1
Determine size assuming no corrections
Step 6: Compute Bank Angle Correction Factor, K1
Per Equation 38-6.2, K1 (1-sin2θ/sin2Φ)0.5
Bank Angle with Horizontal, θ
20.06
17.61
12.31
Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd
A
sft
Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types
Where 1.5 ≤ d/D50 ≤ 185; n =0.319·d1/6
2.25 + 5.23·log(d/D50)
Wetted Perimeter, PW (d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb
Hydraulic Radius, R
Assumed Riprap Type Uniform B
Water Depth
Top Width, wt wb + Zf·d +Zb·d
Cross Sectional Flow Area, A =
(wb + wt)·d
2
Backslope, Zb
Slope, S
Steps 4 & 5: Compute Design Water Surface, Velocity and Depth
Step 3: Develop Design Cross Sections
Channel Geometry
Bottom Width, wb
Foreslope, Zf
Reach 4R in HydroCAD model
Maximum INDOT Discharge in Channel, Q50 Reach 4R in HydroCAD model
Maximum INDOT Discharge in Channel, Q10 Reach 4R in HydroCAD model
ROADSIDE DITCH FROM 178+05 "A" TO CULVERT AT 18+60 "S-3-A" (Reach 6R)
DESIGN PROCEDURES PER 38-6.01(08)
Step 1 See Culvert Hydraulic Report
Step 2: Design Discharges
Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated.
Maximum INDOT Discharge in Channel, Q100
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
C=Csg·Csf where
Csg =2.12/(Ss-1)1.5
=2.65
= 1.00
Csf =(SF/1.2)1.5 where
=2.00
= 2.15
= 2.15
= 0.006 ft =0.08 in
= 0.004 ft =0.05 in
= 0.002 ft =0.03 in
=
D100 = 0.67 ft
per 904.04f
D50 = 0.25 ft
per 904.04f
1.=8 in
=6 in
2. 12 in
12 in
3.No Use: 12 in
4.No Use: 12 in
=0 ft
=0 ft
Step 11: Determine Longitudinal Extent of Protection
Per the previous computations in the culvert report, only the sharp bends need protected. Protection extended upstream and
downstream of bends per 38-5.07.
Upstream protection = 1· wb
Downstream protection = 1.5· wb
Maximum of criteria 1 & 2:
Placed Underwater?
Exposed to floating debris, ice, waves, wind or bedforms?
Use 12 in. of Uniform B riprap
Compute Thickness per 38-6.01(04)
At least D100
At least 2 x D50
At least:
Step 10: Select Final Riprap Size, Gradation and Thickness
Final Riprap Type Uniform B Gradation per 904.04f
At Q50, D50
At Q10, D50
Step 8: was already solved iteratively above
Step 9: Determine Wave Height Not applicable
0.001C·Va
3
where(davg)0.5·K1
1.5
At Q100, D50
Therefore, Csf
Therefore, C
Corrected median riprap particle size, D50 =
Ss for riprap per IDM 38-6.01(02)
Therefore, Csg
Stability Factor, SF per IDM Figure 38-6F for sharp bends
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
C=1.5
Va =Vd = 1.43 ft/s
T=wt = 20.52 ft
g = 32.2 ft/s2
Rc =20.00 ft
= 0.10 ft
=V2/2g = 0.03 ft
=0.50 ft 0.50 ft
=1.91 ft Use: 2.00 ft
= 83.69 cfs
= 67.88 cfs
= 37.67 cfs
=4 ft
=4 :1
=4 :1
=0.0040 ft/ft
Calculate Actual Water Depth
=d
=
=
=A/PW
=D50 =0.25 ft per 904.04f
Step 13: Determine Filter Layer
Geotextile will be used
Step 14: Design edge flanks and toe
Upstream and downstream flanks per Figure 38-6M will be constructed. Toe treatment is not required since the entire channel is to
be lined.
Minimum Freeboard Therefore, freeboard =
Determine Channel Depth
Channel Depth, h d + Z + freeboard =
per IDM Section 38-5.05
Therefore, Z
Determine Freeboard per IDM 30-3.03(01)
Velocity Head, Hv
Step 12: Determine Vertical Extent of Protection
Protect Channel Depth including Freeboard for Q100
Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05
Superelevation of water surface, Z =
C·Va
2·T whereg·Rc
Wetted Perimeter, PW (d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb
Hydraulic Radius, R
Assumed Riprap Type Uniform B
Cross Sectional Flow Area, A =
(wb + wt)·d
2
Steps 4 & 5: Compute Design Water Surface, Velocity and Depth
Water Depth
Top Width, wt wb + Zf·d +Zb·d
Bottom Width, wb
Foreslope, Zf
Backslope, Zb
Slope, S
Maximum INDOT Discharge in Channel, Q10 Reach 8R in HydroCAD model
Step 3: Develop Design Cross Sections
Channel Geometry
Maximum INDOT Discharge in Channel, Q100 Reach 8R in HydroCAD model
Maximum INDOT Discharge in Channel, Q50 Reach 8R in HydroCAD model
DESIGN PROCEDURES PER 38-6.01(08)
Step 1 See Culvert Hydraulic Report
Step 2: Design Discharges
Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated.
