Loading...
HomeMy WebLinkAboutFT DgnComps 1383157 - DrainageINDIANA DEPARTMENT OF TRANSPORTATION DESIGN DIVISION INDIANAPOLIS, INDIANA 46204-2228 INTER-DEPARTMENT COMMUNICATION October 20, 2009 MEMORANDUM TO: Coordinator 8 INDOT Central Office FROM: Bill P. Schmidt, P.E. Hydraulics Engineer SUBJECT: HYDRAULICS REVIEW Structure: 146th Street in Hamilton County (west part of county) From 0.2 miles west of County Line Rd (with Boone County) to 0.2 miles west of Springmill Road. Des. #: 0810287 Project: culverts Crossing: various (see below) Consultant: various (United Consulting is major) PART 1 Little Eagle Creek Avenue culvert (Station 23+20 S-1-A) The proposed 48-inch diameter concrete pipe is approved. Drainage Area = 22 acres Q100 = 61.4 cfs Proposed Backwater = 1.43 ft. (see below) Proposed Outlet Velocity = 7.5 ft/s Existing Backwater = no existing structure The proposed backwater exceeds 0.14 feet, but is contained within the channel. 146th St at Bear Creek (Station 118+80 PR-A) The proposed 16 ft. span by 6 ft. high (sumped 1 ft., so effectively 5 ft. high) concrete box structure is approved. Drainage Area = 321 acres Q100 = 359 cfs Proposed Backwater = 0.73 ft. Proposed Outlet Velocity = 10.0 ft/s Existing Backwater = 3.84 ft. The existing structure is a 72-inch span by 44-inch high corrugated metal pipe arch. Shelbourne Rd at UNT Bear Creek (Station 20+09 S-2-A) The proposed 7 ft. span by 5 ft. high (sumped 1 ft., so effectively 4 ft. high) concrete box structure is approved. Drainage Area = 39 acres Q100 = 63.4 cfs Proposed Backwater = 0.48 ft. Proposed Outlet Velocity = 4.3 ft/s Existing Backwater = 2.27 ft. The existing structure is a 51-inch span by 32-inch high corrugated metal pipe arch. PART 2 146th St (Station 181+60 PR-2) The proposed 7 ft. span by 4 ft. high concrete box structure is approved. Drainage Area = 137 acres Q100 = 113 cfs Proposed Backwater = 1.09 ft. (see below) Proposed Outlet Velocity = 7.9 ft/s Existing Backwater = no existing structure The proposed backwater exceeds 0.14 feet, but is contained within the channel. Towne Road (Station 21+41 S-3-A) The proposed 7 ft. span by 4 ft. high concrete box structure is approved. Drainage Area = 128 acres Q100 = 104 cfs Proposed Backwater = 0.47 ft. Proposed Outlet Velocity = 4.2 ft/s Existing Backwater = 2.96 ft. The existing structure is a 12-inch diameter corrugated metal pipe. Towne Road (Station 18+60 S-3-A) The proposed 49-inch span by 32-inch high concrete elliptical pipe is approved. Drainage Area = 16.2 acres Q100 = 28.1 cfs Proposed Backwater = 0.76 ft. Proposed Outlet Velocity = 5.5 ft/s Existing Backwater = no existing structure The proposed backwater exceeds 0.14 feet, but is contained within the R/W. 146th St (Station 205+60 PR-A) The proposed 9 ft. span by 3 ft. high concrete box structure is approved. Drainage Area = 119 acres Q100 = 96 cfs Proposed Backwater = 0.50 ft. (see below) Proposed Outlet Velocity = 6.8 ft/s Existing Backwater = no existing structure The proposed backwater exceeds 0.14 feet, but is contained within the channel. Frontage Road (Station 70+21 PR-FRN2) The proposed 9 ft. span by 3 ft. high concrete box structure is approved. Drainage Area = 71.5 acres Q100 = 84 cfs Proposed Backwater = 0.38 ft. Proposed Outlet Velocity = 4.4 ft/s Existing Backwater = 1.72 ft. The existing structure is an 18-inch diameter corrugated metal pipe. Towne Road (Station 29+00 S-3-A) The proposed 53-inch span by 34-inch high concrete elliptical pipe is approved. Drainage Area = 47.7 acres Q100 = 35.6 cfs Proposed Backwater = 0.95 ft. Proposed Outlet Velocity = 5.8 ft/s Existing Backwater = 2.04 ft. The existing structure is a 12-inch diameter corrugated metal pipe. 146th St (Station 214+00 PR-A) The proposed 36-inch diameter concrete pipe is approved. Drainage Area = 4.1 acres Q100 = 8.2 cfs Proposed Backwater = 0.67 ft. Proposed Outlet Velocity = 4.6 ft/s Existing Backwater = 2.36 ft. The existing structure is a 12-inch diameter corrugated metal pipe. 146th St (Station 222+08 PR-A) The proposed 98-inch span by 63-inch high concrete elliptical pipe is approved. Drainage Area = 176 acres Q100 = 129 cfs Proposed Backwater = 1.15 ft. Proposed Outlet Velocity = 6.7 ft/s Existing Backwater = 2.18 ft. The existing structure is a 21-inch diameter corrugated metal pipe. PART 3 1) Structures 271+50 & 297+00 appear to be oversized. Backwater is 0.3 ft. Does it need to be that low? 12” diameter round pipes to 45”x29” concrete elliptical pipes; is this something the county wanted? 2) Structure 292+84; says proposed backwater is 1.73 ft. Then in the comments it states that the backwater is less than 1.0 ft. above natural flood profile. This doesn’t make sense? 3) The last two structures 77+30 & 80+00 are new alignment. It says it is good because the backwater is less than 1.0 ft. New alignment structures should lave less than 0.14 ft. backwater unless it is contained in the channel or right-of-way. If so, it doesn’t appear to be documented? Note: The consultant (RW Armstrong) for Part 3 was contacted October 5, 2009 about the issues noted above. There has not been a response to the issues. If you have any questions or comments, please contact me at (317) 232 - 5148. WPS cc: file Storm Sewer Design Report w. 146 th Street Added Travel Lanes Designed: BSC 6/5/12 Checked: WJW 6/5/12 PART 2 -FROM 600' WEST OF TOWNE ROAD TO 600' FEET WEST OF DITCH ROAD Des. No. :0810287 Hamilton County, Indiana Beam Longest & Neff, L.L.C . Consulting Engineers 8126 Castleton Road Indianapolis, Indiana 46250 June 5,2012 P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Inlets.xlsx Sheet: Inlets-Lt JOB:DES.KJR DATE:09/27/09 ITEM:CHK.BSC DATE:09/27/09 REV,BSC DATE:06/01/12 CHK.WJW DATE:06/01/12 Assumptions: per Figure 36-7A Assume minimum Tc due to small watersheds per Figure 36-7A per NOAA Precipitation Intensity Data Server per Figure 36-7A 1 2 7 8 9 10 11 12 15 16 17 18 Area Width Area Length Drainage Area "A" Runoff Coefficient (c) Q = CIA Eqn 29-8.1 Grade "S0" Cross Slope Sx Previous Runby Total Gutter Flow Depth "d" T/W Total Spread "T" Spread in Pavement Ts Intercept "Qi" Runby "Qr" ft ft ac cfs %ft/ft cfs cfs ft ft ft cfs cfs 200+35.0 0.290 Per Floyd E. Burroughs (Brett Walls) Sag 201+08.3 40.00 105.0 0.096 0.750 0.535 0.30%0.020 0.392 0.927 0.158 7.92 5.92 0.252 15 1.436 0.000 +201+40.0 40.00 100.0 0.092 0.750 0.510 0.30%0.020 0.167 0.676 0.141 7.04 5.04 0.284 15 0.574 0.102 +202+40.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.165 0.878 0.147 7.35 5.35 0.272 15 0.712 0.167 +203+80.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.159 0.872 0.147 7.34 5.34 0.273 15 0.708 0.165 +205+20.0 40.00 120.0 0.110 0.850 0.693 0.40%0.020 0.160 0.853 0.145 7.27 5.27 0.275 15 0.694 0.159 +206+40.0 53.00 100.0 0.122 0.950 0.855 0.40%0.020 0.000 0.855 0.146 7.28 5.28 0.275 15 0.696 0.160 Roundabout runoff - Length is conservative (est) in roundabout +208+20.0 55.00 70.0 0.088 0.950 0.621 0.40%0.020 0.225 0.847 0.145 7.25 5.25 0.276 15 0.696 0.151 +208+90.0 40.00 195.0 0.179 0.800 1.060 0.40%0.020 0.000 1.060 0.158 7.89 5.89 0.253 15 0.835 0.225 Ridge 210+85.0 -212+85.0 40.00 200.0 0.184 0.750 1.019 0.60%0.020 0.000 1.019 0.144 7.21 5.21 0.277 15 0.794 0.226 -214+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.226 1.245 0.147 7.36 5.36 0.272 15 0.926 0.319 -216+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.319 1.338 0.151 7.56 5.56 0.264 15 0.982 0.357 -218+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.357 1.376 0.153 7.64 5.64 0.262 15 1.004 0.372 -220+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.372 1.391 0.153 7.67 5.67 0.261 15 1.013 0.379 -222+10.0 40.00 125.0 0.115 0.750 0.637 0.47%0.020 0.379 1.016 0.151 7.53 5.53 0.266 15 0.799 0.217 Sag 222+60.7 40.00 95.0 0.087 0.750 0.484 0.30%0.020 0.449 0.933 0.159 7.94 5.94 0.252 15 1.441 0.000 +223+05.0 40.00 149.3 0.137 0.750 0.761 0.41%0.020 0.316 1.076 0.158 7.89 5.89 0.254 15 0.844 0.232 +224+54.3 40.00 180.0 0.165 0.750 0.917 0.60%0.020 0.344 1.261 0.156 7.81 5.81 0.256 15 0.946 0.316 +226+34.3 40.00 195.0 0.179 0.750 0.994 0.60%0.020 0.340 1.334 0.159 7.97 5.97 0.251 15 0.990 0.344 +228+29.3 40.00 260.0 0.239 0.750 1.325 0.60%0.020 0.000 1.325 0.159 7.95 5.95 0.251 15 0.985 0.340 Ridge 230+89.3 -233+90.0 40.00 300.7 0.276 0.750 1.533 0.80%0.020 0.000 1.533 0.159 7.96 5.96 0.251 15 1.094 0.438 -235+50.0 40.00 160.0 0.147 0.750 0.815 0.80%0.020 0.438 1.254 0.148 7.38 5.38 0.271 15 0.931 0.322 -236+60.0 40.00 110.0 0.101 0.750 0.561 0.43%0.020 0.322 0.883 0.146 7.28 5.28 0.275 15 0.713 0.170 Sag 237+00.0 40.00 90.0 0.083 0.750 0.459 0.30%0.020 0.477 0.936 0.159 7.95 5.95 0.252 15 1.443 0.000 +237+50.0 40.00 160.0 0.147 0.750 0.815 0.53%0.020 0.437 1.252 0.159 7.96 5.96 0.251 15 0.945 0.307 +239+10.0 40.00 300.0 0.275 0.750 1.529 0.80%0.020 0.000 1.529 0.159 7.95 5.95 0.252 15 1.092 0.437 Ridge 242+10.0 -244+70.0 40.00 260.0 0.239 0.750 1.325 0.60%0.020 0.000 1.325 0.159 7.95 5.95 0.251 15 0.985 0.340 -246+45.0 40.00 175.0 0.161 0.750 0.892 0.53%0.020 0.340 1.232 0.159 7.93 5.93 0.252 15 0.933 0.299 -247+23.5 40.00 78.5 0.072 0.750 0.400 0.50%0.020 0.299 0.699 0.129 6.47 4.47 0.309 0.000 0.699 Begin Superelevation Transition -248+84.3 40.00 160.8 0.148 0.750 0.820 1.21%0.038 0.699 1.518 0.187 4.91 2.91 0.407 0.000 1.518 -251+85.0 40.00 300.7 0.276 0.750 1.532 0.50%0.038 1.518 3.051 0.286 7.53 5.53 0.266 II 2.104 0.946 Runby will be collected by slotted drain INLET SPACING COMPUTATION SHEET - LEFT SIDE "PR-A" 071087 146th Street GUTTER DISCHARGE Inlet Spacings - Lt side Line "PR-A" 5 min 7.40 in/hr 2.0 ft Time of Concentration, Tc: Rainfall Intensity, I: LOCATION Type of Facility:Non-Freeway 4 ≥ Lane Design Frequency:10 year Allowable Spread, Ts:Gutter Width, W:6.0 ft RemarksW/TStation Casting Type GUTTER DISCHARGE 19314 INLET DISCHARGE (1/2 Lane) Structure JOB:DES.KJR DATE:09/27/09 ITEM:CHK.BSC DATE:09/27/09 REV.BSC DATE:06/01/12 CHK.WJW DATE:06/01/12 Casting Type Length (ft)V0 ft/s) Inlet Area sft II 2.81 5.7 2.60 5 3.90 8.9 3.60 10 2.88 7.6 5.50 15 3.90 8.9 3.60 Gutter Width W Spread T Grate Length L So Sx V0 V Eqn 36- 10.5 Total Q Intercept "Qi" Slotted Drain Equation 36-10.11 Water Depth d Inlet Area Perimeter Opening Intercept "Qi" Slotted Drain Eqn 36- 10.15 ft ft ft ft/ft ft/ft ft/s ft/s cfs cfs ft ft sqft ft cfs ft 200+35 Sag 201+08 15 0.16 3.60 6.90 1.44 +201+40 15 2 7.04 3.9 0.59 0.003 0.02 8.9 1.37 0.63 1.00 0.68 0.574 +202+40 15 2 7.35 3.9 0.57 0.004 0.02 8.9 1.63 0.56 1.00 0.88 0.712 +203+80 15 2 7.34 3.9 0.57 0.004 0.02 8.9 1.63 0.56 1.00 0.87 0.708 +205+20 15 2 7.27 3.9 0.58 0.004 0.02 8.9 1.62 0.56 1.00 0.85 0.694 +206+40 15 2 7.28 3.9 0.58 0.004 0.02 8.9 1.62 0.56 1.00 0.86 0.696 +208+20 15 2 7.25 3.9 0.58 0.004 0.02 8.9 1.62 0.56 1.00 0.85 0.690 +208+90 15 2 7.89 3.9 0.54 0.004 0.02 8.9 1.71 0.54 1.00 1.06 0.835 Ridge 210+85 -212+85 15 2 7.21 3.9 0.58 0.006 0.02 8.9 1.97 0.47 1.00 1.02 0.794 -214+85 15 2 7.36 3.9 0.57 0.008 0.02 8.9 2.31 0.40 1.00 1.24 0.926 -216+85 15 2 7.56 3.9 0.56 0.008 0.02 8.9 2.36 0.39 1.00 1.34 0.982 -218+85 15 2 7.64 3.9 0.56 0.008 0.02 8.9 2.37 0.39 1.00 1.38 1.004 -220+85 15 2 7.67 3.9 0.55 0.008 0.02 8.9 2.38 0.39 1.00 1.39 1.013 -222+10 15 2 7.53 3.9 0.56 0.004733 0.02 8.9 1.81 0.51 1.00 1.02 0.799 Sag 222+61 15 0.16 3.60 6.90 1.44 +223+05 15 2 7.89 3.9 0.54 0.004133 0.02 8.9 1.74 0.53 1.00 1.08 0.844 +224+54 15 2 7.81 3.9 0.55 0.006 0.02 8.9 2.08 0.45 1.00 1.26 0.946 +226+34 15 2 7.97 3.9 0.54 0.006 0.02 8.9 2.11 0.44 1.00 1.33 0.990 +228+29 15 2 7.95 3.9 0.54 0.006 0.02 8.9 2.11 0.44 1.00 1.33 0.985 Ridge 230+89 -233+90 15 2 7.96 3.9 0.54 0.008 0.02 8.9 2.44 0.38 1.00 1.53 1.094 -235+50 15 2 7.38 3.9 0.57 0.008 0.02 8.9 2.32 0.40 1.00 1.25 0.931 -236+60 15 2 7.28 3.9 0.58 0.004267 0.02 8.9 1.68 0.55 1.00 0.88 0.713 Sag 237+00 15 0.16 3.60 6.90 1.44 +237+50 15 2 7.96 3.9 0.54 0.005333 0.02 8.9 1.99 0.47 1.00 1.25 0.945 +239+10 15 2 7.95 3.9 0.54 0.008 0.02 8.9 2.44 0.38 1.00 1.53 1.092 Ridge 242+10 -244+70 15 2 7.95 3.9 0.54 0.005999 0.02 8.9 2.11 0.44 1.00 1.33 0.985 -246+45 15 2 7.93 3.9 0.54 0.005267 0.02 8.9 1.97 0.47 1.00 1.23 0.933 -247+23 -248+84 -251+85 II 2 7.53 2.81 0.56 0.005 0.038 5.7 2.85 0.29 1.00 3.05 2.104 11.5 INLET CAPACITY COMPUTATION SHEET - LEFT SIDE "PR-A" SAG INLET Casting Type Values for V0 (Fig. 36-10A) 6.90 Inlet Station E0 Eqn:36- 10.2 5.98 INLET ON GRADE 071087 146th Street Rf Eqn 36- 10.4 Rs Eqn 36- 10.6 Perimeter Opening (ft) 10.60 1.50 Inlet Spacings - Lt side Line "PR-A" P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Inlets.xlsx Sheet: Inlets-Rt JOB:DES.KJR DATE:09/27/09 ITEM:CHK.BSC DATE:09/27/09 REV,BSC DATE:06/01/12 CHK.WJW DATE:06/01/12 Assumptions: per Figure 36-7A Assume minimum Tc due to small watersheds per Figure 36-7A per NOAA Precipitation Intensity Data Server per Figure 36-7A 1 2 7 8 9 10 11 12 15 16 17 18 Area Width Area Length Drainage Area "A" Runoff Coefficient (c) Q = CIA Eqn 29-8.1 Grade "S0" Cross Slope Sx Previous Runby Total Gutter Flow Depth "d" T/W Total Spread "T" Spread in Pavement Ts Intercept "Qi" Runby "Qr" ft ft ac cfs %ft/ft cfs cfs ft ft ft cfs cfs 200+35.0 0.290 Per Floyd E. Burroughs (Brett Walls) Sag 201+08.3 40.00 105.0 0.096 0.750 0.535 0.30%0.020 0.392 0.927 0.158 7.92 5.92 0.252 15 1.436 0.000 +201+40.0 40.00 100.0 0.092 0.750 0.510 0.30%0.020 0.167 0.676 0.141 7.04 5.04 0.284 15 0.574 0.102 +202+40.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.165 0.878 0.147 7.35 5.35 0.272 15 0.712 0.167 +203+80.0 40.00 140.0 0.129 0.750 0.713 0.40%0.020 0.159 0.872 0.147 7.34 5.34 0.273 15 0.708 0.165 +205+20.0 40.00 120.0 0.110 0.850 0.693 0.40%0.020 0.160 0.853 0.145 7.27 5.27 0.275 15 0.694 0.159 +206+40.0 53.00 100.0 0.122 0.950 0.855 0.40%0.020 0.000 0.855 0.146 7.28 5.28 0.275 15 0.696 0.160 Roundabout runoff - Length is conservative (est) in roundabout +208+20.0 55.00 70.0 0.088 0.950 0.621 0.40%0.020 0.225 0.847 0.145 7.25 5.25 0.276 15 0.696 0.151 +208+90.0 40.00 195.0 0.179 0.800 1.060 0.40%0.020 0.000 1.060 0.158 7.89 5.89 0.253 15 0.835 0.225 Ridge 210+85.0 -212+85.0 40.00 200.0 0.184 0.750 1.019 0.60%0.020 0.000 1.019 0.144 7.21 5.21 0.277 15 0.794 0.226 -214+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.226 1.245 0.147 7.36 5.36 0.272 15 0.926 0.319 -216+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.319 1.338 0.151 7.56 5.56 0.264 15 0.982 0.357 -218+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.357 1.376 0.153 7.64 5.64 0.262 15 1.004 0.372 -220+85.0 40.00 200.0 0.184 0.750 1.019 0.80%0.020 0.372 1.391 0.153 7.67 5.67 0.261 15 1.013 0.379 -222+10.0 40.00 125.0 0.115 0.750 0.637 0.47%0.020 0.379 1.016 0.151 7.53 5.53 0.266 15 0.799 0.217 Sag 222+60.7 40.00 95.0 0.087 0.750 0.484 0.30%0.020 0.450 0.934 0.159 7.94 5.94 0.252 15 1.442 0.000 +223+05.0 40.00 150.0 0.138 0.750 0.764 0.41%0.020 0.315 1.080 0.158 7.90 5.90 0.253 15 0.847 0.233 +224+55.0 40.00 180.0 0.165 0.750 0.917 0.60%0.020 0.344 1.261 0.156 7.81 5.81 0.256 15 0.946 0.315 +226+35.0 40.00 195.0 0.179 0.750 0.994 0.60%0.020 0.339 1.333 0.159 7.97 5.97 0.251 15 0.989 0.344 +228+30.0 40.00 259.3 0.238 0.750 1.321 0.60%0.020 0.000 1.321 0.159 7.94 5.94 0.252 15 0.982 0.339 Ridge 230+89.3 -233+90.0 40.00 300.7 0.276 0.750 1.533 0.80%0.020 0.000 1.533 0.159 7.96 5.96 0.251 15 1.094 0.438 -235+50.0 40.00 160.0 0.147 0.750 0.815 0.80%0.020 0.438 1.254 0.148 7.38 5.38 0.271 15 0.931 0.322 -236+60.0 40.00 110.0 0.101 0.750 0.561 0.43%0.020 0.322 0.883 0.146 7.28 5.28 0.275 15 0.713 0.170 Sag 237+00.0 40.00 90.0 0.083 0.750 0.459 0.30%0.020 0.477 0.936 0.159 7.95 5.95 0.252 15 1.443 0.000 +237+50.0 40.00 160.0 0.147 0.750 0.815 0.53%0.020 0.437 1.252 0.159 7.96 5.96 0.251 15 0.945 0.307 +239+10.0 40.00 300.0 0.275 0.750 1.529 0.80%0.020 0.000 1.529 0.159 7.95 5.95 0.252 15 1.092 0.437 Ridge 242+10.0 -244+70.0 40.00 260.0 0.239 0.750 1.325 0.60%0.020 0.000 1.325 0.159 7.95 5.95 0.251 15 0.985 0.340 -246+45.0 40.00 175.0 0.161 0.750 0.892 0.53%0.020 0.340 1.232 0.159 7.93 5.93 0.252 15 0.933 0.299 -246+88.3 40.00 43.3 0.040 0.750 0.221 0.50%0.020 0.299 0.520 0.116 5.79 3.79 0.345 0.000 0.520 Begin Superelevation Transition -247+00.0 40.00 11.7 0.011 0.750 0.060 0.21%0.017 0.520 0.579 0.132 8.00 6.00 0.250 II 0.445 0.000 Extend slotted drain to 247+55 -247+55.0 40.00 185.0 0.170 0.750 0.943 0.21%0.000 0.000 0.943 0.034 128.31 126.31 0.016 II 0.107 0.000 Extend slotted drain to 248+85 -251+83.3 40.00 298.3 0.274 0.750 1.520 0.50%0.038 0.000 1.520 0.220 5.80 3.80 0.345 0.000 1.520 Begin Superelevation Transition -252+55.0 40.00 71.7 0.066 0.750 0.365 1.06%0.021 1.520 1.886 0.167 7.87 5.87 0.254 0.000 1.886 Calculate point where spread exceeds allowable -252+85.0 40.00 30.0 0.028 0.750 0.153 1.06%0.014 1.886 2.039 0.148 10.43 8.43 0.192 II 1.054 0.984 Extend slotted drain to 252+55 INLET DISCHARGE 071087 146th Street GUTTER DISCHARGE Inlet Spacings - Rt side Line "PR-A" 6.0 ft LOCATION (1/2 Lane) 5 min 7.40 in/hr 2.0 ft Time of Concentration, Tc: Rainfall Intensity, I: Gutter Width, W: Structure INLET SPACING COMPUTATION SHEET - RIGHT SIDE "PR-A" Type of Facility:Non-Freeway 4 ≥ Lane Design Frequency:10 year Allowable Spread, Ts: RemarksW/TStation Casting Type 19314 GUTTER DISCHARGE JOB:DES.KJR DATE:09/27/09 ITEM:CHK.BSC DATE:09/27/09 REV.BSC DATE:06/01/12 CHK.WJW DATE:06/01/12 Casting Type Length (ft)V0 ft/s) Inlet Area sft II 2.81 5.7 2.60 5 3.90 8.9 3.60 10 2.88 7.6 5.50 15 3.90 8.9 3.60 Gutter Width W Spread T Grate Length L So Sx V0 V Eqn 36- 10.5 Total Q Intercept "Qi" Slotted Drain Equation 36-10.11 Water Depth d Inlet Area Perimeter Opening Intercept "Qi" Slotted Drain Eqn 36- 10.15 Safety Factor of 2 ft ft ft ft/ft ft/ft ft/s ft/s cfs cfs ft ft sqft ft cfs ft 200+35 Sag 201+08 15 0.16 3.60 6.90 1.44 +201+40 15 2 7.04 3.9 0.59 0.30%0.02 8.9 1.37 0.63 1.00 0.68 0.574 +202+40 15 2 7.35 3.9 0.57 0.40%0.02 8.9 1.63 0.56 1.00 0.88 0.712 +203+80 15 2 7.34 3.9 0.57 0.40%0.02 8.9 1.63 0.56 1.00 0.87 0.708 +205+20 15 2 7.27 3.9 0.58 0.40%0.02 8.9 1.62 0.56 1.00 0.85 0.694 +206+40 15 2 7.28 3.9 0.58 0.40%0.02 8.9 1.62 0.56 1.00 0.86 0.696 +208+20 15 2 7.25 3.9 0.58 0.40%0.020 8.9 1.62 0.56 1.00 0.85 0.690 +208+90 15 2 7.89 3.9 0.54 0.40%0.020 8.9 1.71 0.54 1.00 1.06 0.835 Ridge 210+85 -212+85 15 2 7.21 3.9 0.58 0.60%0.020 8.9 1.97 0.47 1.00 1.02 0.794 -214+85 15 2 7.36 3.9 0.57 0.80%0.020 8.9 2.31 0.40 1.00 1.24 0.926 -216+85 15 2 7.56 3.9 0.56 0.80%0.020 8.9 2.36 0.39 1.00 1.34 0.982 -218+85 15 2 7.64 3.9 0.56 0.80%0.020 8.9 2.37 0.39 1.00 1.38 1.004 -220+85 15 2 7.67 3.9 0.55 0.80%0.020 8.9 2.38 0.39 1.00 1.39 1.013 -222+10 15 2 7.53 3.9 0.56 0.47%0.020 8.9 1.81 0.51 1.00 1.02 0.799 Sag 222+61 15 0.16 3.60 6.90 1.44 +223+05 15 2 7.90 3.9 0.54 0.41%0.020 8.9 1.74 0.53 1.00 1.08 0.847 +224+55 15 2 7.81 3.9 0.55 0.60%0.020 8.9 2.08 0.45 1.00 1.26 0.946 +226+35 15 2 7.97 3.9 0.54 0.60%0.020 8.9 2.11 0.44 1.00 1.33 0.989 +228+30 15 2 7.94 3.9 0.54 0.60%0.020 8.9 2.11 0.44 1.00 1.32 0.982 Ridge 230+89 -233+90 15 2 7.96 3.9 0.54 0.80%0.020 8.9 2.44 0.38 1.00 1.53 1.094 -235+50 15 2 7.38 3.9 0.57 0.80%0.020 8.9 2.32 0.40 1.00 1.25 0.931 -236+60 15 2 7.28 3.9 0.58 0.43%0.020 8.9 1.68 0.55 1.00 0.88 0.713 Sag 237+00 15 0.16 3.60 6.90 1.44 +237+50 15 2 7.96 3.9 0.54 0.53%0.020 8.9 1.99 0.47 1.00 1.25 0.945 +239+10 15 2 7.95 3.9 0.54 0.80%0.020 8.9 2.44 0.38 1.00 1.53 1.092 Ridge 242+10 -244+70 15 2 7.95 3.9 0.54 0.60%0.020 8.9 2.11 0.44 1.00 1.33 0.985 -246+45 15 2 7.93 3.9 0.54 0.53%0.020 8.9 1.97 0.47 1.00 1.23 0.933 -246+88 -247+00 II 2 8.00 2.81 0.54 0.21%0.017 5.7 1.10 0.50 1.00 0.58 0.445 6.5 -247+55 II 2 128.31 2.81 0.04 0.21%0.000 5.7 0.44 0.08 1.00 0.94 0.107 166.5 -251+83 -252+55 -252+85 II 2 10.43 2.81 0.43 1.06%0.014 5.7 2.67 0.15 1.00 2.04 1.054 26.6 071087 146th Street Rf Eqn 36- 10.4 Rs Eqn 36- 10.6 Perimeter Opening (ft) 10.60 1.50 Inlet Spacings - Rt side Line "PR-A" 5.98 INLET ON GRADE INLET CAPACITY COMPUTATION SHEET - RIGHT SIDE "PR-A" SAG INLET Casting Type Values for V0 (Fig. 36-10A) 6.90 Inlet Station E0 Eqn:36- 10.2 JOB:DES. BSC DATE: 09/27/09ITEM:CHK. KJR DATE: 09/27/09Assumptions:per Figure 36-7AAssume minimum Tc due to small watershedsper Figure 36-7Aper NOAA Precipitation Intensity Data Serverper Figure 36-7A1 2 7 89101112 15161718Area Width Area LengthDrainage Area "A"Runoff Coefficient (c)Q = CIA Eqn 29-8.1Grade "S0"Cross Slope SxPrevious RunbyTotal Gutter FlowDepth "d" T/WTotal Spread "T"Spread in Pavement TsIntercept "Qi"Runby "Qr"ft ftaccfs % ft/ft cfs cfs ft ft ftcfs cfs 10+00.0*0.00.000 0.750 0.000 0.32%0.0200.940 0.940 0.157 7.875.870.25450.7630.178Runby from Sta. 14+51.3Sag11+02.8*125.00.103 0.750 0.572 0.32%0.0200.730 1.303 0.178 8.896.890.22552.6230.00011+25.0*120.80.100 0.750 0.553 1.12%0.0200.000 0.553 0.102 5.103.100.392None0.0000.553Ridge12+45.8 0.00014+51.3*205.50.169 0.750 0.940 0.32%0.0200.000 0.940 0.157 7.875.870.254None0.0000.940=Sta. 10+00193148.0 ftINLET DISCHARGEINLET SPACING COMPUTATION SHEET - ROUNDABOUT INTERIOR(1/2 Lane)Gutter Width, W:Allowable Spread, Ts:Type of Facility:Non-Freeway 4 ≥ LaneDesign Frequency:10 year071087 146th StreetGUTTER DISCHARGEInlet Spacings - Roundabout Interior5 min7.40 in/hr2.0 ftTime of Concentration, Tc:Rainfall Intensity, I:LOCATIONGUTTER DISCHARGEStructureRemarksW/TStationCasting TypeP:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Inlets.xlsxSheet: Inlets-RA JOB:DES. BSC DATE: 09/27/09ITEM:CHK. KJR DATE: 09/27/09Casting TypeLength (ft)V0 ft/s)Inlet Areasft5 3.90 8.93.6010 2.88 7.65.5015 3.90 8.93.60Gutter Width WSpread TGrate Length LSoSxV0 V Eqn 36-10.5Total QIntercept "Qi"Water Depth d Inlet AreaPerimeter OpeningIntercept "Qi"Slotted Drain Eqn 36-10.15 Safety Factor of 2ft ft ftft/ft ft/ft ft/s ft/scfs cfs ft sqft ftcfsft 10+00 52 7.87 3.9 0.54 0.0032 0.02 8.9 1.53 0.59 1.00 0.94 0.763Sag 11+03 50.18 3.60 10.60 2.6211+25 NoneRidge 12+46 14+51 NoneINLET CAPACITY COMPUTATION SHEET - ROUNDABOUT INTERIORSAG INLETCasting TypeValues for V0 (Fig. 36-10A)INLET ON GRADE6.90Inlet StationE0 Eqn:36-10.2071087 146th StreetRf Eqn 36-10.4Rs Eqn 36-10.6Perimeter Opening (ft)10.601.50Inlet Spacings - Roundabout Interior BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 1. 2. Weir Flow, QW = 3.3 P (h)1.5 where:P = h= Orifice Flow, QO = CA(2gh)0.5 where: C = A= g= h= Therefore, QO = 4.81 A(h)0.5 3. Inlet Depth (ft) Pipe Catch Basin, 18" 0.375 Pipe Catch Basin, 24" 0.500 Inlet E7, F7 or G7 0.500 Node 58 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =100 ft =Cultivated (Cover > 20%) = 0.17 =2.66 in Calculate: Upper elevation = 919.60 Lower elevation = 918.00 = 0.0160 ft/ft =0.42·(n·L)0.8 = 13.0 min (P2)0.5S0.4 Shallow Concentrated Flow - NRCS Upland Method per IDM 29-7.07 =340 ft =Unpaved Calculate: Upper elevation = 918.00 Lower elevation = 915.43 = 0.0076 ft/ft = 1.43 ft/s =0.00 ft/s = L/60V = 4.0 min Pipe Flow - Manning's Equation per IDM 29-7.09(01) =128 ft =3.0 ft = 0.0030 ft/ft =Concrete =0.012 = 5.63 ft/s = L/V = 0.4 minTravel time, t3 Description of Pipe Material Manning's n per IDM Figure 31-10A Per IDM Equation 29-7.11, Velocity, V,= (0.593/n)·D2/3·S0.5 Flow Length, L Pipe Diameter, D s when surface description is unpaved when surface description is paved Travel time, t2 Per IDM Equation 29-7.7, Velocity, V,=16.393·S0.5 Per IDM Equation 29-7.8, Velocity, V,=20.653 ·S0.5 Land slope, S per Hamilton County GIS per topographic survey S S Overland flow time per IDM Equation 29-7.5, t1 Flow length, L Surface Description (paved or unpaved) Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 Land slope, S per Hamilton County GIS per Hamilton County GIS Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n General Hydraulic computations for the offsite drainage basins are shown in the Hydraulic Review submittal. Inlet capacity equations in ponding situations are taken from "Inlet Grate Capacities" published by Neenah Foundry Company, Catalog "R" 12th Edition. They are as follows: Perimeter of grate in feet per Neenah Foundry head in feet 0.60 Net open area per Neenah Foundry 32.2 ft/s 2 depth in feet of water over the grate 071087 146th Street, Hamilton Co Hydraulic Calculations Given the water depth criteria for orifice flow, the following INDOT inlets will be in weir flow at or below the following depths due to the height of the casting: Compute Time of Concentration Pipe End Section 213+75 Rt. "PR-A" P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations Roadside Ditch Parameters: =2.0 ft =4 ft =4 :1 =4 :1 =0.030 =0.0030 ft/ft =25 ft = 20.00 ft = 20.49 ft =A/PW = 1.17 ft = L/60V = 0.1 min =t1+t2... = 17.5 min Description of Surface or Drainage Area per IDM Figures 29-8A & 29-8B Width (ft) Length (ft) Area A (acres) C x A Drainage Area 4: Cultivated Field * *2.50 0.75 Median: Lawns, Heavy Soil, Flat 10.66 385.00 0.09 0.01 Travel Lanes: Street, Asphalt 58.66 385.00 0.52 0.49 Utility Strip Lt.: Lawns, Heavy Soil, Flat 5.00 500.00 0.06 0.01 Bike Path Lt.: Street, Asphalt 10.00 500.00 0.11 0.10 Roadside Ditch Lt.: Lawns, Heavy, Steep 89.33 500.00 1.03 0.31 Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 450.00 0.05 0.01 Bike Path Rt.: Street, Asphalt 10.00 450.00 0.10 0.10 Roadside Ditch Rt.: Lawns, Heavy, Steep 42.00 450.00 0.43 0.13 Frontage Rd: Street, Asphalt 12.00 450.00 0.12 0.11 Subtotal = 5.01 2.02 0.40 Q10 k factor per IDM 29-8.04 1.00 Weighted C = 0.40 * Corresponds to Drainage Area 4 in Culvert Summary Report = = = = 4.55 in/hr = 3.25 in/hr = 4.33 in/hr Calculation of discharge per IDM Equation 29-8.1 Q10 = CI10A where C = 0.40 I10 = 4.33 A = 5.01 Therefore, Q10 = 8.68 cfs Runoff Coefficient, 0.30 0.95 The drainage area outside the R/W corresponds to Drainage Area 4 in the culvert computations. The drainage area within the R/W consists of the roadside ditch from 211+00 to 216+00 Lt; the pavement and median from 211+00 to 214+85; and the roadside ditch from 212+00 to 216+50 Rt. 0.15 0.95 0.15 0.95 0.30 I10 at higher duration Interpolated I10 Compute Discharge Higher duration on rainfall intensity chart 30.0 min I10 at lower duration Time of Concentration, Tc 17.5 min Lower duration on rainfall intensity chart 15.0 min Compute Rainfall Intensity Foreslope, Zf Channel Flow - Manning's Equation per IDM 29-7.09(02) Maximum Allowable Water Depth, ym Bottom Width, wb Backslope, Zb Manning's n from IDM Figure 30-4B for Earth, grass, some weeds Slope, S Flow Length, L Top Width, wt wb + Zf·ym +Zb·ym = 2 Wetted Perimeter, PW (ym 2 + (Zb·ym)2)0.5 + (ym 2 + (Zf·ym)2)0.5 + wb = Hydraulic Radius, R Cross Sectional Flow Area, A = (wb + wt)·ym = 24.00 sft Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5 = 3.01 ft/sn Travel time, t4 Total Time of Concentration, Tc Compute Drainage Area & Weighted Runoff Coeffecient Weighted C = 0.15 0.95 0.30 P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations Node 25 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =5 ft =Grass (short prairie) = 0.15 =2.66 in =0.0400 ft/ft =0.42·(n·L)0.8 = 0.7 min (P2)0.5S0.4 Sheet Flow across pavement at 214+90 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =29 ft =Smooth = 0.011 =2.66 in =0.0200 ft/ft =0.42·(n·L)0.8 = 0.5 min (P2)0.5S0.4 Flow in gutter to inlet at 216+85 Shallow Concentrated Flow - NRCS Upland Method per IDM 29-7.07 =195 ft =Paved Calculate: Upper elevation = 918.00 Lower elevation = 915.43 = 0.0080 ft/ft =0.00 ft/s = 1.85 ft/s = L/60V = 1.8 min Pipe Flow - Manning's Equation per IDM 29-7.09(01) =30 ft =1.0 ft Slope, S (ft/ft)=0.0050 ft/ft Assumed flat slope =Concrete =0.012 = 3.49 ft/s = L/60V = 0.1 min Ditch Inlet 221+37 Rt "PR-A" when surface description is paved Travel time, t3 Per IDM Equation 29-7.7, Velocity, V,=16.393·S0.5 Per IDM Equation 29-7.8, Velocity, V,=20.653 ·S0.5 per IDM Figure 31-10A Travel time, t4 Per IDM Equation 29-7.11, Velocity, V,= (0.593/n)·D2/3·S0.5 Flow Length, L Pipe Diameter, D Description of Pipe Material Manning's n Land slope, S Overland flow time per IDM Equation 29-7.5, t2 Pipe flow from inlet to ditch Flow length, L Surface Description (paved or unpaved) Land slope, S per Hamilton County GIS per topographic survey S when surface description is unpaved Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 Flow length, L Surface Description per IDM Figure 29-7B Compute Time of Concentration Sheet Flow across grass median at 214+90 Flow length, L = 72.3 cfsn Since Qd≥Q10, ditch is adequate. Analyze Ditch using IDM Equation 30-4.7 Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2 Overland flow time per IDM Equation 29-7.5, t1 Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 Land slope, S Size Ditch P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations Roadside Ditch Parameters: =2.0 ft =4 ft =4 :1 =4 :1 =0.030 =0.0080 ft/ft =452 ft = 20.00 ft = 20.49 ft =A/PW = 1.17 ft = L/60V = 1.5 min =t1+t2+t3... = 4.6 min Use 5 min Description of Surface or Drainage Area per IDM Figures 29-8A & 29-8B Width (ft) Length (ft) Area A (acres) C x A Median: Lawns, Heavy Soil, Flat 5.33 600.00 0.07 0.01 Travel Lanes: Street, Asphalt 29.33 600.00 0.40 0.38 Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 558.00 0.06 0.01 Bike Path Rt.: Street, Asphalt 10.00 558.00 0.13 0.12 Roadside Ditch Rt.: Lawns, Heavy, Steep 42.00 558.00 0.54 0.16 Frontage Rd: Street, Asphalt 12.00 558.00 0.15 0.14 Subtotal = 1.35 0.82 0.61 Q10 k factor per IDM 29-8.04 1.00 Weighted C = 0.61 Calculation of discharge per IDM Equation 29-8.1 Q10 = CI10A where C = 0.61 I10 = 6.12 A = 1.35 Therefore, Q10 = 5.04 cfs Weighted C = = 4.92 ft/sn Compute Drainage Area & Weighted Runoff Coeffecient Travel time, t5 Total Time of Concentration, Tc 24.00 sft(wb + wt)·ym = Hydraulic Radius, R Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5 2 Wetted Perimeter, PW (ym 2 + (Zb·ym)2)0.5 + (ym 2 + (Zf·ym)2)0.5 + wb = Cross Sectional Flow Area, A = Slope, S Flow Length, L Top Width, wt wb + Zf·ym +Zb·ym = Foreslope, Zf Backslope, Zb Manning's n from IDM Figure 30-4B for Earth, grass, some weeds Maximum Allowable Water Depth, ym Bottom Width, wb Channel Flow - Manning's Equation per IDM 29-7.09(02) Ditch flow from Sta. 216+85 to 221+37 "PR-A" Since Qd≥Q10, ditch is adequate. Analyze Ditch using IDM Equation 30-4.7 Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2 0.15 0.95 Compute Discharge Size Ditch n 0.30 0.95 = 118.1 cfs 0.15 0.95 The drainage area within the R/W consists of the roadside ditch from 216+50 to 222+08 Rt. and the pavement and median from 214+85 to 220+85. Runoff Coefficient, P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations = 5.04 cfs =2.0 ft Solve for capacity for both weir and orifice flow Weir Flow QW =Where P = Orifice Flow QO =Where A = Node 19 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =5 ft =Grass (short prairie) = 0.15 =2.66 in =0.0400 ft/ft =0.42·(n·L)0.8 = 0.7 min (P2)0.5S0.4 Sheet Flow across bike path at 233+90 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =10 ft =Smooth = 0.011 =2.66 in =0.0200 ft/ft =0.42·(n·L)0.8 = 0.2 min (P2)0.5S0.4 Sheet Flow to ditch at 233+90 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =25 ft =Grass (short prairie) = 0.15 =2.66 in =0.2500 ft/ft =0.42·(n·L)0.8 = 1.3 min (P2)0.5S0.4 Roadside Ditch Parameters: =2.0 ft =4 ft =4 :1 =4 :1 =0.030 =0.0030 ft/ft =690 ft = 20.00 ft Ditch Inlet 227+00 Rt "PR-A" 105.47 cfs 11.3 ft 19.44 cfs 3.3 sq. ft The correct flow type has the lower value, therefore: Total discharge entering inlet, Qi ►► The inlet is adequate in orifice flow Analyze Type 7 Casting Size Inlet Maximum Allowable Water Depth, ym Compute Time of Concentration Sheet Flow across buffer strip at 233+90 Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 Land slope, S Overland flow time per IDM Equation 29-7.5, t1 Flow length, L Surface Description per IDM Figure 29-7B Ditch flow from Sta. 233+90 to 227+00 "PR-A" Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 Land slope, S Overland flow time per IDM Equation 29-7.5, t2 Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 Channel Flow - Manning's Equation per IDM 29-7.09(02) Maximum Allowable Water Depth, ym Bottom Width, wb Foreslope, Zf Backslope, Zb Manning's n from IDM Figure 30-4B for Earth, grass, some weeds Slope, S Flow Length, L Top Width, wt wb + Zf·ym +Zb·ym = 24.00 sft2Cross Sectional Flow Area, A = (wb + wt)·ym = Land slope, S Overland flow time per IDM Equation 29-7.5, t2 P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations =20.49 ft =A/PW = 1.17 ft = L/60V = 3.8 min =t1+t2+t3... = 4.7 min Use 5 min Description of Surface or Drainage Area per IDM Figures 29-8A & 29-8B Width (ft) Length (ft) Area A (acres) C x A Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 1182.00 0.14 0.02 Bike Path Rt.: Street, Asphalt 10.00 1182.00 0.27 0.26 Roadside Ditch Rt.: Lawns, Heavy, Steep 42.50 1182.00 1.15 0.35 Frontage Rd: Street, Asphalt 10.00 1182.00 0.27 0.26 Subtotal = 1.83 0.89 0.48 Q10 k factor per IDM 29-8.04 1.00 Weighted C = 0.48 Calculation of discharge per IDM Equation 29-8.1 Q10 = CI10A where C = 0.48 I10 = 6.12 A = 1.83 Therefore, Q10 = 5.38 cfs = 5.38 cfs =2.0 ft Solve for capacity for both weir and orifice flow Weir Flow QW =Where P = Orifice Flow QO =Where A = Node 92 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =5 ft =Grass (short prairie) = 0.15 =2.66 in = 0.0400 ft/ft =0.42·(n·L)0.8 = 0.8 min (P2)0.5S0.4 Pipe End Section 234+00 Rt. "PR-A" Wetted Perimeter, PW (ym 2 + (Zb·ym)2)0.5 + (ym 2 + (Zf·ym)2)0.5 + wb = Hydraulic Radius, R Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5 = 3.01 ft/sn Travel time, t5 Total Time of Concentration, Tc 0.15 0.95 0.30 Compute Drainage Area & Weighted Runoff Coeffecient The drainage area within the R/W consists of the roadside ditch from 222+08 to 233+90 Rt. Runoff Coefficient, 0.95 Weighted C = Compute Discharge Size Ditch Analyze Ditch using IDM Equation 30-4.7 Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2 = 72.3 cfsn Since Qd≥Q10, ditch is adequate. Size Inlet Total discharge entering inlet, Qi Maximum Allowable Water Depth, ym Analyze Pipe Catch Basin, 18" 54.14 cfs 5.8 ft 6.13 cfs 1.0 sq. ft The correct flow type has the lower value, therefore:►► The inlet is adequate in orifice flow Compute Time of Concentration Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 S Overland flow time per IDM Equation 29-7.5, t1 Sheet Flow across median at 242+00 P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations Sheet Flow across pavement at 242+00 Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =29 ft =Smooth = 0.011 =2.66 in =0.0200 ft/ft =0.42·(n·L)0.8 = 0.5 min (P2)0.5S0.4 Flow in gutter to inlet at 239+10 Shallow Concentrated Flow - NRCS Upland Method per IDM 29-7.07 =290 ft =Paved Calculate: Upper elevation = 918.00 Lower elevation = 915.43 = 0.0080 ft/ft =0.00 ft/s = 1.85 ft/s = L/60V = 2.6 min Pipe Flow - Manning's Equation per IDM 29-7.09(01) =35 ft =1.0 ft Slope, S (ft/ft)=0.0050 ft/ft Assumed flat slope =Concrete =0.012 = 3.49 ft/s = L/60V = 0.2 min Roadside Ditch Parameters: =2.0 ft =4 ft =4 :1 =4 :1 =0.030 =0.0030 ft/ft =510 ft =20.00 ft =20.49 ft =A/PW = 1.17 ft = L/60V = 2.8 min =t1+t2... = 6.9 min Channel Flow - Manning's Equation per IDM 29-7.09(02) Surface Description (paved or unpaved) Land slope, S Per IDM Equation 29-7.8, Velocity, V,=20.653 ·S0.5 Pipe Diameter, D Description of Pipe Material Manning's n Maximum Allowable Water Depth, ym Bottom Width, wb Foreslope, Zf Backslope, Zb Manning's n from IDM Figure 30-4B for Earth, grass, some weeds Slope, S Flow Length, L Top Width, wt wb + Zf·ym +Zb·ym = Cross Sectional Flow Area, A = (wb + wt)·ym = 24.00 sft2 Wetted Perimeter, PW (ym 2 + (Zb·ym)2)0.5 + (ym 2 + (Zf·ym)2)0.5 + wb = Hydraulic Radius, R Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5 = 3.01 ft/sn Travel time, t4 Total Time of Concentration, Tc Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 Land slope, S Overland flow time per IDM Equation 29-7.5, t2 Flow length, L per Hamilton County GIS per topographic survey S Per IDM Equation 29-7.7, Velocity, V,=16.393·S0.5 when surface description is unpaved when surface description is paved Travel time, t3 Pipe flow from inlet to ditch Flow Length, L per IDM Figure 31-10A Per IDM Equation 29-7.11, Velocity, V,= (0.593/n)·D2/3·S0.5 Travel time, t4 Channel flow from 239+10 to 234+00 P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations Description of Surface or Drainage Area per IDM Figures 29-8A & 29-8B Width (ft) Length (ft) Area A (acres) C x A Median Rt.: Lawns, Heavy Soil, Flat 5.33 810.00 0.10 0.02 Travel Lanes: Street, Asphalt 29.33 810.00 0.55 0.52 Utility Strip Rt.: Lawns, Heavy Soil, Flat 5.00 810.00 0.09 0.01 Bike Path Rt.: Street, Asphalt 10.00 810.00 0.19 0.18 Roadside Ditch Rt.: Lawns, Heavy, Steep 42.50 810.00 0.79 0.24 Frontage Rd: Street, Asphalt 10.00 810.00 0.19 0.18 Subtotal = 1.91 1.15 0.60 Q10 k factor per IDM 29-8.04 1.00 Weighted C = 0.60 * Corresponds to Drainage Area 4 in Culvert Summary Report = = = = 6.12 in/hr = 5.22 in/hr = 5.78 in/hr Calculation of discharge per IDM Equation 29-8.1 Q10 = CI10A where C = 0.60 I10 = 5.78 A = 1.91 Therefore, Q10 = 6.62 cfs Sheet flow across drive Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =6 ft =Smooth = 0.011 =2.66 in = 0.0200 ft/ft =0.42·(n·L)0.8 = 0.1 min (P2)0.5S0.4 Compute Drainage Area & Weighted Runoff Coeffecient The drainage area within the R/W consists of the median, eastbound lanes and the roadside ditch from 233+90 to 242+00 Rt. Runoff Coefficient, 0.30 0.15 0.95 0.15 0.95 0.95 Weighted C = Compute Rainfall Intensity Time of Concentration, Tc 6.9 min Lower duration on rainfall intensity chart 5.0 min Higher duration on rainfall intensity chart 10.0 min I10 at lower duration I10 at higher duration Interpolated I10 Compute Discharge Size Ditch Analyze Ditch using IDM Equation 30-4.7 Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2 = 72.3 cfsn Since Qd≥Q10, ditch is adequate. Drive Pipe 54+50 "FRN3" Time of Concentration Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 S Overland flow time per IDM Equation 29-7.5, t1 P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations Sheet flow from drive to beginning of ditch Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =36 ft =Grass (Dense) = 0.24 =2.66 in = 0.2500 ft/ft =0.42·(n·L)0.8 = 2.5 min (P2)0.5S0.4 Channel flow to culvert Roadside Ditch Parameters: =1.0 ft =0 ft =4 :1 =4 :1 =0.030 =0.0030 ft/ft =225 ft =8.00 ft =8.25 ft =A/PW = 0.48 ft = L/60V = 2.3 min =t1+t2... = 4.9 min Use 5 min Calculation of discharge per IDM Equation 29-8.1 Q10 = CI10A where C = 0.95 I10 = 6.12 A = 0.38 (measured in CAD) Therefore, Q10 = 2.21 cfs Sheet flow across drive Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =6 ft =Smooth = 0.011 =2.66 in = 0.0200 ft/ft =0.42·(n·L)0.8 = 0.1 min (P2)0.5S0.4 Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Per HCSOTable 201-3 Two-year 24-hour rainfall, P 2 S Overland flow time per IDM Equation 29-7.5, t2 Channel Flow - Manning's Equation per IDM 29-7.09(02) Maximum Allowable Water Depth, ym Bottom Width, wb Foreslope, Zf Backslope, Zb Manning's n from IDM Figure 30-4B for Earth, grass, some weeds Slope, S Flow Length, L Top Width, wt wb + Zf·ym +Zb·ym = 4.00 sft2 Wetted Perimeter, PW (ym 2 + (Zb·ym)2)0.5 + (ym 2 + (Zf·ym)2)0.5 + wb = Cross Sectional Flow Area, A = (wb + wt)·ym = Hydraulic Radius, R Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5 = 1.66 ft/sn Travel time, t4 Total Time of Concentration, Tc Compute Discharge Size Ditch Flow length, L Analyze Ditch using IDM Equation 30-4.7 Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2 = 6.7 cfsn Since Qd≥Q10, ditch is adequate. Overland flow time per IDM Equation 29-7.5, t1 Per IDM Figure 29-7B, Manning's n Check Drive Pipes Hydraulic Capacity vs. Appendix A Surface Description per IDM Figure 29-7B Any 15-in pipe is adequate Drive Pipe 59+44 "FRN3" Time of Concentration Per HCSO Table 201-3 Two-year 24-hour rainfall, P 2 S P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations Sheet flow from drive to beginning of ditch Sheet Flow - Manning's Kinematic Solution per IDM 29-7.05 =52 ft =Grass (Dense) = 0.24 =2.66 in = 0.2500 ft/ft =0.42·(n·L)0.8 = 3.4 min (P2)0.5S0.4 Channel flow to culvert Roadside Ditch Parameters: =1.0 ft =0 ft =4 :1 =4 :1 =0.030 =0.0030 ft/ft =140 ft =8.00 ft =8.25 ft =A/PW = 0.48 ft = L/60V = 1.4 min =t1+t2... = 4.9 min Use 5 min Calculation of discharge per IDM Equation 29-8.1 Q10 = CI10A where C = 0.95 I10 = 6.12 A = 0.27 (measured in CAD) Therefore, Q10 = 1.57 cfs Node 18 Calculation of discharge per IDM Equation 29-8.1 Q10 = CI10A where C = 0.95 I10 = 6.12 A = 0.20 Therefore, Q10 = 1.16 cfs Ditch Inlet 78+50 Lt "FRN2" Flow Length, L Top Width, wt wb + Zf·ym +Zb·ym = S Per HCSOTable 201-3 Two-year 24-hour rainfall, P 2 Flow length, L Surface Description per IDM Figure 29-7B Per IDM Figure 29-7B, Manning's n Overland flow time per IDM Equation 29-7.5, t2 Compute Time of Concentration Assume 5 minutes due to small drainage area Backslope, Zb Manning's n from IDM Figure 30-4B for Earth, grass, some weeds Slope, S Channel Flow - Manning's Equation per IDM 29-7.09(02) Maximum Allowable Water Depth, ym Bottom Width, wb Foreslope, Zf 4.00 sft2 Wetted Perimeter, PW (ym 2 + (Zb·ym)2)0.5 + (ym 2 + (Zf·ym)2)0.5 + wb = Cross Sectional Flow Area, A = (wb + wt)·ym = Hydraulic Radius, R Per IDM Equation 29-7.10, Velocity, V,=1.486·R2/3·S0.5 = 1.66 ft/sn Travel time, t4 Total Time of Concentration, Tc Compute Discharge Size Ditch Analyze Ditch using IDM Equation 30-4.7 6.7 cfsn Since Qd≥Q10, ditch is adequate. Maximum Ditch Capacity, Qd =1.486·A·R2/3·S1/2 = Check Drive Pipes Hydraulic Capacity vs. Appendix A Any 15-in pipe is adequate Compute Discharge P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/03/09 ITEM:CHK. JWA DATE: 01/10/10 071087 146th Street, Hamilton Co Hydraulic Calculations = 1.16 cfs =1.0 ft For water depth ≤ 0.71 ft, use h = 1/2 water depth. For water depth > 0.71 ft, h = 0.71+(d-0.71)/2 h = 0.86 ft Weir Flow QW =Where P = Orifice Flow QO =Where A = Size Inlet Total discharge entering inlet, Qi Maximum Allowable Water Depth, ym Analyze Inlet, P12 The correct flow type has the lower value, therefore:►► The inlet is adequate in orifice flow 51.92 cfs 19.90 ft 45.81 cfs 10.3 sq. ft P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab:Hydrology BEAM, LONGEST and NEFF, L.L.C. JOB:071087 146th Street, Hamilton Co DES. BSC DATE: 11/02/09 ITEM:Geopak Drainage Input CHK. JWA DATE: 01/10/10 Frequency Options: Coefficient Peaking 1.0 per IDM 29-8.05 1.2 per IDM 29-8.05 Intensity Options: Min. Tc = 5.0 min Pipe calculated using Full Flow Velocity per 29-7.09(01) Intensity iterpolated from rainfall table Junction Losses: Loss Velocity calculated at Full Flow Junction Losses calculated using Method 1 where: Frequencies: 2 5 10 25 50 100 Duration (min) in/hr in/hr in/hr in/hr in/hr in/hr 5 4.63 5.43 6.12 7.17 8.09 9.12 10 3.95 4.63 5.22 6.12 6.90 7.78 15 3.44 4.03 4.55 5.33 6.01 6.77 20 3.04 3.56 4.02 4.71 5.31 5.99 30 2.46 2.88 3.25 3.81 4.29 4.84 40 2.05 2.41 2.71 3.18 3.59 4.05 50 1.76 2.06 2.33 2.73 3.07 3.47 60 1.54 1.80 2.03 2.38 2.68 3.03 90 1.07 1.23 1.42 1.63 1.91 2.24 120 0.83 0.95 1.11 1.37 1.60 1.87 180 0.59 0.72 0.84 1.04 1.22 1.42 240 0.47 0.58 0.68 0.84 0.99 1.15 300 0.40 0.49 0.58 0.71 0.83 0.97 360 0.35 0.43 0.50 0.62 0.72 0.85 420 0.31 0.38 0.44 0.55 0.64 0.75 480 0.28 0.34 0.40 0.49 0.57 0.67 540 0.25 0.31 0.36 0.45 0.52 0.61 600 0.23 0.28 0.33 0.41 0.48 0.56 720 0.20 0.24 0.29 0.35 0.41 0.48 840 0.17 0.22 0.25 0.31 0.36 0.42 960 0.16 0.19 0.23 0.28 0.32 0.38 1080 0.14 0.17 0.20 0.25 0.29 0.34 1200 0.13 0.16 0.19 0.23 0.27 0.31 1440 0.11 0.14 0.16 0.20 0.23 0.27 Rainfall Item Identification => Hamilton Co Rainfall Item Description => Rainfall Intensities Intensity Duration Table Computation Frequency: 10-Year 50-Year Hj = Kj · V2/(2g) P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xls Tab: Input BEAM, LONGEST and NEFF, L.L.C. P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Output JOB:071087 146th Street, Hamilton Co DES.BSC DATE:06/04/12 ITEM:Geopak Drainage Output CHK.WJW DATE:06/05/12 Structure Depth Cumulative Discharge Velocity Cumulative Discharge ft min Acre cfs ft/s cfs 26 Inlet Type B-15 PR-A 201+08.30 X 917.20 3.01 914.19 914.10 Pipe 2 12 in 5.00 0.10 0.75 0.44 2.47 914.55 914.38 0.70 914.67 914.45 29 Inlet Type B-15 PR-A 201+08.30 X 917.20 3.01 914.19 914.11 Pipe 2 12 in 5.00 0.10 0.75 0.44 2.47 914.55 914.39 0.70 914.67 914.46 30 Inlet Type B-15 PR-A 201+40.00 X 917.22 3.00 914.22 914.14 Pipe 2 12 in 5.00 0.09 0.75 0.42 2.36 914.57 914.41 0.67 914.69 914.48 32 Inlet Type B-15 PR-A 201+40.00 X 917.22 3.00 914.22 914.09 Pipe 2 12 in 5.00 0.09 0.75 0.42 2.52 914.57 914.36 0.67 914.69 914.43 33 Inlet Type B-15 PR-A 202+40.00 X 917.58 3.00 914.58 914.45 Pipe 2 12 in 5.00 0.13 0.75 0.59 2.77 915.01 914.76 0.94 915.16 914.85 35 Inlet Type B-15 PR-A 202+40.00 X 917.58 3.64 913.94 913.80 Pipe 2 12 in 5.00 0.13 0.75 0.59 2.77 914.37 914.12 0.94 914.52 914.20 37 Inlet Type B-15 PR-A 203+80.00 X 918.14 4.00 914.14 914.00 Pipe 2 12 in 5.00 0.13 0.75 0.59 2.78 914.57 914.31 0.94 914.72 914.40 39 Inlet Type B-15 PR-A 203+80.00 X 918.14 4.46 913.68 913.36 Pipe 2 12 in 5.00 0.13 0.75 0.59 3.55 914.11 913.63 0.94 914.26 913.70 41 Inlet Type B-15 PR-A 205+20.00 X 918.70 3.50 915.20 914.89 Pipe 2 12 in 5.00 0.11 0.85 0.57 2.77 915.62 915.20 0.91 915.77 915.29 42 Inlet Type C-15 PR-A 205+20.00 X 918.66 4.01 914.64 913.82 Pipe 2 12 in 5.40 0.22 0.85 1.13 5.44 915.15 914.13 1.79 915.30 914.22 44 Inlet Type B-15 PR-A 206+40.00 X 918.93 3.48 915.45 914.85 Pipe 2 12 in 5.00 0.12 0.95 0.71 3.74 915.93 915.14 1.13 916.10 915.22 40 Inlet Type C-15 PR-A 206+40.00 X 919.00 5.26 913.74 913.11 Pipe 2 15 in 5.95 0.62 0.83 3.04 5.47 914.54 913.69 4.85 914.86 913.88 48 Inlet Type HA PR-A 206+83.33 921.02 6.42 914.60 914.00 Pipe 2 15 in 5.62 0.29 0.83 1.46 4.50 915.14 914.38 2.33 915.30 914.49 47 Inlet Type HA PR-A 207+26.94 X 919.59 3.70 915.89 915.06 Pipe 2 12 in 5.00 0.20 0.75 0.93 4.04 916.47 915.39 1.48 916.65 915.49 46 Inlet Type B-15 PR-A 208+20.00 X 920.44 4.12 916.32 916.01 Pipe 2 12 in 5.00 0.09 0.95 0.51 2.66 916.71 916.30 0.81 916.85 916.38 50 Inlet Type C-15 PR-A 208+20.00 X 920.17 5.67 914.51 912.30 Pipe 2 12 in 5.34 0.27 0.85 1.37 5.79 915.08 912.64 2.18 915.28 912.74 52 Inlet Type B-15 PR-A 208+90.00 X 920.20 3.41 916.79 916.40 Pipe 2 12 in 5.00 0.18 0.80 0.88 3.97 917.35 916.73 1.39 917.53 916.82 54 Inlet Type B-15 PR-A 208+90.00 X 920.18 3.50 916.68 915.94 Pipe 2 12 in 5.00 0.18 0.80 0.88 3.97 917.23 916.26 1.39 917.42 916.35 55 Inlet Type B-15 PR-A 212+85.00 X 919.91 3.26 916.65 916.52 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 917.19 916.90 1.34 917.37 917.01 59 Inlet Type B-15 PR-A 212+85.00 X 919.91 3.50 916.41 916.26 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.89 916.95 916.58 1.34 917.13 916.67 60 Manhole Type J4 PR-A 212+85.00 X 919.90 7.42 912.48 911.80 Pipe 2 36 in 18.24 5.19 0.41 9.01 4.70 913.49 912.75 14.44 913.79 913.01 58 PES 36 PR-A 213+75.00 X 915.45 2.38 913.07 912.82 Pipe 2 36 in 17.50 5.01 0.40 8.59 4.64 914.30 913.75 13.61 914.73 913.99 61 Inlet Type B-15 PR-A 214+85.00 X 918.54 3.81 914.73 914.59 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 915.27 914.97 1.34 915.45 915.08 64 Inlet Type B-15 PR-A 214+85.00 X 918.54 4.24 914.30 914.16 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 914.84 914.54 1.34 915.02 914.65 65 Inlet Type B-15 PR-A 216+85.00 X 916.94 3.00 913.94 913.82 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 914.48 914.20 1.34 914.66 914.30 67 Inlet Type B-15 PR-A 216+85.00 X 916.94 3.00 913.94 913.80 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 914.48 914.19 1.34 914.66 914.29 70 Inlet Type B-15 PR-A 218+85.00 X 915.34 3.00 912.34 912.22 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 912.88 912.60 1.34 913.06 912.70 71 Inlet Type B-15 PR-A 218+85.00 X 915.34 3.00 912.34 912.21 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 912.88 912.59 1.34 913.06 912.70 74 Inlet Type B-15 PR-A 220+85.00 X 913.74 3.83 909.91 909.62 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.92 910.45 909.94 1.34 910.63 910.03 75 Inlet Type B-15 PR-A 220+85.00 X 913.74 3.00 910.74 910.62 Pipe 2 12 in 5.00 0.18 0.75 0.85 3.07 911.28 911.00 1.34 911.46 911.10 25 Inlet Type E-7 PR-A 221+37.00 X 909.75 4.58 905.17 904.29 Pipe 2 15 in 5.00 1.35 0.61 5.04 6.20 906.69 905.08 8.00 907.68 905.41 79 Inlet Type B-15 PR-A 222+10.00 X 912.80 3.40 909.40 908.51 Pipe 2 12 in 5.00 0.12 0.75 0.53 4.39 909.82 908.72 0.84 909.94 908.77 81 Inlet Type B-15 PR-A 222+10.00 X 912.80 3.11 909.69 909.24 Pipe 2 12 in 5.00 0.12 0.75 0.53 3.43 910.09 909.49 0.84 910.23 909.56 78 Manhole Type J-15 PR-A 222+60.00 X 912.70 6.07 906.63 905.85 Pipe 2 12 in 5.28 0.34 0.75 1.54 5.89 907.27 906.22 2.45 907.51 906.33 82 Inlet Type C-15 PR-A 222+60.00 X 912.70 3.56 909.14 908.34 Pipe 2 12 in 5.36 0.20 0.75 0.92 5.14 909.64 908.62 1.46 909.76 908.69 83 Manhole Type C4 PR-A 222+95.00 X 912.74 8.12 904.62 904.29 Pipe 2 30 in 11.29 4.66 0.58 13.71 5.61 906.03 905.54 21.97 906.61 905.88 80 Inlet Type B-15 PR-A 223+05.00 X 912.78 3.51 909.27 908.87 Pipe 2 12 in 5.00 0.14 0.75 0.63 3.62 909.72 909.15 1.00 909.87 909.22 85 Inlet Type C-15 PR-A 223+05.00 X 912.78 4.70 908.08 907.72 Pipe 2 12 in 5.54 0.34 0.75 1.53 5.65 908.74 908.09 2.43 908.96 908.21 86 Inlet Type B-15 PR-A 224+55.00 X 913.65 4.00 909.65 909.02 Pipe 2 12 in 5.00 0.17 0.75 0.76 4.84 910.15 909.28 1.20 910.32 909.35 88 Inlet Type B-15 PR-A 224+55.00 X 913.65 4.64 909.01 908.85 Pipe 2 12 in 5.00 0.17 0.75 0.76 3.76 909.51 909.16 1.20 909.68 909.24 89 Manhole Type C4 PR-A 224+55.00 X 913.61 8.36 905.25 904.78 Pipe 2 30 in 10.51 4.32 0.57 12.68 5.19 906.55 906.03 20.19 907.11 906.61 20 Inlet Type B-15 PR-A 226+35.00 X 914.73 5.00 909.73 909.01 Pipe 2 12 in 5.00 0.18 0.75 0.82 4.96 910.26 909.28 1.30 910.44 909.35 94 Inlet Type B-15 PR-A 226+35.00 X 914.73 5.00 909.73 909.42 Pipe 2 12 in 5.00 0.18 0.75 0.82 4.83 910.26 909.69 1.30 910.44 909.76 90 Manhole Type C4 PR-A 226+35.00 X 914.66 8.72 905.94 905.42 Pipe 2 30 in 9.92 4.16 0.56 12.24 5.40 907.22 906.59 19.47 907.67 907.11 149 Manhole Type C4 PR-A 227+00.00 X 915.06 8.93 906.14 905.96 Pipe 2 30 in 9.67 3.98 0.55 11.63 4.69 907.44 907.22 18.50 907.96 907.67 19 Inlet Type E-7 PR-A 227+00.00 X 910.58 3.00 907.58 907.41 Pipe 2 18 in 5.00 1.83 0.48 5.38 6.00 908.94 908.17 8.53 909.51 908.42 96 Inlet Type B-15 PR-A 228+30.00 X 915.90 4.00 911.90 911.27 Pipe 2 12 in 5.00 0.24 0.75 1.10 5.34 912.54 911.58 1.74 912.75 911.67 95 Inlet Type B-15 PR-A 228+30.00 X 915.90 5.00 910.90 910.59 Pipe 2 12 in 5.00 0.24 0.75 1.10 5.18 911.54 910.90 1.74 911.75 911.00 91 Manhole Type C4 PR-A 228+30.00 X 915.84 8.74 907.10 906.72 Pipe 2 24 in 9.18 2.15 0.62 7.11 4.86 908.15 907.67 11.29 908.54 907.96 93 Manhole Type C4 PR-A 231+00.00 X 917.19 9.28 907.91 907.12 Pipe 2 24 in 6.90 1.91 0.60 6.62 4.03 908.93 908.15 10.50 909.28 908.54 98 Inlet Type B-15 PR-A 233+90.00 X 915.20 4.00 911.20 910.57 Pipe 2 12 in 5.00 0.28 0.75 1.27 5.54 911.90 910.91 2.01 912.13 911.01 101 Inlet Type B-15 PR-A 233+90.00 X 915.20 4.67 910.53 909.84 Pipe 2 12 in 5.00 0.28 0.75 1.27 5.57 911.22 910.17 2.01 911.46 910.27 92 PES 24 PR-A 234+00.00 X 910.82 2.00 908.82 907.93 Pipe 2 24 in 6.90 1.91 0.60 6.62 4.21 910.15 908.93 10.50 910.58 909.28 103 Inlet Type B-15 PR-A 235+50.00 X 913.92 3.90 910.02 909.72 Pipe 2 12 in 5.00 0.15 0.75 0.68 3.69 910.49 910.00 1.07 910.64 910.08 104 Inlet Type B-15 PR-A 235+50.00 X 913.92 3.51 910.41 910.27 Pipe 2 12 in 5.00 0.15 0.75 0.68 2.90 910.88 910.61 1.07 911.04 910.70 108 Inlet Type C-15 PR-A 236+60.00 X 913.13 3.33 909.80 909.72 Pipe 2 12 in 5.80 0.33 0.75 1.48 3.61 910.45 910.24 2.35 910.72 910.38 111 Inlet Type C-15 PR-A 236+60.00 X 913.13 3.33 909.80 909.71 Pipe 2 15 in 5.73 0.33 0.75 1.49 3.39 910.36 910.20 2.36 910.54 910.33 107 Inlet Type C-15 PR-A 237+00.00 X 913.02 3.06 909.96 909.85 Pipe 2 12 in 5.45 0.23 0.75 1.04 2.13 910.58 910.45 1.65 910.91 910.72 112 Inlet Type C-15 PR-A 237+00.00 X 913.02 3.06 909.96 909.85 Pipe 2 12 in 5.45 0.23 0.75 1.04 2.63 910.49 910.36 1.65 910.71 910.54 109 Inlet Type B-15 PR-A 237+50.00 X 913.15 3.00 910.15 910.01 Pipe 2 12 in 5.00 0.15 0.75 0.68 1.47 910.62 910.58 1.07 910.98 910.91 113 Inlet Type B-15 PR-A 237+50.00 X 913.15 3.00 910.15 910.01 Pipe 2 12 in 5.00 0.15 0.75 0.68 1.83 910.62 910.49 1.07 910.82 910.71 115 Inlet Type B-15 PR-A 239+10.00 X 914.40 3.46 910.94 910.80 Pipe 2 12 in 5.00 0.28 0.75 1.26 3.43 911.63 911.28 2.00 911.86 911.40 116 Inlet Type B-15 PR-A 239+10.00 X 914.40 3.00 911.40 911.25 Pipe 2 12 in 5.00 0.28 0.75 1.26 3.43 912.09 911.73 2.00 912.32 911.86 119 Inlet Type B-15 PR-A 244+70.00 X 915.10 3.48 911.62 911.48 Pipe 2 12 in 5.00 0.24 0.75 1.10 3.30 912.26 911.92 1.74 912.47 912.04 10-Year Return Period HGL Upstream HGL DownstreamPipe DescriptionRightLine Remarks Structure Modelling Results Geopak Drainage Node - ID Tc Used Cumulative Area Description Station Left50-Year Return Period HGL Upstream HGL Downstream Casting Elevation Downstream Invert Cumulative C Value Upstream Invert BEAM, LONGEST and NEFF, L.L.C. P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Output JOB:071087 146th Street, Hamilton Co DES.BSC DATE:06/04/12 ITEM:Geopak Drainage Output CHK.WJW DATE:06/05/12 Structure Depth Cumulative Discharge Velocity Cumulative Discharge ft min Acre cfs ft/s cfs 10-Year Return Period HGL Upstream HGL DownstreamPipe DescriptionRightLine Remarks Structure Modelling Results Geopak Drainage Node - ID Tc Used Cumulative Area Description Station Left50-Year Return Period HGL Upstream HGL Downstream Casting Elevation Downstream Invert Cumulative C Value Upstream Invert 22 Inlet Type B-15 PR-A 244+70.00 X 915.10 4.00 911.10 910.95 Pipe 2 12 in 5.00 0.24 0.75 1.10 3.30 911.74 911.39 1.74 911.95 911.51 121 Inlet Type B-15 PR-A 246+45.00 X 914.05 3.96 910.09 909.94 Pipe 2 12 in 5.00 0.17 0.75 0.76 2.98 910.59 910.30 1.20 910.76 910.40 122 Inlet Type B-15 PR-A 246+45.00 X 914.05 3.96 910.09 909.93 Pipe 2 12 in 5.00 0.17 0.75 0.76 3.07 910.59 910.28 1.20 910.76 910.38 125 Cleanout Port Type II PR-A 247+00.00 X 913.89 4.01 909.88 909.72 Pipe 2 12 in 5.00 0.05 0.75 0.23 2.33 910.12 909.91 0.37 910.20 909.97 127 Cleanout Port Type II PR-A 247+55.00 X 914.02 3.99 910.03 909.45 Pipe 2 12 in 5.00 0.17 0.75 0.78 3.83 910.54 909.75 1.24 910.71 909.84 133 Cleanout Port Type II PR-A 251+85.00 X 910.96 2.96 908.00 907.91 Pipe 2 12 in 5.00 0.50 0.75 2.28 4.24 909.01 908.55 3.61 909.51 908.72 134 Cleanout Port Type II PR-A 252+85.00 X 911.37 4.01 907.36 905.00 Pipe 2 12 in 5.00 0.37 0.75 1.69 8.22 908.19 905.31 2.68 908.50 905.40 18 Inlet Type P-12A PR-FRN2 78+25.00 X 915.20 0.99 914.21 914.08 Pipe 2 12 in 5.00 0.20 0.95 1.18 3.37 914.88 914.54 1.87 915.09 914.66 A few inlets do not meet the minimum velocity requirements. This is a Level 3 design exception. BEAM, LONGEST and NEFF, L.L.C. P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Scour JOB:071087 146th Street, Hamilton Co DES.BSC DATE:06/04/12 ITEM:Scour Computations CHK.WJW DATE:06/05/12 For design of a riprap apron, HEC 14 Eqn 10.4 is used:See attached sketch of apron dimensions 1.87 for all computations Dimension ά β Θ W S 6.94 0.53 0.08 where:LS 17.10 0.47 0.10 ft/s %min min cfs HS Rc ft CS Ch CS Ch a L Type 150 Outlet Storm Sewer PR-A 201+08.30 X Pipe 2 12 in 2.875 0.30%5.00 30.00 0.70 0.00 0.25 0.03 1.04 1.00 5.871 2.069 0.828 2.51 1.03 1.00 14.326 1.905 0.828 5.65 3 ft 7 ft Uniform B 151 Outlet Storm Sewer PR-A 201+08.30 X Pipe 2 12 in 2.875 0.30%5.00 30.00 0.70 0.00 0.25 0.03 1.04 1.00 5.871 2.069 0.828 2.51 1.03 1.00 14.326 1.905 0.828 5.65 3 ft 7 ft Uniform B 27 Outlet Storm Sewer PR-A 201+40.00 X Pipe 2 12 in 2.841 0.30%5.00 30.00 0.67 0.00 0.25 0.03 1.04 1.00 5.871 2.023 0.828 2.46 1.03 1.00 14.326 1.868 0.828 5.54 3 ft 7 ft Uniform B 28 Outlet Storm Sewer PR-A 201+40.00 X Pipe 2 12 in 2.875 0.50%5.00 30.00 0.67 0.00 0.25 0.03 1.07 1.00 6.040 2.023 0.828 2.53 1.04 1.00 14.465 1.868 0.828 5.59 3 ft 7 ft Uniform B 31 Outlet Storm Sewer PR-A 202+40.00 X Pipe 2 12 in 3.166 0.50%5.00 30.00 0.94 0.00 0.25 0.05 1.07 1.00 6.040 2.419 0.828 3.02 1.04 1.00 14.465 2.189 0.828 6.55 4 ft 8 ft Uniform B 34 Outlet Storm Sewer PR-A 202+40.00 X Pipe 2 12 in 3.166 0.50%5.00 30.00 0.94 0.00 0.25 0.05 1.07 1.00 6.040 2.419 0.828 3.02 1.04 1.00 14.465 2.189 0.828 6.55 4 ft 8 ft Uniform B 36 Outlet Storm Sewer PR-A 203+80.00 X Pipe 2 12 in 3.166 0.50%5.00 30.00 0.94 0.00 0.25 0.05 1.07 1.00 6.040 2.419 0.828 3.02 1.04 1.00 14.465 2.189 0.828 6.55 4 ft 8 ft Uniform B 38 Outlet Storm Sewer PR-A 203+80.00 X Pipe 2 12 in 4.039 1.00%5.00 30.00 0.94 0.00 0.25 0.05 1.14 1.00 6.435 2.419 0.828 3.22 1.09 1.00 15.161 2.189 0.828 6.87 4 ft 8 ft Uniform B 43 Outlet Storm Sewer PR-A 205+49.02 X Pipe 2 12 in 6.126 2.00%5.40 30.00 1.79 0.00 0.25 0.11 1.28 1.00 7.225 3.409 0.828 5.1 1.17 1.00 16.273 2.967 0.828 9.99 6 ft 11 ft Uniform B 45 Outlet Storm Sewer PR-A 205+82.16 X Pipe 2 15 in 6.132 1.00%5.95 30.00 4.85 0.00 0.31 0.24 1.14 1.00 6.435 4.341 0.828 7.17 1.09 1.00 15.161 3.676 0.828 14.31 8 ft 16 ft Uniform B 49 Outlet Storm Sewer PR-A 208+48.51 X Pipe 2 12 in 3.028 0.50%5.00 30.00 0.81 0.00 0.25 0.04 1.07 1.00 6.040 2.240 0.828 2.8 1.04 1.00 14.465 2.044 0.828 6.12 3 ft 8 ft Uniform B 51 Outlet Storm Sewer PR-A 209+06.64 X Pipe 2 12 in 6.557 2.00%5.34 30.00 2.18 0.00 0.25 0.14 1.28 1.00 7.225 3.778 0.828 5.65 1.17 1.00 16.273 3.251 0.828 10.95 6 ft 12 ft Uniform B 53 Outlet Storm Sewer PR-A 208+90.00 X Pipe 2 12 in 4.499 1.00%5.00 30.00 1.39 0.00 0.25 0.08 1.14 1.00 6.435 2.978 0.828 3.97 1.09 1.00 15.161 2.632 0.828 8.26 4 ft 10 ft Uniform B 56 Outlet Storm Sewer PR-A 212+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 57 Outlet Storm Sewer PR-A 210+39.82 X Pipe 2 36 in 5.404 0.28%18.24 30.00 14.44 0.00 0.75 0.13 1.04 1.00 5.871 2.402 0.828 8.76 1.02 1.00 14.187 2.175 0.828 19.16 9 ft 21 ft Uniform B 62 Outlet Storm Sewer PR-A 214+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 63 Outlet Storm Sewer PR-A 214+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 66 Outlet Storm Sewer PR-A 216+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 68 Outlet Storm Sewer PR-A 216+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 69 Outlet Storm Sewer PR-A 218+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 72 Outlet Storm Sewer PR-A 218+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 73 Outlet Storm Sewer PR-A 220+85.00 X Pipe 2 12 in 4.429 1.00%5.00 30.00 1.34 0.00 0.25 0.07 1.14 1.00 6.435 2.921 0.828 3.89 1.09 1.00 15.161 2.587 0.828 8.12 4 ft 10 ft Uniform B 76 Outlet Storm Sewer PR-A 220+85.00 X Pipe 2 12 in 3.526 0.50%5.00 30.00 1.34 0.00 0.25 0.07 1.07 1.00 6.040 2.921 0.828 3.65 1.04 1.00 14.465 2.587 0.828 7.75 4 ft 9 ft Uniform B 24 Outlet Storm Sewer PR-A 222+00.84 X Pipe 2 15 in 6.919 1.00%5.00 30.00 8.00 0.00 0.31 0.47 1.14 1.00 6.435 5.661 0.828 9.35 1.09 1.00 15.161 4.652 0.828 18.1 10 ft 20 ft Uniform A 77 Outlet Storm Sewer PR-A 222+60.00 X Pipe 2 12 in 6.592 2.00%5.28 30.00 2.45 0.00 0.25 0.16 1.28 1.00 7.225 4.022 0.828 6.02 1.17 1.00 16.273 3.435 0.828 11.57 7 ft 13 ft Uniform B 84 Outlet Storm Sewer PR-A 222+15.16 X Pipe 2 30 in 6.651 0.30%11.29 30.00 21.97 0.00 0.63 0.36 1.04 1.00 5.871 3.780 0.828 11.58 1.03 1.00 14.326 3.252 0.828 24.3 12 ft 26 ft Uniform A 87 Outlet Storm Sewer PR-A 224+55.00 X Pipe 2 12 in 5.473 2.00%5.00 30.00 1.20 0.00 0.25 0.06 1.28 1.00 7.225 2.756 0.828 4.12 1.17 1.00 16.273 2.457 0.828 8.28 5 ft 10 ft Uniform B 21 Outlet Storm Sewer PR-A 226+35.00 X Pipe 2 12 in 5.616 2.00%5.00 30.00 1.30 0.00 0.25 0.07 1.28 1.00 7.225 2.878 0.828 4.3 1.17 1.00 16.273 2.553 0.828 8.6 5 ft 10 ft Uniform B 97 Outlet Storm Sewer PR-A 228+30.00 X Pipe 2 12 in 5.997 2.00%5.00 30.00 1.74 0.00 0.25 0.10 1.28 1.00 7.225 3.355 0.828 5.02 1.17 1.00 16.273 2.925 0.828 9.85 6 ft 11 ft Uniform B 99 Outlet Storm Sewer PR-A 233+90.00 X Pipe 2 12 in 6.200 2.00%5.00 30.00 2.01 0.00 0.25 0.13 1.28 1.00 7.225 3.621 0.828 5.42 1.17 1.00 16.273 3.130 0.828 10.54 6 ft 12 ft Uniform B 100 Outlet Storm Sewer PR-A 234+04.52 X Pipe 2 12 in 6.238 2.00%5.00 30.00 2.01 0.00 0.25 0.13 1.28 1.00 7.225 3.621 0.828 5.42 1.17 1.00 16.273 3.130 0.828 10.54 6 ft 12 ft Uniform B 102 Outlet Storm Sewer PR-A 235+50.00 X Pipe 2 12 in 4.171 1.00%5.00 30.00 1.07 0.00 0.25 0.05 1.14 1.00 6.435 2.593 0.828 3.45 1.09 1.00 15.161 2.327 0.828 7.3 4 ft 9 ft Uniform B 105 Outlet Storm Sewer PR-A 235+50.00 X Pipe 2 12 in 3.287 0.50%5.00 30.00 1.07 0.00 0.25 0.05 1.07 1.00 6.040 2.593 0.828 3.24 1.04 1.00 14.465 2.327 0.828 6.97 4 ft 8 ft Uniform B 106 Outlet Storm Sewer PR-A 236+60.00 X Pipe 2 12 in 4.302 0.30%5.80 30.00 2.35 0.00 0.25 0.15 1.04 1.00 5.871 3.931 0.828 4.78 1.03 1.00 14.326 3.367 0.828 9.98 5 ft 11 ft Uniform B 110 Outlet Storm Sewer PR-A 236+60.00 X Pipe 2 15 in 3.924 0.30%5.73 30.00 2.36 0.00 0.31 0.09 1.04 1.00 5.871 2.964 0.828 4.47 1.03 1.00 14.326 2.621 0.828 9.64 5 ft 11 ft Uniform B 114 Outlet Storm Sewer PR-A 239+10.00 X Pipe 2 12 in 4.043 0.50%5.00 30.00 2.00 0.00 0.25 0.12 1.07 1.00 6.040 3.613 0.828 4.52 1.04 1.00 14.465 3.124 0.828 9.35 5 ft 11 ft Uniform B 117 Outlet Storm Sewer PR-A 239+10.00 X Pipe 2 12 in 4.043 0.50%5.00 30.00 2.00 0.00 0.25 0.12 1.07 1.00 6.040 3.613 0.828 4.52 1.04 1.00 14.465 3.124 0.828 9.35 5 ft 11 ft Uniform B 118 Outlet Storm Sewer PR-A 244+70.00 X Pipe 2 12 in 3.839 0.50%5.00 30.00 1.74 0.00 0.25 0.10 1.07 1.00 6.040 3.355 0.828 4.19 1.04 1.00 14.465 2.925 0.828 8.76 5 ft 10 ft Uniform B 23 Outlet Storm Sewer PR-A 244+70.00 X Pipe 2 12 in 3.839 0.50%5.00 30.00 1.74 0.00 0.25 0.10 1.07 1.00 6.040 3.355 0.828 4.19 1.04 1.00 14.465 2.925 0.828 8.76 5 ft 10 ft Uniform B 120 Outlet Storm Sewer PR-A 246+45.00 X Pipe 2 12 in 3.386 0.50%5.00 30.00 1.20 0.00 0.25 0.06 1.07 1.00 6.040 2.756 0.828 3.45 1.04 1.00 14.465 2.457 0.828 7.36 4 ft 9 ft Uniform B 123 Outlet Storm Sewer PR-A 246+45.00 X Pipe 2 12 in 3.494 0.55%5.00 30.00 1.20 0.00 0.25 0.06 1.08 1.00 6.096 2.756 0.828 3.48 1.05 1.00 14.604 2.457 0.828 7.43 4 ft 9 ft Uniform B 124 Outlet Storm Sewer PR-A 247+00.00 X Pipe 2 12 in 2.453 0.48%5.00 30.00 0.37 0.00 0.25 0.01 1.07 1.00 6.040 1.479 0.828 1.85 1.04 1.00 14.465 1.415 0.828 4.24 3 ft 6 ft Uniform B 126 Outlet Storm Sewer PR-A 247+55.00 X Pipe 2 12 in 4.338 0.98%5.00 30.00 1.24 0.00 0.25 0.07 1.14 1.00 6.435 2.801 0.828 3.73 1.08 1.00 15.021 2.493 0.828 7.75 4 ft 9 ft Uniform B 132 Outlet Storm Sewer PR-A 251+85.00 X Pipe 2 12 in 5.292 0.32%5.00 30.00 3.61 0.00 0.25 0.27 1.04 1.00 5.871 4.940 0.828 6 1.03 1.00 14.326 4.122 0.828 12.22 6 ft 14 ft Uniform A 135 Outlet Storm Sewer PR-A 252+85.00 X Pipe 2 12 in 9.229 4.68%5.00 30.00 2.68 0.00 0.25 0.18 1.66 1.00 9.370 4.217 0.828 8.18 1.40 1.00 19.472 3.583 0.828 14.44 9 ft 16 ft Uniform B 17 Outlet Storm Sewer PR-FRN2 78+25.00 X Pipe 2 12 in 3.934 0.31%5.00 30.00 1.87 0.00 0.25 0.11 1.04 1.00 5.871 3.481 0.828 4.23 1.03 1.00 14.326 3.023 0.828 8.96 5 ft 10 ft Uniform B 142 Outlet Culvert PR-FRN3 54+27.99 X Pipe 3 15 in 4.537 0.30%5.00 30.00 3.54 0.00 0.31 0.16 1.04 1.00 5.871 3.675 0.828 5.54 1.03 1.00 14.326 3.172 0.828 11.66 6 ft 13 ft Revetment 141 Outlet Culvert PR-FRN3 59+65.99 X Pipe 3 15 in 4.010 0.30%5.00 30.00 2.51 0.00 0.31 0.10 1.04 1.00 5.871 3.062 0.828 4.61 1.03 1.00 14.326 2.698 0.828 9.92 5 ft 11 ft Revetment TW = Tailwater Depth (ft) = 0.4DD50 = riprap size (ft)1.00 D = Culvert Diameter (ft)g = 32.2 ft/s2 Q50 t = Tc if > 30 min Storm Sewer Outfall Slope of Pipe, S Minimum Riprap to be Placed F3 LS Per Eqn 34-4.5 F1 Median Riprap Size D50 Coefficients per IDM Figure 34-4AMaterial Standard Deviation, σ = CS where S = 0% 1.00 D50 =0.2·D·[Q50/(g0.5D2.5)]4/3·(D/TW)=0.5·Q4/3 g2/3·D7/3 a = W S but not less than 3D L = LS +1 but not less than 4D Hydraulic Radius Width of Scour Hole, WS Length of Scour Hole, LS Per IDM Figure 34-4A Per Eqn 34-4.5 Slope Correction Slope Correction Drop Height F3 CS where S ≥ 2% 1.28 1.17 WS F2 Per IDM Figure 34-4A Pipe DescriptionRightGeopak Drainage Node - ID Node Description Station LeftLine F1 Velocity V50 Tc Height Above Bed F2 Drop Height Outlet Type BEAM, LONGEST and NEFF, L.L.C. P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Areas JOB:071087 146th Street DES.BSC DATE:06/04/12 ITEM:Geopak Drainage Areas CHK.WJW DATE:06/04/12 Drainage Area Time of Conc.Time Used Intensity Discharge Acres min min in/hr cfs Identification Runoff C Drainage Area Time of Conc.Time Used Intensity Discharge 18 0.95 0.20 5.00 5.00 6.12 1.18 19 0.48 1.83 5.00 5.00 6.12 5.38 20 0.75 0.18 5.00 5.00 6.12 0.82 22 0.75 0.24 5.00 5.00 6.12 1.10 25 0.61 1.35 5.00 5.00 6.12 5.04 26 0.75 0.00 5.00 5.00 6.12 0.01 29 0.75 0.10 5.00 5.00 6.12 0.44 30 0.75 0.09 5.00 5.00 6.12 0.42 32 0.75 0.09 5.00 5.00 6.12 0.42 33 0.75 0.13 5.00 5.00 6.12 0.59 35 0.75 0.13 5.00 5.00 6.12 0.59 37 0.75 0.13 5.00 5.00 6.12 0.59 39 0.75 0.13 5.00 5.00 6.12 0.59 40 0.95 0.12 5.00 5.00 6.12 0.71 41 0.85 0.11 5.00 5.00 6.12 0.57 42 0.85 0.11 5.00 5.00 6.12 0.57 44 0.95 0.12 5.00 5.00 6.12 0.71 46 0.95 0.09 5.00 5.00 6.12 0.51 47 0.75 0.20 5.00 5.00 6.12 0.93 48 0.75 0.17 5.00 5.00 6.12 0.78 50 0.95 0.09 5.00 5.00 6.12 0.51 52 0.8 0.18 5.00 5.00 6.12 0.88 54 0.8 0.18 5.00 5.00 6.12 0.88 55 0.75 0.18 5.00 5.00 6.12 0.85 58 0.4 5.01 17.50 17.50 4.29 8.59 59 0.75 0.18 5.00 5.00 6.12 0.85 61 0.75 0.18 5.00 5.00 6.12 0.85 64 0.75 0.18 5.00 5.00 6.12 0.85 65 0.75 0.18 5.00 5.00 6.12 0.85 67 0.75 0.18 5.00 5.00 6.12 0.85 70 0.75 0.18 5.00 5.00 6.12 0.85 71 0.75 0.18 5.00 5.00 6.12 0.85 74 0.75 0.18 5.00 5.00 6.12 0.85 75 0.75 0.18 5.00 5.00 6.12 0.85 78 0.75 0.09 5.00 5.00 6.12 0.40 79 0.75 0.12 5.00 5.00 6.12 0.53 80 0.75 0.14 5.00 5.00 6.12 0.63 81 0.75 0.12 5.00 5.00 6.12 0.53 82 0.75 0.09 5.00 5.00 6.12 0.40 85 0.75 0.14 5.00 5.00 6.12 0.63 86 0.75 0.17 5.00 5.00 6.12 0.76 88 0.75 0.17 5.00 5.00 6.12 0.76 92 0.6 1.91 6.90 6.90 5.78 6.62 94 0.75 0.18 5.00 5.00 6.12 0.82 95 0.75 0.24 5.00 5.00 6.12 1.10 96 0.75 0.24 5.00 5.00 6.12 1.10 Area ID* Runoff C BEAM, LONGEST and NEFF, L.L.C. P:\Project\071087\Design\08 Drainage\Storm Sewers\071087_Drainage.xlsx Tab: Areas JOB:071087 146th Street DES.BSC DATE:06/04/12 ITEM:Geopak Drainage Areas CHK.WJW DATE:06/04/12 Drainage Area Time of Conc.Time Used Intensity Discharge Acres min min in/hr cfsArea ID* Runoff C 98 0.75 0.28 5.00 5.00 6.12 1.27 101 0.75 0.28 5.00 5.00 6.12 1.27 103 0.75 0.15 5.00 5.00 6.12 0.68 104 0.75 0.15 5.00 5.00 6.12 0.68 107 0.75 0.08 5.00 5.00 6.12 0.38 108 0.75 0.10 5.00 5.00 6.12 0.46 109 0.75 0.15 5.00 5.00 6.12 0.68 111 0.75 0.10 5.00 5.00 6.12 0.46 112 0.75 0.08 5.00 5.00 6.12 0.38 113 0.75 0.15 5.00 5.00 6.12 0.68 115 0.75 0.28 5.00 5.00 6.12 1.26 116 0.75 0.28 5.00 5.00 6.12 1.26 119 0.75 0.24 5.00 5.00 6.12 1.10 121 0.75 0.17 5.00 5.00 6.12 0.76 122 0.75 0.17 5.00 5.00 6.12 0.76 125 0.75 0.05 5.00 5.00 6.12 0.23 127 0.75 0.17 5.00 5.00 6.12 0.78 133 0.75 0.50 5.00 5.00 6.12 2.28 134 0.75 0.37 5.00 5.00 6.12 1.69 140 0.95 0.27 5.00 5.00 6.12 1.58 A. Coefficient for Culvert-Outlet Scour, Cohesionless Materials Property α β θ Depth, dS 2.27 0.39 0.06 Width, WS 6.94 0.53 0.08 Length, LS 17.10 0.47 0.10 Volume, VS 127.08 1.24 0.18 B. Coefficient CS for Outlet Above the Bed HS Depth Width Length Volume 0 1.00 1.00 1.00 1.00 1 1.22 1.51 0.73 1.28 2 1.26 1.54 0.73 1.47 4 1.34 1.66 0.73 1.55 HS is the height above bed in pipe diameters, ft. C. Coefficient Ch for Culvert Slope Slope % Depth Width Length Volume 0 1.00 1.00 1.00 1.00 2 1.03 1.28 1.17 1.30 5 1.08 1.28 1.17 1.30 > 7 1.12 1.28 1.17 1.30 COEFFICIENTS FOR SCOUR-HOLE ESTIMATION Figure 34-4A DES: BSC 2/2/10 CHK: KJR 2/8/10 DES: BSC 2/2/10 CHK: KJR 2/8/10 Designed: BSC 3/24/10 Checked: SAS 3/24/10 Appendix A Drive Pipe Hydraulics BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/22/2008 ITEM:CHK. JWA DATE: 12/22/2008 a. Project Data 1-7. b. Studies and Regulatory Requirements 1-4. Design Storm: Allowable Backwater Q100 Roadway Serviceability Q10 Allowable Velocity Q10 1. 2. 3. Minimum slope =0.30% Pipe Length =60 ft Freeboard =0.5 ft 100.00 Bell Outside Diameter Joint Thickness t Allowable Water Depth Allowable Water Elevation (in) (in) (ft) (ft) 26.00 5.50 2.21 102.21 29.00 5.50 2.46 102.46 35.00 5.50 2.96 102.96 42.25 6.13 3.51 103.51 c. Applicable Design Criteria per Indiana Design Manual (IDM) Figure 31-3A (attached) to accommodate 40' class IV drives Step 2: Determine Hydrology Step 4: Data Summary Assumed Upstream Invert = Analysis of the downstream channel was performed using the computer program HY-8. A triangular channel and 4-foot trapezoidal channel were modeled for circular RCP pipes. Modeling revealed that under peak conditions, the flow control was on the inlet, meaning the shape of the tailwater channel has negligible effect on the peak culvert capacity. Therefore, only triangular ditch shapes will be modeled for other circular pipes. To be conservative, the side slopes of the channels have been set to 3:1. Establish minimum culvert parameters: per 30-6.03(01) Step 3 15 18 24 Step 3: Analyze Downstream Channel Reinforced Concrete Circular Pipes Diameter of pipe (in) The purpose of these calculations is to determine guidelines for several commonly used pipe sizes at a range of slopes. These guidelines will be established modeling several different situations under the least efficient hydraulic parameters. Minimum cover requirements and the method for calculating the allowable water depth entering the culvert are shown in Figure 1 (attached.) Allowable water depth calculations are shown below: a. Methodology Once the guidelines are established the designer can compare actual site parameters to the minimal guidelines. If the designer determines the pipe size provided is effective under more restrictive conditions, it can therefore be inferred that the pipe is adequately designed. per 30-3.03(01) N/A Hydraulic Calculations Project specific data is shown elsewhere. Drive Pipe Hydraulic Design DESIGN PROCEDURES PER 31-6.0 Step 1: Site Date & Project Information Project specific data is shown elsewhere. Project specific data is shown elsewhere. 30 P:\Project\081011\Design\08 - Drainage\Drive Pipes\Drive Pipes.xls Tab:PR-D BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/22/2008 ITEM:CHK. JWA DATE: 12/22/2008 N/A Hydraulic Calculations Drive Pipe Hydraulic Design Corrugation Depth Minimum Cover Allowable Water Depth Allowable Water Elevation (in) (ft) (ft) (ft) 0.50 1.00 2.79 102.79 0.50 1.00 3.04 103.04 0.50 1.00 3.54 103.54 0.50 1.00 4.04 104.04 1.0 ft Outside Diameter Pipe Thickness t Allowable Water Depth Allowable Water Elevation (in) (in) (ft) (ft) 18.00 1.50 2.88 102.88 22.00 2.00 3.17 103.17 28.00 2.00 3.67 103.67 36.00 3.00 4.25 104.25 1.0 ft Outside Diameter Pipe Thickness t Allowable Water Depth Allowable Water Elevation (in) (in) (ft) (ft) 15.300 0.150 2.76 102.76 18.701 0.351 3.03 103.03 24.803 0.402 3.53 103.53 31.496 0.748 4.06 104.06 INDOT Deformed Pipe Area Wall Thickness t Allowable Water Depth Allowable Water Elevation (ft2) (in) (ft) (ft) 14 x 23 1.8 2.75 1.90 101.90 19 x 30 3.3 3.25 2.35 102.35 22 x 34 4.1 3.50 2.63 102.63 24 x 38 5.1 3.75 2.81 102.81 27 x 42 6.3 3.75 3.06 103.06 1.0 ft INDOT Deformed Pipe Area Corrugation Depth Allowable Water Depth Allowable Water Elevation (ft2) (in) (ft) (ft) 13 x 17 1.1 0.50 2.63 102.63 15 x 21 1.6 0.50 2.79 102.79 18 x 24 2.2 0.50 3.04 103.04 20 x 28 2.9 0.50 3.21 103.21 24 x 35 4.5 0.50 3.54 103.54 29 x 42 6.5 0.50 3.96 103.96 Circular, PVC Smooth Wall Pipes Trench Cover, Tc = Diameter of pipe (in) 24 30 15 18 Height x Width Trench Cover, Tc = Circular, Corrugated Metal Pipes (H20 Loading) 18 24 Deformed, Reinforced Concrete, Smooth Interior Pipe 15 Diameter of pipe (in) 15 18 24 30 Trench Cover, Tc = (in) Deformed, Corrugated Interior Pipe (H20 Loading) Height x Width (in) 30 Circular, HDPE Dual Wall Pipes Diameter of pipe (in) P:\Project\081011\Design\08 - Drainage\Drive Pipes\Drive Pipes.xls Tab:PR-D D4 165 #/syd HMA Surface Type B on 220 #/syd HMA Intermediate Type B on 880 #/syd HMA Base Type B on Subgrade Treatment IIIA D4 Subgrade Treatment Minimum Freeboard = 0.5’ DRIVE CULVERT SECTION VIEW t*Diameteror Rise, D1.0’ Allowable Water Depth = D + t + Tc + 0.5 * Use joint thickness for circular, concrete pipe and wall thickness for deformed, concrete pipe.Cover (Tc)DES: BSC 12/22/08 CHK: JWA 12/22/08 BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 12/22/2008 ITEM:CHK. JWA DATE: 12/22/2008 N/A Hydraulic Calculations Drive Pipe Hydraulic Design 4. Embedment Depth:0.00 Manning's n: Manning's n: Inlet Type: Improved Inlet Edge: Face Width, Bf:15 in.= 2.50 ft 18 in.= 3.00 ft 24 in.= 4.00 ft 30 in.= 5.00 ft Side Taper:6:1 Face Height, E: Inlet Depression:No Corrugated Metal, Circular pipes: Embedment Depth:0.00 Manning's n: Inlet Type: Improved Inlet Edge: Face Width, Bf:15 in.= 2.50 ft 18 in.= 3.00 ft 24 in.= 4.00 ft 30 in.= 5.00 ft Side Taper:6:1 Face Height, E: Inlet Depression:No Embedment Depth:0.00 Manning's n: Inlet Type: Improved Inlet Edge: Inlet Depression:No Embedment Depth:0.00 Manning's n: Inlet Type: Improved Inlet Edge: Inlet Depression:No 5. Side-Tapered, Circular Channel slope and pipe slope are set to the same value. Manning's n for the channel is set to 0.025 for a straight, uniform, clean channel after weathering per IDM Figure 30-4B Corrugated HDPE*, PVC*, Smooth Interior, Reinforced Concrete & Non-Reinforced Concrete, Circular pipes: per E 715-MPES-01 per E 715-MPES-01 per E 715-MPES-01 per IDM Figure 31-10A always the same as pipe height Step 5: Design Discharge Qd HY-8 modeling parameters: (closest match to end section, see IDM Fig. 31-9A) per E 715-MPES-01 Roadway is programmed at constant elevation equal to the allowable water depth in the incoming roadside ditch, which is calculated above. The surface is set to paved since the culvert is presumably within the R/W, within which drives are paved. The top width is 40-feet in accordance with Class IV drives. 0.012 (all others)per IDM Figure 31-10A per E 715-PCES-01 Beveled Edge Top (15-26°) Wingwall per E 715-PCES-01 0.010 (PVC)per HDS 5 Table 4 Side-Tapered, Circular (closest match to end section, see IDM Fig. 31-9A) per E 715-PCES-01 per E 715-PCES-01 * HDPE and PVC pipes modeled as concrete with different n values in HY-8 due to the limited inlet types for PVC and HDPE. 0.012 per IDM Figure 31-10A (closest match to varying taper rate) 0.024 (closest match to varying taper rate) always the same as pipe height Beveled Edge Top (15-26°) Wingwall 0.024 per IDM Figure 31-10A Conventional (only option in HY-8) Deformed, Reinforced Concrete, Smooth Interior Pipe: Grooved Edge with headwall (Used most efficient choice there is no equivalent to end section) Deformed, Corrugated Interior Pipe: Conventional (only option in HY-8) For the purpose of these calculations, the ditch foreslope and backslope are assumed at least as high as the roadway edge of pavement elevation. Headwall (Used most efficient choice there is no equivalent to end section) Since the constant roadway elevation was set in the model equal to the minimum freeboard, the first discharge at which overtopping occurs represents the drive pipe capacity under minimum cover conditions. Results are shown in the tables on the following pages. P:\Project\081011\Design\08 - Drainage\Drive Pipes\Drive Pipes.xls Tab:PR-D DES:BSC 12/22/08CHK:JWA12/22/08Shape:Diameter:Material: CMP RCNRCP & HDPE*PVC CMP RCNRCP & HDPE*PVC CMP RCP PVCNRCP & HDPE*CMP RC PVCNRCP & HDPE*Cover, Tc:1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%5.68 7.18 8.87 9.20 9.07 11.04 13.70 14.07 18.85 21.62 26.60 26.26 33.00 36.47 43.28 43.460.36%5.72 7.26 8.94 9.27 9.14 11.16 13.81 14.12 18.98 21.84 27.07 26.67 33.05 36.78 43.77 43.880.40%5.75 7.31 8.99 9.32 9.18 11.24 13.88 14.19 19.06 21.99 27.18 26.77 33.28 37.10 44.10 44.240.44%5.77 7.36 9.04 9.37 9.23 11.32 13.95 14.26 19.15 22.14 27.32 26.88 33.45 37.24 44.46 44.540.48%5.82 7.44 9.06 9.49 9.29 11.45 14.06 14.37 19.28 22.36 27.55 27.09 33.74 37.54 44.54 44.950.52%5.84 7.49 9.08 9.54 9.34 11.53 14.07 14.44 19.37 22.52 27.71 27.22 33.88 37.73 44.95 45.230.60%5.91 7.62 9.19 9.67 9.45 11.73 14.18 14.62 19.59 22.67 28.11 27.55 34.26 38.21 45.29 45.860.68%5.98 7.75 9.29 9.79 9.56 11.91 14.34 14.80 19.80 23.01 28.32 27.89 34.62 38.25 44.34 46.480.76%6.04 7.88 9.40 9.91 9.66 12.10 14.50 14.98 20.02 23.53 28.55 28.23 34.95 39.52 48.03 47.040.84%6.10 7.99 9.48 10.00 9.73 12.26 14.63 15.12 20.19 23.43 28.85 28.32 35.23 41.03 48.08 47.800.92%6.17 8.12 9.59 10.12 9.84 12.46 14.78 15.29 20.40 24.37 29.97 28.56 35.59 41.11 48.17 47.751.00%6.23 8.25 9.69 10.24 9.94 12.67 14.94 15.47 20.61 25.01 30.01 28.84 35.94 41.19 48.24 48.501.20%6.39 8.58 9.94 10.53 10.19 13.31 15.31 15.98 21.11 25.12 30.11 29.54 36.79 41.39 48.42 50.711.40%6.54 8.99 10.19 10.80 10.43 13.69 15.68 16.30 21.54 25.24 30.21 30.97 37.53 41.59 48.61 50.891.60%6.70 9.37 10.43 11.07 10.67 13.74 16.04 16.70 22.00 25.35 30.31 31.44 38.33 41.79 48.79 51.061.80%6.85 9.41 10.67 11.34 10.88 13.79 16.40 16.74 22.46 25.46 30.41 31.53 39.13 41.99 48.97 51.242.00%6.98 9.44 10.90 11.53 11.11 13.84 16.75 16.79 22.92 25.57 30.50 31.63 39.86 42.19 49.15 51.412.20%7.12 9.47 11.13 11.56 11.33 13.89 17.10 16.83 23.37 25.68 30.60 31.73 40.62 42.39 49.34 51.592.40%7.26 9.50 11.36 11.59 11.55 13.94 17.43 16.87 30.78 25.79 30.70 31.82 41.39 42.59 49.52 51.772.60%7.39 9.53 11.58 11.61 11.77 13.99 17.57 16.92 30.88 25.90 30.80 31.92 42.15 42.78 49.69 51.942.80%7.52 9.56 11.79 11.64 11.97 14.04 17.61 16.96 30.97 26.00 30.90 32.01 42.92 42.98 49.87 52.11Shape:Diameter:Material: CMP RCPNRCP & HDPE* PVCCMP RCPNRCP & HDPE*PVC CMP RCP PVCNRCP & HDPE*CMP RCP PVCNRCP & HDPE*Cover, Tc:1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ft 1 ft 0 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%5.68 7.18 8.87 9.20 9.07 11.04 13.70 14.0718.8421.6226.79 26.4133.00 36.4744.15 44.450.36%5.72 7.26 8.94 9.27 9.14 11.16 13.81 14.12 18.98 21.8427.02 26.61 33.2236.7844.50 44.760.40%5.75 7.31 8.99 9.32 9.18 11.24 13.88 14.19 19.06 21.9927.17 26.75 33.3737.1044.73 44.970.44%5.77 7.36 9.04 9.37 9.23 11.32 13.95 14.26 19.15 22.14 27.32 26.8833.5237.2444.97 45.180.48%5.82 7.44 9.06 9.49 9.29 11.45 14.06 14.37 19.28 22.3627.56 27.0833.74 37.5444.96 45.490.52%5.84 7.49 9.08 9.54 9.34 11.53 14.07 14.44 19.3722.5127.71 27.2233.8937.7345.16 45.700.60%5.91 7.62 9.19 9.67 9.45 11.73 14.18 14.62 19.59 22.67 28.11 27.55 34.26 38.2145.58 46.220.68%5.98 7.75 9.29 9.79 9.56 11.91 14.34 14.80 19.80 23.01 28.32 27.89 34.62 38.2547.07 46.770.76%6.04 7.88 9.40 9.91 9.66 12.10 14.50 14.98 20.0223.52 28.56 28.2434.95 39.52 48.0347.320.84%6.10 7.99 9.48 10.00 9.73 12.26 14.63 15.12 20.19 23.43 28.85 28.32 35.23 41.0348.09 47.790.92%6.17 8.12 9.59 10.12 9.84 12.46 14.78 15.29 20.40 24.37 29.97 28.56 35.59 41.11 48.17 47.751.00%6.23 8.25 9.69 10.24 9.94 12.67 14.94 15.47 20.61 25.01 30.01 28.84 35.94 41.19 48.24 48.501.20%6.39 8.58 9.94 10.53 10.19 13.31 15.31 15.98 21.11 25.12 30.1129.5336.79 41.39 48.42 50.711.40%6.54 8.99 10.19 10.80 10.43 13.69 15.68 16.30 21.54 25.24 30.21 30.97 37.53 41.59 48.61 50.891.60%6.70 9.37 10.43 11.07 10.67 13.74 16.04 16.70 22.00 25.35 30.31 31.44 38.33 41.79 48.79 51.061.80%6.85 9.41 10.67 11.34 10.88 13.79 16.40 16.74 22.46 25.46 30.41 31.53 39.13 41.99 48.97 51.242.00%6.98 9.44 10.90 11.53 11.11 13.84 16.75 16.79 22.92 25.5730.5131.63 39.86 42.19 49.15 51.412.20%7.12 9.47 11.13 11.56 11.33 13.89 17.10 16.83 23.37 25.68 30.60 31.73 40.62 42.39 49.34 51.592.40%7.26 9.50 11.36 11.59 11.55 13.94 17.43 16.87 30.78 25.79 30.70 31.82 41.39 42.59 49.52 51.772.60%7.39 9.53 11.58 11.61 11.77 13.99 17.57 16.92 30.88 25.90 30.80 31.92 42.15 42.78 49.69 51.942.80%7.52 9.56 11.79 11.64 11.97 14.04 17.61 16.96 30.97 26.00 30.90 32.01 42.92 42.98 49.87 52.11SlopeCircular24-inchCircular15-inchCircular18-inch18-inch24-inchCircularCircularCircularRed text denotes where culverts with trapezoidal ditches perform differently from culverts with "V" ditches.* These discharges are also valid for RC pipe at the same cover.SlopeTRIANGULAR "V" DITCH WITH 3:1 SIDESCircular30-inch4' WIDE TRAPEZOIDAL DITCH WITH 3:1 SIDESCircular30-inch15-inch DES: BSC 12/22/08CHK: JWA 12/22/08Shape:Size h x w (in.)14 x 23 19 x 3022 x 3424 x 38 27 x 42 13 x 17 15 x 21 18 x 2420 x 2824 x 35 29 x 42Cover, Tc:0 ft 0 ft 0 ft 0 ft 0 ft 1 ft 1 ft 1 ft 1 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%9.28 18.86 26.59 32.95 42.48 5.29 8.29 12.37 16.73 26.75 40.960.36%9.47 19.24 27.03 30.74 43.45 5.35 8.38 12.52 16.92 27.10 41.520.40%9.62 19.56 26.40 31.04 44.01 5.41 8.44 12.61 17.08 27.47 41.910.44%9.76 19.83 26.90 31.20 44.22 5.44 8.51 12.71 17.20 27.69 42.350.48%9.94 19.95 27.67 31.67 44.49 5.48 8.59 12.81 17.35 27.98 42.780.52%10.04 20.30 27.12 31.27 44.49 5.50 8.65 12.88 17.45 28.17 43.110.60%10.49 20.56 28.04 34.94 44.51 5.57 8.76 13.06 17.72 28.60 43.880.68%10.76 20.56 28.04 34.95 44.52 5.64 8.86 13.20 17.96 29.06 44.590.76%10.90 20.57 28.06 34.96 44.54 5.70 8.96 13.34 18.15 29.42 45.270.84%10.91 20.57 28.07 34.98 44.55 5.75 9.05 13.46 18.30 29.73 45.980.92%10.91 20.58 28.08 34.98 44.57 5.82 9.15 13.60 18.49 30.03 46.121.00%10.91 20.59 28.08 35.00 44.57 5.88 9.24 13.73 18.68 30.36 46.721.20%10.92 20.60 28.10 35.02 44.62 6.02 9.46 14.07 19.12 31.19 48.441.40%10.92 20.61 28.12 35.05 44.66 6.17 9.69 14.41 19.57 32.05 49.671.60%10.93 20.63 28.14 35.08 44.68 6.31 9.91 14.74 20.02 32.75 50.881.80%10.93 20.64 28.16 35.10 44.72 6.45 10.13 15.03 20.45 33.41 52.112.00%10.94 20.65 28.18 35.13 44.75 6.59 10.34 15.34 20.84 34.12 52.292.20%10.95 20.67 28.20 35.16 44.79 6.73 10.55 15.65 21.26 34.86 52.322.40%10.95 20.68 28.22 35.18 44.82 6.86 10.77 15.96 21.68 34.95 52.352.60%10.96 20.70 28.24 35.21 44.87 6.99 10.98 16.27 22.04 34.96 52.372.80%10.97 20.71 28.26 35.23 44.89 7.12 11.15 16.52 22.44 34.98 52.40Shape:Size h x w (in.)14 x 23 19 x 3022 x 3424 x 38 27 x 42 13 x 17 15 x 21 18 x 2420 x 2824 x 35 29 x 42Cover, Tc:0 ft 0 ft 0 ft 0 ft 0 ft 1 ft 1 ft 1 ft 1 ft 1 ft 1 ftCapacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity(cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)0.32%9.67 19.61 27.59 34.34 44.46 5.37 8.44 12.57 17.11 28.05 44.300.36%9.81 19.88 27.98 34.74 44.47 5.41 8.50 12.64 17.23 28.24 44.610.40%9.88 20.07 28.02 34.92 44.48 5.43 8.53 12.70 17.31 28.37 44.840.44%9.97 20.27 28.02 34.92 44.47 5.46 8.57 12.76 17.39 28.49 45.040.48%10.10 20.54 28.03 34.9344.495.49 8.63 12.85 17.51 28.68 45.380.52%10.19 20.55 28.03 34.93 44.50 5.52 8.68 12.91 17.59 28.80 45.570.60%10.4220.56 28.04 34.94 44.515.58 8.78 13.05 17.79 29.11 46.020.68%10.6620.5628.05 34.96 44.535.648.8813.2017.95 29.43 46.500.76%10.90 20.57 28.0634.97 44.535.708.9713.34 18.1529.73 46.980.84%10.9020.57 28.07 34.98 44.55 5.75 9.05 13.46 18.3029.98 47.340.92%10.91 20.58 28.0834.99 44.56 5.819.15 13.60 18.4930.29 47.761.00%10.91 20.59 28.0834.99 44.58 5.879.24 13.73 18.6830.60 47.901.20%10.92 20.60 28.1035.03 44.616.02 9.46 14.07 19.1231.27 49.351.40%10.92 20.61 28.12 35.0544.656.17 9.69 14.41 19.5731.98 50.461.60%10.93 20.63 28.14 35.08 44.68 6.31 9.91 14.74 20.0232.69 51.611.80%10.93 20.64 28.16 35.10 44.72 6.45 10.13 15.03 20.45 33.4152.262.00%10.94 20.65 28.18 35.13 44.75 6.59 10.34 15.34 20.84 34.12 52.292.20%10.95 20.67 28.20 35.16 44.79 6.73 10.55 15.65 21.26 34.86 52.322.40%10.95 20.68 28.22 35.18 44.82 6.86 10.77 15.96 21.68 34.95 52.352.60%10.96 20.70 28.24 35.21 44.87 6.99 10.98 16.27 22.04 34.9652.382.80%10.97 20.71 28.26 35.23 44.89 7.12 11.15 16.52 22.44 34.98 52.40Red text denotes where culverts with trapezoidal ditches perform differently from culverts with "V" ditches.SlopeSlopeTRIANGULAR "V" DITCH WITH 3:1 SIDES4' WIDE TRAPEZOIDAL DITCH WITH 3:1 SIDESDeformed, Reinforced Concrete, Smooth Interior PipeDeformed, Reinforced Concrete, Smooth Interior PipeDeformed, Corrugated Interior PipeDeformed, Corrugated Interior Pipe DES: BSC 12/22/08 CHK: JWA 12/22/08 33 Table 4--Manning’s n Values for Culverts.* Type of Culvert Roughness or Corrugation Manning's n Reference Concrete Pipe Smooth 0.010-0.011 (64, 66, 67, 70) Concrete Boxes Smooth 0.012-0.015 (23) Spiral Rib Metal Pipe Smooth 0.012-0.013 (65, 69) Corrugated Metal Pipe, Pipe-Arch and Box (Annular and Helical corrugations -- see Figure B-3, Manning's n varies with barrel size) 68 by 13 mm 2-2/3 by 1/2 in Annular 68 by 13 mm 2-2/3 by 1/2 in Helical 150 by 25 mm 6 by 1 in Helical 125 by 25 mm 5 by 1 in 75 by 25 mm 3 by 1 in 150 by 50 mm 6 by 2 in Structural Plate 230 by 64 mm 9 by 2-1/2 in Structural Plate 0.022-0.027 0.011-0.023 0.022-0.025 0.025-0.026 0.027-0.028 0.033-0.035 0.033-0.037 (25) (25, 68) (25) (25) (25) (25) (25) Corrugated Polyethylene Smooth 0.009-0.015 (71, 72) Corrugated Polyethylene Corrugated 0.018-0.025 (73, 74) Polyvinyl chloride (PVC) Smooth 0.009-0.011 (75, 76) *NOTE: The Manning's n values indicated in this table were obtained in the laboratory and are supported by the provided reference. Actual field values for culverts may vary depending on the effect of abrasion, corrosion, deflection, and joint conditions. DES: BSC 12/22/08 CHK: JWA 12/22/08 Type of Channel and Description Minimum Normal Maximum EXCAVATED OR DREDGED 1. Earth, Straight and Uniform 0.016 0.018 0.020 a. Clean, recently completed 0.018 0.022 0.025 b. Clean, after weathering 0.022 0.025 0.030 c. Gravel, uniform section, clean 0.022 0.027 0.033 2. Earth, Winding and Sluggish a. No vegetation 0.023 0.025 0.030 b. Grass, some weeds 0.025 0.030 0.033 c. Dense weeds or aquatic plants in deep channel 0.030 0.035 0.040 d. Earth bottom and rubble sides 0.025 0.030 0.035 e. Stony bottom and weedy sides 0.025 0.035 0.045 f. Cobble bottom and clean sides 0.030 0.040 0.050 3. Dragline, Excavated or Dredged a. No vegetation 0.025 0.028 0.033 b. Light brush on banks 0.035 0.050 0.060 4. Rock Cut a. Smooth and uniform 0.025 0.035 0.040 b. Jagged and irregular 0.035 0.040 0.050 5. Channel Not Maintained, Weeds and Brush Uncut a. Dense weeds, high as flow depth 0.050 0.080 0.120 b. Clean bottom, brush on sides 0.040 0.050 0.080 c. Clean bottom, highest stage of flow 0.045 0.070 0.110 d. Dense brush, high stage 0.080 0.100 0.140 NATURAL STREAM 1. Minor Stream (top width at flood stage < 100 ft) a. Stream on plain (1) Clean, straight, full stage, no rifts or deep pools 0.025 0.030 0.033 (2) Same as above, but more stones or weeds 0.030 0.035 0.040 (3) Clean, winding, some pools or shoals 0.033 0.040 0.045 (4) Same as above, but some weeds or stones 0.035 0.045 0.050 (5) Same as above, lower stages, more ineffective slopes and sections 0.040 0.048 0.055 (6) Same as (4), but more stones 0.045 0.050 0.060 (7) Sluggish reaches, weedy, deep pools 0.050 0.070 0.080 (8) Very weedy reaches, deep pools, or floodway with heavy stand of timber and underbrush 0.075 0.100 0.150 DES: BSC 12/22/08 CHK: JWA 12/22/08 Functional Classification Allowable Backwater Roadway Serviceability Allowable Velocity Freeway Q100 Q100 Q50 Non-Freeway ≥ 4 Lanes Q100 Q100 Q50 Two-Lane Facility AADT ≥ 3000 Q100 Q100 Q50 3000 > AADT ≥ 1000 Q100 Q25 Q25 AADT < 1000 Q100 Q10 Q10 Drive Q100 Q10 Q10 Note: The design-storm frequency for a culvert-extension structure is identical to that for a new culvert structure. Traffic volume is for a 20-year projection. DESIGN-STORM FREQUENCY, CULVERT Figure 31-3A DES: BSC 12/22/08 CHK: JWA 12/22/08 Type of Conduit Wall Description Manning’s n Concrete Pipe Smooth Interior 0.012 Concrete Box Smooth Walls 0.012 - 0.015 Corrugated Metal Pipe or Box, Annular or Helical Pipe (see HDS #5) 2.75 in. x 0.5 in. corrugations 6 in. x 1 in. corrugations 5 in. x 1 in. corrugations 3 in. x 1 in. corrugations 6 in. x 2 in. structural plate 9.25 in. x 2.5 in. structural plate 0.024 0.024 0.024 0.024 0.033 - 0.035 0.033 - 0.037 Thermoplastic Pipe Smooth Interior 0.012 Note 1: The value indicated in this table is the recommended Manning’s n design value. The actual field value for an older, existing pipeline may vary depending on the effects of abrasion, corrosion, deflection and joint conditions. A concrete pipe with poor joints and deteriorated walls may have an n value of 0.014 to 0.018. A corrugated metal pipe with joint and wall problems may also have a higher n value, and may experience shape changes which can adversely affect the general hydraulic characteristics of the culvert. Note 2: For further information concerning Manning’s n value for selected conduits, consult Hydraulic Design of Highway Culverts, Federal Highway Administration, HDS #5, p. 163. RECOMMENDED MANNING’S n VALUE Figure 31-10A DES: BSC 12/22/08 CHK: JWA 12/22/08 DESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDES: BSC 12/22/08 CHK: JWA 12/22/08 DESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDESIGN STANDARDS ENGINEERCHIEF HIGHWAY ENGINEERDATEDESIGN STANDARDS ENGINEERDATEDES: BSC 12/22/08 CHK: JWA 12/22/08 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 3a Culvert Box Culvert Flow 91.88 cfs Culvert Data Culvert Width (including multiple barrels) 7.0 ft Culvert Height 4.0 ft Outlet Depth 1.73 ft Outlet Velocity 7.58 ft/s Froude Number 1.01 Tailwater Depth 1.04 ft Tailwater Velocity 2.57 ft/s Tailwater Slope (SO)0.0031 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 140.70 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 47.938 ft Width 22.162 ft Depth 5.646 ft Volume 2926.241 ft^3 DS at .4(LS)19.175 ft Tailwater Depth (TW)1.044 ft Velocity with TW and WS 3.340 ft/s DES: BSC 2/2/10 CHK: KJR 2/8/10 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 3A INDOT Q100 Culvert Precast Box Flow 77.56 cfs Culvert Data Culvert Width (including multiple barrels) 9.0 ft Culvert Height 3.0 ft Outlet Depth 1.27 ft Outlet Velocity 6.77 ft/s Froude Number 1.06 Tailwater Depth 1.64 ft Tailwater Velocity 0.84 ft/s Tailwater Slope (SO)0.0030 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 133.90 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 43.325 ft Width 19.567 ft Depth 5.281 ft Volume 2328.519 ft^3 DS at .4(LS)17.330 ft Tailwater Depth (TW)1.637 ft Velocity with TW and WS 1.814 ft/s DES: BSC 2/2/10 CHK: KJR 2/8/10 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 1 INDOT Culvert Circular Flow 6.67 cfs Culvert Data Culvert Width (including multiple barrels) 3.0 ft Culvert Height 3.0 ft Outlet Depth 0.81 ft Outlet Velocity 4.32 ft/s Froude Number 0.84 Tailwater Depth 0.64 ft Tailwater Velocity 1.60 ft/s Tailwater Slope (SO)0.0030 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 30.00 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 12.942 ft Width 5.636 ft Depth 1.830 ft Volume 89.606 ft^3 DS at .4(LS)5.177 ft Tailwater Depth (TW)0.638 ft Velocity with TW and WS 1.277 ft/s DES: BSC 2/2/10 CHK: KJR 2/8/10 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 2a Culvert Deformed Flow 104.59 cfs Culvert Data Culvert Width (including multiple barrels) 8.2 ft Culvert Height 5.3 ft Outlet Depth 2.21 ft Outlet Velocity 6.70 ft/s Froude Number 0.79 Tailwater Depth 2.21 ft Tailwater Velocity 1.22 ft/s Tailwater Slope (SO)0.0020 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 115.80 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 46.573 ft Width 20.510 ft Depth 5.928 ft Volume 3187.227 ft^3 DS at .4(LS)18.629 ft Tailwater Depth (TW)2.208 ft Velocity with TW and WS 1.614 ft/s DES: BSC 2/2/10 CHK: KJR 2/8/10 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 2a INDOT Q100 Culvert Deformed Flow 23.00 cfs Culvert Data Culvert Width (including multiple barrels) 4.1 ft Culvert Height 2.7 ft Outlet Depth 1.15 ft Outlet Velocity 5.48 ft/s Froude Number 0.90 Tailwater Depth 0.46 ft Tailwater Velocity 1.56 ft/s Tailwater Slope (SO)0.0031 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 30.00 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 22.461 ft Width 10.264 ft Depth 2.978 ft Volume 408.697 ft^3 DS at .4(LS)8.984 ft Tailwater Depth (TW)0.463 ft Velocity with TW and WS 4.097 ft/s DES: BSC 2/2/10 CHK: KJR 2/8/10 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 3 INDOT Q50 Culvert Box Culvert Flow 84.74 cfs Culvert Data Culvert Width (including multiple barrels) 7.0 ft Culvert Height 4.0 ft Outlet Depth 2.47 ft Outlet Velocity 4.90 ft/s Froude Number 0.55 Tailwater Depth 2.47 ft Tailwater Velocity 0.00 ft/s Tailwater Slope (SO)0.0030 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 140.20 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 44.855 ft Width 20.147 ft Depth 5.491 ft Volume 2603.130 ft^3 DS at .4(LS)17.942 ft Tailwater Depth (TW)2.470 ft Velocity with TW and WS 1.143 ft/s DES: BSC 2/2/10 CHK: KJR 2/8/10 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 2a INDOT Q100 Culvert Deformed Flow 28.91 cfs Culvert Data Culvert Width (including multiple barrels) 4.4 ft Culvert Height 2.8 ft Outlet Depth 1.27 ft Outlet Velocity 5.75 ft/s Froude Number 0.90 Tailwater Depth 1.16 ft Tailwater Velocity 0.56 ft/s Tailwater Slope (SO)0.0030 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 129.30 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 28.659 ft Width 12.786 ft Depth 3.559 ft Volume 701.957 ft^3 DS at .4(LS)11.464 ft Tailwater Depth (TW)1.155 ft Velocity with TW and WS 1.438 ft/s DES: BSC 2/2/10 CHK: KJR 2/8/10 HY-8 Energy Dissipation Report Scour Hole Geometry Parameter Value Units Select Culvert and Flow Crossing Trial 3 INDOT Q100 Culvert Box Culvert Flow 67.88 cfs Culvert Data Culvert Width (including multiple barrels) 9.0 ft Culvert Height 3.0 ft Outlet Depth 1.82 ft Outlet Velocity 4.14 ft/s Froude Number 0.54 Tailwater Depth 1.82 ft Tailwater Velocity 3.30 ft/s Tailwater Slope (SO)0.0040 Scour Data Time to Peak Note:if Time to Peak is unknown, enter 30 min Time to Peak 51.40 min Cohesion Noncohesive D16 Value 8.00 mm D84 Value 18.00 mm Tailwater Flow Depth after Culvert Outlet Normal Depth Results Assumptions Soil Sigma 1.50 Scour Hole Dimensions Length 36.978 ft Width 16.888 ft Depth 4.734 ft Volume 1661.275 ft^3 DS at .4(LS)14.791 ft Tailwater Depth (TW)1.822 ft Velocity with TW and WS 1.541 ft/s BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 = 131.77 cfs = 107.41 cfs = 60.66 cfs =10 ft =4 :1 =4 :1 =0.0030 ft/ft Calculate Actual Water Depth =d = = =A/PW =D50 =0.25 ft per 904.04f dwt PW RnQdVd ft ft ft ft cfs ft/s Q100 2.674 31.39 32.05 1.73 0.049 131.83 2.38 Q50 2.437 29.50 30.09 1.60 0.050 107.48 2.23 Q10 1.869 24.96 25.42 1.29 0.052 60.71 1.86 = = 0.245 rad = 14.0 ° = 40.7 ° = 0.710 rad 0.93 a. = 0.009 ft =0.11 in = 0.008 ft =0.10 in = 0.005 ft =0.06 in b. Median riprap particle size, D 50 = Step 7: Determine Riprap Size from Equation 38-6.1 Per Equation 38-6.2, K1 (d0.5)·(K1)1.5 Evaluate correction factor C 0.001Vd 3 At Q10, D50 At Q50, D50 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection Backslope, Zb DRAINAGE DITCH FROM RETENTION BASIN TO CULVERT 181+60 "PR-2" (Reach 3R) DESIGN PROCEDURES PER 38-6.01(08) Maximum INDOT Discharge in Channel, Q100 Bottom Width, wb From Figure 38-6C, Riprap Angle of Repose, Φ Cross Sectional Flow Area, A 2 Hydraulic Radius, R wb + Zf·d +Zb·d =(wb + wt)·d (d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb Step 1 See Culvert Hydraulic Report Step 3: Develop Design Cross Sections Channel Geometry 32.68 Water Depth Top Width, wt 55.34 At Q100, D50 Step 6: Compute Bank Angle Correction Factor, K1 (1-sin2θ/sin2Φ)0.5 Bank Angle with Horizontal, θ 48.13 Determine size assuming no corrections Foreslope, Zf 0.319·d1/6 2.25 + 5.23·log(d/D50) Therefore, K1 =Where 1.5 ≤ d/D50 ≤ 185; n Wetted Perimeter, PW Assumed Riprap Type Uniform B Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types Step 2: Design Discharges Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated. Maximum INDOT Discharge in Channel, Q50 Reach 3R in HydroCAD model Reach 3R in HydroCAD model Maximum INDOT Discharge in Channel, Q10 Reach 3R in HydroCAD model Steps 4 & 5: Compute Design Water Surface, Velocity and Depth Slope, S Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd A sft P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection C=Csg·Csf where Csg =2.12/(Ss-1)1.5 =2.65 = 1.00 Csf =(SF/1.2)1.5 where =2.00 = 2.15 = 2.15 = 0.019 ft =0.23 in = 0.017 ft =0.21 in = 0.011 ft =0.13 in = D100 = 0.67 ft per 904.04f D50 = 0.25 ft per 904.04f 1.=8 in =6 in 2. 12 in 12 in 3.No Use: 12 in 4.No Use: 12 in =10 ft =15 ft Compute Thickness per 38-6.01(04) At least D100 Final Riprap Type where(davg)0.5·K1 1.5 Uniform B Gradation per 904.04f Step 8: was already solved iteratively above Step 9: Determine Wave Height Not applicable At Q100, D50 At Q50, D50 Corrected median riprap particle size, D50 = Therefore, C Therefore, Csf Stability Factor, SF At least 2 x D50 At least: Placed Underwater? Maximum of criteria 1 & 2: Exposed to floating debris, ice, waves, wind or bedforms? Use 12 in. of Uniform B riprap Step 11: Determine Longitudinal Extent of Protection Per the previous computations in the culvert report, only the bends need protected. Protection extended upstream and downstream of bends per 38-5.07. 0.001C·Va 3 for riprap per IDM 38-6.01(02) At Q10, D50 Step 10: Select Final Riprap Size, Gradation and Thickness Therefore, Csg Ss per IDM Figure 38-6F for sharp bends Upstream protection = 1· wb Downstream protection = 1.5· wb P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection C=1.5 Va =Vd = 2.38 ft/s T=wt = 31.39 ft g = 32.2 ft/s2 Rc =20.00 ft = 0.41 ft =V2/2g = 0.09 ft =0.50 ft 0.50 ft =3.59 ft Use: 3.75 ft = 104.22 cfs = 84.74 cfs = 47.52 cfs =8 ft =4 :1 =4 :1 =0.0030 ft/ft Calculate Actual Water Depth =d = = =A/PW =D50 =0.67 ft per 904.04f Step 12: Determine Vertical Extent of Protection Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05 Protect Channel Depth including Freeboard for Q100 Therefore, freeboard = =C·Va 2·T whereg·Rc Superelevation of water surface, Z per IDM Section 38-5.05 Step 13: Determine Filter Layer Therefore, Z Determine Freeboard per IDM 30-3.03(01) Velocity Head, Hv Minimum Freeboard DRAINAGE DITCH FROM CULVERT 21+41 "S-3-A" TO CULVERT 181+60 "PR-2" (Reach 4R) DESIGN PROCEDURES PER 38-6.01(08) Geotextile will be used Step 14: Design edge flanks and toe Upstream and downstream flanks per Figure 38-6M will be constructed at the channel outlet. Toe treatment is not required since the entire channel is to be lined. Determine Channel Depth Channel Depth, h d + Z + freeboard = Step 1 See Culvert Hydraulic Report Step 2: Design Discharges Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated. Maximum INDOT Discharge in Channel, Q100 Reach 4R in HydroCAD model Maximum INDOT Discharge in Channel, Q50 Reach 4R in HydroCAD model Maximum INDOT Discharge in Channel, Q10 Reach 4R in HydroCAD model Step 3: Develop Design Cross Sections Channel Geometry Bottom Width, wb Foreslope, Zf Backslope, Zb Slope, S Steps 4 & 5: Compute Design Water Surface, Velocity and Depth Water Depth Top Width, wt wb + Zf·d +Zb·d Cross Sectional Flow Area, A = (wb + wt)·d 2 Wetted Perimeter, PW (d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb Hydraulic Radius, R Assumed Riprap Type Revetment P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection dwt PW RnQdVd ft ft ft ft cfs ft/s Q100 2.807 32.46 33.15 1.80 0.069 104.28 1.75 Q50 2.569 30.56 31.19 1.67 0.070 84.80 1.63 Q10 2.001 26.00 26.50 1.36 0.076 47.57 1.32 = = 0.245 rad = 14.0 ° = 40.9 ° = 0.714 rad 0.93 a. = 0.004 ft =0.05 in = 0.003 ft =0.04 in = 0.002 ft =0.02 in b. C=Csg·Csf where Csg =2.12/(Ss-1)1.5 =2.65 = 1.00 Csf =(SF/1.2)1.5 where =2.00 = 2.15 = 2.15 = 0.009 ft =0.10 in = 0.006 ft =0.08 in = 0.004 ft =0.05 in Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types Where 1.5 ≤ d/D50 ≤ 185; n =0.319·d1/6 2.25 + 5.23·log(d/D50) Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd A sft 59.60 52.11 36.01 Step 6: Compute Bank Angle Correction Factor, K1 Per Equation 38-6.2, K1 (1-sin2θ/sin2Φ)0.5 Bank Angle with Horizontal, θ From Figure 38-6C, Riprap Angle of Repose, Φ Therefore, K1 Step 7: Determine Riprap Size from Equation 38-6.1 Determine size assuming no corrections Median riprap particle size, D 50 = 0.001Vd 3 (d0.5)·(K1)1.5 At Q100, D50 At Q50, D50 At Q10, D50 Evaluate correction factor C Ss for riprap per IDM 38-6.01(02) Therefore, Csg Stability Factor, SF per IDM Figure 38-6F for sharp bends Therefore, Csf Therefore, C Corrected median riprap particle size, D50 =0.001C·Va 3 where(davg)0.5·K1 1.5 At Q100, D50 At Q50, D50 At Q10, D50 Step 8: was already solved iteratively above Step 9: Determine Wave Height Not applicable P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection = D100 = 1.50 ft per 904.04f D50 = 0.67 ft per 904.04f 1.=18 in =16 in 2. 12 in 18 in 3.No Use: 18 in 4.No Use: 18 in =8 ft =12 ft C=1.5 Va =Vd = 1.75 ft/s T=wt = 32.46 ft g = 32.2 ft/s2 Rc =45.00 ft = 0.10 ft =V2/2g = 0.05 ft =0.50 ft 0.50 ft =3.41 ft Use: 3.50 ft Step 10: Select Final Riprap Size, Gradation and Thickness Final Riprap Type Revetment Gradation per 904.04f Compute Thickness per 38-6.01(04) At least D100 At least 2 x D50 At least: Maximum of criteria 1 & 2: Placed Underwater? Exposed to floating debris, ice, waves, wind or bedforms? Use 18 in. of Revetment riprap Step 11: Determine Longitudinal Extent of Protection Upstream and downstream flanks per Figure 38-6M will be constructed. Toe treatment is not required since the entire channel is to be lined. Upstream protection = 1· wb Downstream protection = 1.5· wb Step 12: Determine Vertical Extent of Protection Protect Channel Depth including Freeboard for Q100 Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05 Superelevation of water surface, Z = C·Va 2·T whereg·Rc per IDM Section 38-5.05 Therefore, Z Determine Freeboard per IDM 30-3.03(01) Velocity Head, Hv Minimum Freeboard Therefore, freeboard = Determine Channel Depth Channel Depth, h d + Z + freeboard = Step 13: Determine Filter Layer Geotextile will be used Step 14: Design edge flanks and toe Upstream and downstream flanks per Figure 38-6M will be constructed at the channel outlet. Toe treatment is not required since the entire channel is to be lined. P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection = 28.59 cfs = 23.37 cfs = 13.08 cfs =0 ft =4 :1 =4.5 :1 =0.0030 ft/ft Calculate Actual Water Depth =d = = =A/PW =D50 =0.25 ft per 904.04f dwt PW RnQdVd ft ft ft ft cfs ft/s Q100 1.314 20.52 20.84 0.96 0.055 28.65 1.43 Q50 1.193 19.54 19.83 0.89 0.057 23.41 1.33 Q10 0.904 17.23 17.45 0.71 0.061 13.14 1.07 = = 0.245 rad = 14.0 ° = 40.7 ° = 0.710 rad 0.93 a. = 0.003 ft =0.04 in = 0.002 ft =0.02 in = 0.001 ft =0.01 in b. At Q100, D50 At Q50, D50 At Q10, D50 Evaluate correction factor C Median riprap particle size, D 50 =0.001Vd 3 (d0.5)·(K1)1.5 From Figure 38-6C, Riprap Angle of Repose, Φ Therefore, K1 Step 7: Determine Riprap Size from Equation 38-6.1 Determine size assuming no corrections Step 6: Compute Bank Angle Correction Factor, K1 Per Equation 38-6.2, K1 (1-sin2θ/sin2Φ)0.5 Bank Angle with Horizontal, θ 20.06 17.61 12.31 Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd A sft Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types Where 1.5 ≤ d/D50 ≤ 185; n =0.319·d1/6 2.25 + 5.23·log(d/D50) Wetted Perimeter, PW (d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb Hydraulic Radius, R Assumed Riprap Type Uniform B Water Depth Top Width, wt wb + Zf·d +Zb·d Cross Sectional Flow Area, A = (wb + wt)·d 2 Backslope, Zb Slope, S Steps 4 & 5: Compute Design Water Surface, Velocity and Depth Step 3: Develop Design Cross Sections Channel Geometry Bottom Width, wb Foreslope, Zf Reach 4R in HydroCAD model Maximum INDOT Discharge in Channel, Q50 Reach 4R in HydroCAD model Maximum INDOT Discharge in Channel, Q10 Reach 4R in HydroCAD model ROADSIDE DITCH FROM 178+05 "A" TO CULVERT AT 18+60 "S-3-A" (Reach 6R) DESIGN PROCEDURES PER 38-6.01(08) Step 1 See Culvert Hydraulic Report Step 2: Design Discharges Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated. Maximum INDOT Discharge in Channel, Q100 P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection C=Csg·Csf where Csg =2.12/(Ss-1)1.5 =2.65 = 1.00 Csf =(SF/1.2)1.5 where =2.00 = 2.15 = 2.15 = 0.006 ft =0.08 in = 0.004 ft =0.05 in = 0.002 ft =0.03 in = D100 = 0.67 ft per 904.04f D50 = 0.25 ft per 904.04f 1.=8 in =6 in 2. 12 in 12 in 3.No Use: 12 in 4.No Use: 12 in =0 ft =0 ft Step 11: Determine Longitudinal Extent of Protection Per the previous computations in the culvert report, only the sharp bends need protected. Protection extended upstream and downstream of bends per 38-5.07. Upstream protection = 1· wb Downstream protection = 1.5· wb Maximum of criteria 1 & 2: Placed Underwater? Exposed to floating debris, ice, waves, wind or bedforms? Use 12 in. of Uniform B riprap Compute Thickness per 38-6.01(04) At least D100 At least 2 x D50 At least: Step 10: Select Final Riprap Size, Gradation and Thickness Final Riprap Type Uniform B Gradation per 904.04f At Q50, D50 At Q10, D50 Step 8: was already solved iteratively above Step 9: Determine Wave Height Not applicable 0.001C·Va 3 where(davg)0.5·K1 1.5 At Q100, D50 Therefore, Csf Therefore, C Corrected median riprap particle size, D50 = Ss for riprap per IDM 38-6.01(02) Therefore, Csg Stability Factor, SF per IDM Figure 38-6F for sharp bends P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection C=1.5 Va =Vd = 1.43 ft/s T=wt = 20.52 ft g = 32.2 ft/s2 Rc =20.00 ft = 0.10 ft =V2/2g = 0.03 ft =0.50 ft 0.50 ft =1.91 ft Use: 2.00 ft = 83.69 cfs = 67.88 cfs = 37.67 cfs =4 ft =4 :1 =4 :1 =0.0040 ft/ft Calculate Actual Water Depth =d = = =A/PW =D50 =0.25 ft per 904.04f Step 13: Determine Filter Layer Geotextile will be used Step 14: Design edge flanks and toe Upstream and downstream flanks per Figure 38-6M will be constructed. Toe treatment is not required since the entire channel is to be lined. Minimum Freeboard Therefore, freeboard = Determine Channel Depth Channel Depth, h d + Z + freeboard = per IDM Section 38-5.05 Therefore, Z Determine Freeboard per IDM 30-3.03(01) Velocity Head, Hv Step 12: Determine Vertical Extent of Protection Protect Channel Depth including Freeboard for Q100 Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05 Superelevation of water surface, Z = C·Va 2·T whereg·Rc Wetted Perimeter, PW (d2 + (Zb·d)2)0.5 + (d2 + (Zf·d)2)0.5 + wb Hydraulic Radius, R Assumed Riprap Type Uniform B Cross Sectional Flow Area, A = (wb + wt)·d 2 Steps 4 & 5: Compute Design Water Surface, Velocity and Depth Water Depth Top Width, wt wb + Zf·d +Zb·d Bottom Width, wb Foreslope, Zf Backslope, Zb Slope, S Maximum INDOT Discharge in Channel, Q10 Reach 8R in HydroCAD model Step 3: Develop Design Cross Sections Channel Geometry Maximum INDOT Discharge in Channel, Q100 Reach 8R in HydroCAD model Maximum INDOT Discharge in Channel, Q50 Reach 8R in HydroCAD model DESIGN PROCEDURES PER 38-6.01(08) Step 1 See Culvert Hydraulic Report Step 2: Design Discharges Per 38-5.02, several design discharges should be evaluated to ensure the protection is adequate. Q10, Q50 and Q100 will be evaluated. DITCH FROM CULVERT AT 205+60 "PR-A" TO CULVERT AT 70+21 "PR-FRN2" (Reach 8R) P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection dwt PW RnQdVd ft ft ft ft cfs ft/s Q100 2.174 27.39 27.93 1.46 0.051 83.98 2.07 Q50 1.974 25.79 26.28 1.34 0.051 67.93 1.92 Q10 1.497 21.98 22.34 1.07 0.054 37.73 1.58 = = 0.245 rad = 14.0 ° = 40.7 ° = 0.710 rad 0.93 a. = 0.007 ft =0.08 in = 0.006 ft =0.07 in = 0.004 ft =0.05 in b. C=Csg·Csf where Csg =2.12/(Ss-1)1.5 =2.65 = 1.00 Csf =(SF/1.2)1.5 where =2.00 = 2.15 = 2.15 = 0.015 ft =0.18 in = 0.013 ft =0.15 in = 0.009 ft =0.10 in At Q50, D50 At Q10, D50 Step 8: was already solved iteratively above Step 9: Determine Wave Height Not applicable 0.001C·Va 3 where(davg)0.5·K1 1.5 At Q100, D50 Therefore, Csf Therefore, C Corrected median riprap particle size, D50 = Ss for riprap per IDM 38-6.01(02) Therefore, Csg Stability Factor, SF per IDM Figure 38-6F for sharp bends At Q100, D50 At Q50, D50 At Q10, D50 Evaluate correction factor C Median riprap particle size, D 50 = 0.001Vd 3 (d0.5)·(K1)1.5 From Figure 38-6C, Riprap Angle of Repose, Φ Therefore, K1 Step 7: Determine Riprap Size from Equation 38-6.1 Determine size assuming no corrections Step 6: Compute Bank Angle Correction Factor, K1 Per Equation 38-6.2, K1 (1-sin2θ/sin2Φ)0.5 Bank Angle with Horizontal, θ 40.64 35.33 23.94 Per Equation 30-4.7, solve iteratively for Ditch Capacity, Qd A sft Compute Manning's n value from HEC 15 Equation 6.1 since Figure 30-6D applies to only two riprap types Where 1.5 ≤ d/D50 ≤ 185; n =0.319·d1/6 2.25 + 5.23·log(d/D50) P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection BEAM, LONGEST and NEFF, L.L.C. JOB:DES. BSC DATE: 02/09/10 ITEM:CHK. KJR DATE: 02/09/10 071087 W. 146th Street, Hamilton County Bank Protection Bank Protection = D100 = 0.67 ft per 904.04f D50 = 0.25 ft per 904.04f 1.=8 in =6 in 2. 12 in 12 in 3.No Use: 12 in 4.No Use: 12 in C=1.5 Va =Vd = 2.07 ft/s T=wt = 27.39 ft g = 32.2 ft/s2 Rc =50.00 ft = 0.11 ft =V2/2g = 0.07 ft =0.50 ft 0.50 ft =2.78 ft Use: 3.00 ft Step 13: Determine Filter Layer Geotextile will be used Step 14: Design edge flanks and toe Upstream and downstream flanks per Figure 38-6M will be constructed. Toe treatment is not required since the entire channel is to be lined. Minimum Freeboard Therefore, freeboard = Determine Channel Depth Channel Depth, h d + Z + freeboard = per IDM Section 38-5.05 Therefore, Z Determine Freeboard per IDM 30-3.03(01) Velocity Head, Hv Step 12: Determine Vertical Extent of Protection Protect Channel Depth including Freeboard for Q100 Calculate Superelevation of Flow in Channel Bend per IDM 38-5.05 Superelevation of water surface, Z = C·Va 2·T whereg·Rc Step 11: Determine Longitudinal Extent of Protection Per the previous computations in the culvert report, the entire channel needs protected. Maximum of criteria 1 & 2: Placed Underwater? Exposed to floating debris, ice, waves, wind or bedforms? Use 12 in. of Uniform B riprap Compute Thickness per 38-6.01(04) At least D100 At least 2 x D50 At least: Step 10: Select Final Riprap Size, Gradation and Thickness Final Riprap Type Uniform B Gradation per 904.04f P:\Project\071087\Design\08 Drainage\Culverts\071087 Culverts.xls Tab:Bank Protection