DITCH FROM CULVERT AT 205+60 "PR-A" TO CULVERT AT 70+21 "PR-FRN2" (Reach 8R)
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
dwt PW RnQdVd
ft ft ft ft cfs ft/s
Q100 2.174 27.39 27.93 1.46 0.051 83.98 2.07
Q50 1.974 25.79 26.28 1.34 0.051 67.93 1.92
Q10 1.497 21.98 22.34 1.07 0.054 37.73 1.58
=
= 0.245 rad = 14.0 °
= 40.7 ° = 0.710 rad
0.93
a.
= 0.007 ft =0.08 in
= 0.006 ft =0.07 in
= 0.004 ft =0.05 in
b.
C=Csg·Csf where
Csg =2.12/(Ss-1)1.5
=2.65
= 1.00
Csf =(SF/1.2)1.5 where
=2.00
= 2.15
= 2.15
= 0.015 ft =0.18 in
= 0.013 ft =0.15 in
= 0.009 ft =0.10 in
At Q50, D50
At Q10, D50
Step 8: was already solved iteratively above
Step 9: Determine Wave Height Not applicable
0.001C·Va
3
where(davg)0.5·K1
1.5
At Q100, D50
Therefore, Csf
Therefore, C
Corrected median riprap particle size, D50 =
Ss for riprap per IDM 38-6.01(02)
Therefore, Csg
Stability Factor, SF per IDM Figure 38-6F for sharp bends
At Q100, D50
At Q50, D50
At Q10, D50
Evaluate correction factor C
Median riprap particle size, D 50 =
0.001Vd
3
(d0.5)·(K1)1.5
From Figure 38-6C, Riprap Angle of Repose, Φ
Therefore, K1
Step 7: Determine Riprap Size from Equation 38-6.1
Determine size assuming no corrections
Step 6: Compute Bank Angle Correction Factor, K1
Per Equation 38-6.2, K1 (1-sin2θ/sin2Φ)0.5
Bank Angle with Horizontal, θ
40.64
35.33
23.94
Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd
A
sft
Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types
Where 1.5 ≤ d/D50 ≤ 185; n =0.319·d1/6
2.25 + 5.23·log(d/D50)
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection
BEAM, LONGEST and NEFF, L.L.C.
JOB:DES. BSC DATE: 02/09/10
ITEM:CHK. KJR DATE: 02/09/10
071087 W. 146th Street, Hamilton County
Bank Protection
Bank Protection
=
D100 = 0.67 ft
per 904.04f
D50 = 0.25 ft
per 904.04f
1.=8 in
=6 in
2. 12 in
12 in
3.No Use: 12 in
4.No Use: 12 in
C=1.5
Va =Vd = 2.07 ft/s
T=wt = 27.39 ft
g = 32.2 ft/s2
Rc =50.00 ft
= 0.11 ft
=V2/2g = 0.07 ft
=0.50 ft 0.50 ft
=2.78 ft Use: 3.00 ft
Step 13: Determine Filter Layer
Geotextile will be used
Step 14: Design edge flanks and toe
Upstream and downstream flanks per Figure 38-6M will be constructed. Toe treatment is not required since the entire channel is to
be lined.
Minimum Freeboard Therefore, freeboard =
Determine Channel Depth
Channel Depth, h d + Z + freeboard =
per IDM Section 38-5.05
Therefore, Z
Determine Freeboard per IDM 30-3.03(01)
Velocity Head, Hv
Step 12: Determine Vertical Extent of Protection
Protect Channel Depth including Freeboard for Q100
Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05
Superelevation of water surface, Z =
C·Va
2·T whereg·Rc
Step 11: Determine Longitudinal Extent of Protection
Per the previous computations in the culvert report, the entire channel needs protected.
Maximum of criteria 1 & 2:
Placed Underwater?
Exposed to floating debris, ice, waves, wind or bedforms?
Use 12 in. of Uniform B riprap
Compute Thickness per 38-6.01(04)
At least D100
At least 2 x D50
At least:
Step 10: Select Final Riprap Size, Gradation and Thickness
Final Riprap Type Uniform B Gradation per 904.04f
P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection