Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
M003.0 - TRUSS SEALS
16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. RE: Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 1 of 1 This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings. General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Floor Load: N/A psf February 07, 2022 Liu, Xuegang The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by 84 Components - 0783. Truss Design Engineer's Name: Liu, XuegangMy license renewal date for the state of Indiana is July 31, 2022. 2200669-2200669A TG44 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the designparameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2. Site Information: Lot/Block: 44Customer: 84 Lumber - Castleton Project Name: 2200669-2200669A Subdivision: The Grove at LegacyAddress: State: IndianaCity: Model: Berkeley No. Seal# Truss Name Date 1 I50099142 A01 2/7/2022 2 I50099143 A02 2/7/2022 3 I50099144 A03 2/7/2022 4 I50099145 A04 2/7/2022 5 I50099146 B01 2/7/2022 6 I50099147 B02 2/7/2022 7 I50099148 B03 2/7/2022 8 I50099149 C01 2/7/2022 9 I50099150 C02 2/7/2022 10 I50099151 D01 2/7/2022 11 I50099152 D02 2/7/2022 12 I50099153 D03 2/7/2022 13 I50099154 E01 2/7/2022 14 I50099155 E02 2/7/2022 15 I50099156 EB01 2/7/2022 16 I50099157 F01 2/7/2022 17 I50099158 F02 2/7/2022 18 I50099159 J01 2/7/2022 19 I50099160 J02 2/7/2022 20 I50099161 J03 2/7/2022 No. Seal# Truss Name Date 21 I50099162 J04 2/7/2022 22 I50099163 LAY1 2/7/2022 23 I50099164 M01 2/7/2022 24 I50099165 M02 2/7/2022 25 I50099166 M03 2/7/2022 26 I50099167 M04 2/7/2022 27 I50099168 M05 2/7/2022 28 I50099169 M06 2/7/2022 29 I50099170 M07 2/7/2022 30 I50099171 M08 2/7/2022 31 I50099172 V01 2/7/2022 32 I50099173 V02 2/7/2022 33 I50099174 V03 2/7/2022 34 I50099175 V04 2/7/2022 35 I50099176 V05 2/7/2022 36 I50099177 V06 2/7/2022 37 I50099178 V07 2/7/2022 38 I50099179 V08 2/7/2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss A01 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099142 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:13 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-3lygUs0YEvF4bvs3lQio8rNWfW2WNLVpL0D0wIzna38 Scale = 1:69.8 12 3 4 5 6 7 8 9 21 20 18 17 16 15 14 13 12 11 10 45 46 47 19 48 3x8 MT18HS 6x6 3x6 3x6 3x4 3x4 6x8 3x6 3x6 3x6 3x4 7-1-47-1-4 15-7-08-5-12 16-4-00-9-0 24-0-127-8-12 31-2-07-1-4 -1-0-0 1-0-0 7-1-4 7-1-4 15-7-0 8-5-12 24-0-12 8-5-12 31-2-0 7-1-4 0-8-1111-1-60-8-118.00 12 Plate Offsets (X,Y)-- [2:0-3-12,0-0-11], [5:0-3-3,Edge], [9:0-1-9,0-0-6] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.62 0.49 0.40 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.12 -0.24 0.02 (loc) 20-21 20-21 19 l/defl >999 >793 n/a L/d 240 180 n/a PLATES MT20 MT18HS Weight: 221 lb FT = 20% GRIP 197/144 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 4-2-12, Right 2x4 SPF No.2 2-2-11 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 2-21,20-21. WEBS 1 Row at midpt 6-20, 4-20 REACTIONS.All bearings 15-1-8 except (jt=length) 2=0-3-8, 19=0-3-8. (lb) - Max Horz 2=172(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 13, 9, 12, 19 except 18=-225(LC 24) Max Grav All reactions 250 lb or less at joint(s) 9, 18, 17, 16, 15, 14, 11 except 2=932(LC 24), 13=970(LC 25), 19=580(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1136/13, 4-6=-496/92, 6-8=-478/89 BOT CHORD 2-21=0/985, 20-21=0/985 WEBS 8-20=0/436, 8-13=-887/55, 4-20=-754/83, 4-21=0/389 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 15-7-0, Exterior(2R) 15-7-0 to 18-7-0, Interior(1) 18-7-0 to 31-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are MT20 plates unless otherwise indicated. 7) All plates are 1.5x4 MT20 unless otherwise indicated. 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 9, 19. 12) 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss A02 Truss Type Roof Special Qty 3 Ply 1 TG44 Job Reference (optional) I50099143 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:15 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-?74RvY1omXVoqD0SsqkGDGSo9KjbrAn5pKi7?Azna36 Scale = 1:77.5 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 14 13 12 16 15 23 244x6 4x6 3x4 4x6 3x4 3x4 4x4 3x6 1.5x4 1.5x4 3x6 3x4 3x4 3x6 4x6 6x8 1.5x4 4x6 6x8 3x6 1.5x4 1.5x4 1.5x4 7-1-4 7-1-4 15-7-0 8-5-12 16-0-4 0-5-4 17-9-2 1-8-14 19-6-0 1-8-14 19-9-8 0-3-8 24-0-11 4-3-3 31-2-0 7-1-5 -1-0-0 1-0-0 7-1-4 7-1-4 15-7-0 8-5-12 16-2-8 0-7-8 19-9-8 3-7-0 24-0-11 4-3-3 31-2-0 7-1-5 0-8-1111-1-60-8-112-0-08.00 12 Plate Offsets (X,Y)-- [5:0-3-0,Edge], [11:0-4-0,0-0-3], [15:0-6-4,0-4-0], [16:0-2-0,0-2-12] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.88 0.51 0.74 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.18 -0.41 0.11 (loc) 18-20 18-20 11 l/defl >999 >905 n/a L/d 240 180 n/a PLATES MT20 Weight: 166 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E *Except* 7-13,14-17: 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 4-2-12, Right 2x4 SPF No.2 4-2-12 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 10-0-0 oc bracing: 13-15 WEBS 1 Row at midpt 4-16 JOINTS 1 Brace at Jt(s): 16, 15 REACTIONS. (size)2=0-3-8, 11=Mechanical Max Horz 2=172(LC 13) Max Grav 2=1314(LC 2), 11=1254(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1829/8, 4-6=-1500/61, 6-7=-1431/77, 7-9=-2001/25, 9-11=-1795/0 BOT CHORD 2-20=0/1420, 11-12=0/1380, 15-16=0/1607, 7-15=0/740 WEBS 4-16=-386/98, 6-16=0/1114, 7-16=-790/22, 12-15=0/1549, 9-15=0/290, 9-12=-599/36, 16-20=0/1443 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 15-7-0, Exterior(2R) 15-7-0 to 18-7-0, Interior(1) 18-7-0 to 31-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. MEMBERS SHOWN DASHED TO BE REMOVED AFTER TRUSS IS INSTALLED February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss A03 Truss Type Common Qty 9 Ply 1 TG44 Job Reference (optional) I50099144 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:17 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-xWBBJE33H8lW4XAr_FnkIhY9z8PCJB?OGdBE33zna34 Scale = 1:66.8 1 2 3 4 5 6 7 8 9 12 11 10 13 14 15 16 4x6 6x6 4x6 4x6 3x4 3x4 6x8 3x6 1.5x4 3x6 1.5x4 4x6 3x4 3x4 7-1-47-1-4 15-7-08-5-12 24-0-128-5-12 31-2-07-1-4 7-1-4 7-1-4 15-7-0 8-5-12 24-0-12 8-5-12 31-2-0 7-1-4 0-8-1111-1-60-8-118.00 12 Plate Offsets (X,Y)-- [4:0-3-0,Edge], [6:0-3-0,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.73 0.57 0.31 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.14 -0.26 0.07 (loc) 11-12 11-12 9 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 133 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 4-2-12, Right 2x4 SPF No.2 4-2-12 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-2-6 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 7-11, 3-11 REACTIONS. (size)1=Mechanical, 9=Mechanical Max Horz 1=-169(LC 12) Max Grav 1=1384(LC 23), 9=1384(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-1983/21, 3-5=-1366/97, 5-7=-1366/97, 7-9=-1983/20 BOT CHORD 1-12=0/1672, 11-12=0/1672, 10-11=0/1549, 9-10=0/1549 WEBS 5-11=0/951, 7-11=-686/85, 7-10=0/366, 3-11=-686/85, 3-12=0/366 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-7-0, Exterior(2R) 15-7-0 to 18-7-0, Interior(1) 18-7-0 to 31-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss connections. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss A04 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099145 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:20 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-M5tKyF5xa374x_vQfOKRwK9rpLYDVa2qybPugOzna31 Scale = 1:70.9 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 3x6 3x4 4x4 3x4 3x6 6x6 31-2-031-2-0 15-7-0 15-7-0 31-2-0 15-7-0 0-8-1111-1-60-8-118.00 12 Plate Offsets (X,Y)-- [27:0-3-12,0-1-8], [52:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.05 0.04 0.09 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 28 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 223 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 14-40, 13-41, 12-42, 15-39, 16-38 REACTIONS.All bearings 31-2-0. (lb) - Max Horz 52=173(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 28, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29 except 52=-131(LC 12) Max Grav All reactions 250 lb or less at joint(s) 52, 28, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-1-12 to 3-1-12, Exterior(2N) 3-1-12 to 15-7-0, Corner(3R) 15-7-0 to 18-7-0, Exterior(2N) 18-7-0 to 31-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 43, 44, 45, 46, 47, 48, 50, 37, 36, 35, 34, 33, 32, 30. 12) 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss B01 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099146 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:22 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-IT?4Nx7B6gNoAI2omoMv?lF6s98nzRz7Qvu?lGzna3? Scale: 3/16"=1' 12 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 39 40 41 42 3x4 4x6 3x4 4x4 4x6 3x4 3x4 3x4 3x4 3x6 3x4 3x4 6x6 8-4-118-4-11 12-4-83-11-13 16-9-54-4-13 25-2-08-4-11 -1-0-0 1-0-0 6-3-8 6-3-8 12-7-0 6-3-8 18-10-8 6-3-8 25-2-0 6-3-8 26-2-0 1-0-0 0-8-119-1-60-8-118.00 12 Plate Offsets (X,Y)-- [6:0-0-13,0-1-8], [7:0-2-0,Edge], [10:0-4-0,0-0-3] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.34 0.42 0.26 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.12 -0.25 0.01 (loc) 2-20 2-20 10 l/defl >999 >612 n/a L/d 240 180 n/a PLATES MT20 Weight: 174 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 3-9-1, Right 2x4 SPF No.2 3-9-1 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-16 REACTIONS.All bearings 12-9-8 except (jt=length) 2=0-3-8, 19=0-3-8, 19=0-3-8. (lb) - Max Horz 2=-141(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 2, 16, 10 Max Grav All reactions 250 lb or less at joint(s) 17, 15, 14, 13, 12, 19, 19 except 2=770(LC 24), 16=808(LC 2), 10=322(LC 31) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-816/66, 4-6=-702/125, 8-10=-310/80 BOT CHORD 2-20=0/710, 19-20=0/292, 17-19=0/292, 16-17=0/292 WEBS 6-16=-594/0, 8-16=-349/125, 6-20=-20/640, 4-20=-339/123 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 12-7-0, Exterior(2R) 12-7-0 to 15-7-0, Interior(1) 15-7-0 to 26-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16. 11) 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss B02 Truss Type Common Qty 5 Ply 1 TG44 Job Reference (optional) I50099147 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:24 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-Es6qnd8SeIdWPcCBuDPN4AKSPyo6RN4QtDN6o9zna2z Scale = 1:57.0 1 2 3 4 5 6 7 8 9 10 11 14 13 12 15 16 17 18 4x6 4x6 4x4 1.5x4 1.5x4 4x6 8-4-118-4-11 16-9-58-4-10 25-2-08-4-11 -1-0-0 1-0-0 6-3-8 6-3-8 12-7-0 6-3-8 18-10-8 6-3-8 25-2-0 6-3-8 26-2-0 1-0-0 0-8-119-1-60-8-118.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.33 0.55 0.16 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.17 -0.25 0.04 (loc) 12-14 12-14 10 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 107 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 3-9-1, Right 2x4 SPF No.2 3-9-1 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-8-9 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 10=0-3-8 Max Horz 2=-141(LC 12) Max Uplift 2=-4(LC 14), 10=-4(LC 14) Max Grav 2=1178(LC 24), 10=1178(LC 25) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1515/35, 4-6=-1394/95, 6-8=-1394/95, 8-10=-1514/35 BOT CHORD 2-14=0/1270, 12-14=0/857, 10-12=0/1176 WEBS 6-12=-10/673, 8-12=-313/126, 6-14=-10/673, 4-14=-313/126 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 12-7-0, Exterior(2R) 12-7-0 to 15-7-0, Interior(1) 15-7-0 to 26-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 3x4 MT20 unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss B03 Truss Type COMMON GIRDER Qty 1 Ply 3 TG44 Job Reference (optional) I50099148 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:25 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-i2gD?z94PblN1lnNSxwcdNtZZM9EAkra6t7fKbzna2y Scale = 1:56.2 1 2 3 4 5 8 7 6910111213141516 17 18 19 206x8 6x6 6x8 6x8 12x12 1.5x4 12x12 1.5x4 Special Special Special Special Special Special Special Special Special Special Special Special 8-4-118-4-11 16-9-58-4-10 25-2-08-4-11 6-3-8 6-3-8 12-7-0 6-3-8 18-10-8 6-3-8 25-2-0 6-3-8 0-8-119-1-60-8-118.00 12 Plate Offsets (X,Y)-- [1:0-0-0,0-1-13], [5:0-0-0,0-1-13], [6:0-6-0,0-6-4], [8:0-6-0,0-6-4] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.63 0.50 0.57 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.15 -0.27 0.04 (loc) 6-8 6-8 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 431 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x8 SP 2400F 2.0E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8, 5=0-3-8 Max Horz 1=135(LC 32) Max Grav 1=8098(LC 3), 5=9197(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-11188/0, 2-3=-11008/0, 3-4=-11325/0, 4-5=-11506/0 BOT CHORD 1-8=0/9024, 6-8=0/6307, 5-6=0/9286 WEBS 3-6=0/6971, 4-6=-189/313, 3-8=0/6367, 2-8=-188/314 NOTES- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1234 lb down at 2-0-12, 1234 lb down at 4-0-12, 1234 lb down at 6-0-12, 1323 lb down at 8-0-12, 1318 lb down at 10-0-12, 1308 lb down at 12-0-12, 1310 lb down at 14-0-12, 1323 lb down at 16-0-12, 1323 lb down at 18-0-12, 1323 lb down at 20-0-12, and 1323 lb down at 22-0-12, and 1324 lb down at 24-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Continued on page 2 February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss B03 Truss Type COMMON GIRDER Qty 1 Ply 3 TG44 Job Reference (optional) I50099148 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:26 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-AFEbCJAiAvtEfvMZ?eRr9bPkJmUTvB5jLXsCt1zna2x LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-3=-51, 3-5=-51, 1-5=-20 Concentrated Loads (lb) Vert: 7=-1083(B) 9=-1091(B) 10=-1091(B) 11=-1091(B) 12=-1083(B) 13=-1083(B) 14=-1083(B) 16=-1083(B) 17=-1083(B) 18=-1083(B) 19=-1083(B) 20=-1084(B) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss C01 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099149 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:27 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-fRozQfBKxD?5G3xmZMy4ioy23AxtemksZBcmPUzna2w Scale = 1:38.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 30 29 28 27 26 25 24 23 22 21 20 19 18 31 32 4x4 3x4 6x6 3x4 21-8-021-8-0 -1-0-0 1-0-0 10-10-0 10-10-0 21-8-0 10-10-0 22-8-0 1-0-0 0-5-74-11-100-5-75.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.05 0.04 0.03 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 0.00 0.00 (loc) 16 17 16 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 93 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 21-8-0. (lb) - Max Horz 2=-49(LC 14) Max Uplift All uplift 100 lb or less at joint(s) 2, 26, 27, 28, 29, 22, 21, 20, 19, 16 Max Grav All reactions 250 lb or less at joint(s) 2, 24, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18, 16 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 10-10-0, Corner(3R) 10-10-0 to 13-10-0, Exterior(2N) 13-10-0 to 22-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 7) All plates are 1.5x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Gable studs spaced at 1-4-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 26, 27, 28, 29, 22, 21, 20, 19, 16. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss C02 Truss Type Common Qty 3 Ply 1 TG44 Job Reference (optional) I50099150 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:29 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-bqwjrKCaTqGpWN58hn_YnD1JHzR_6cA91V5tTMzna2u Scale = 1:37.9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 4x6 4x4 6x10 1.5x4 1.5x4 4x4 10-10-010-10-0 21-8-010-10-0 -1-0-0 1-0-0 5-3-10 5-3-10 10-10-0 5-6-6 16-4-6 5-6-6 21-8-0 5-3-10 22-8-0 1-0-0 0-5-74-11-100-5-75.00 12 Plate Offsets (X,Y)-- [8:0-5-0,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.32 0.83 0.29 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.26 -0.54 0.05 (loc) 6-8 6-8 6 l/defl >992 >475 n/a L/d 240 180 n/a PLATES MT20 Weight: 73 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-4-11 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=49(LC 15) Max Uplift 2=-10(LC 16), 6=-10(LC 16) Max Grav 2=924(LC 2), 6=924(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1605/135, 3-4=-1202/69, 4-5=-1202/69, 5-6=-1605/135 BOT CHORD 2-8=-73/1428, 6-8=-75/1428 WEBS 4-8=0/607, 5-8=-452/138, 3-8=-452/138 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-10-0, Exterior(2R) 10-10-0 to 13-10-0, Interior(1) 13-10-0 to 22-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss D01 Truss Type COMMON GIRDER Qty 1 Ply 3 TG44 Job Reference (optional) I50099151 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:31 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-XC2UF0Er_RWXlgEXoB10se7h5nEMaSFSUpazYFzna2s Scale = 1:41.5 1 2 3 4 5 678910 11 12 13 14 6x8 4x6 6x8 12x12 1.5x4 1.5x4 Special Special Special Special Special Special Special Special Special 8-10-08-10-0 17-8-08-10-0 3-3-2 3-3-2 8-10-0 5-6-14 14-4-14 5-6-14 17-8-0 3-3-2 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [1:0-0-0,0-1-13], [5:0-0-0,0-1-13], [6:0-6-0,0-7-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.24 0.32 0.58 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.07 -0.13 0.01 (loc) 5-6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 341 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x10 SP 2400F 2.0E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8, 5=0-3-8 Max Horz 1=95(LC 9) Max Grav 1=6801(LC 3), 5=6462(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-6676/0, 2-3=-6678/0, 3-4=-6679/0, 4-5=-6679/0 BOT CHORD 1-6=0/5336, 5-6=0/5341 WEBS 3-6=0/7038, 4-6=-166/310, 2-6=-164/316 NOTES- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 3 rows staggered at 0-4-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1344 lb down at 0-6-12, 1338 lb down at 2-6-12, 1338 lb down at 4-6-12, 1338 lb down at 6-6-12, 1338 lb down at 8-6-12, 1338 lb down at 10-6-12, 1338 lb down at 12-6-12, and 1338 lb down at 14-6-12, and 1338 lb down at 16-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Continued on page 2 February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss D01 Truss Type COMMON GIRDER Qty 1 Ply 3 TG44 Job Reference (optional) I50099151 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:31 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-XC2UF0Er_RWXlgEXoB10se7h5nEMaSFSUpazYFzna2s LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-3=-51, 3-5=-51, 1-5=-20 Concentrated Loads (lb) Vert: 6=-1083(F) 7=-1089(F) 8=-1083(F) 9=-1083(F) 10=-1083(F) 11=-1083(F) 12=-1083(F) 13=-1083(F) 14=-1084(F) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss D02 Truss Type Common Qty 2 Ply 1 TG44 Job Reference (optional) I50099152 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:32 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-?PbsTMETlleONqpjMvYFPsfseBXfJ?QcjTJX4hzna2r Scale = 1:41.3 1 2 3 4 5 6 7 8 9 10 11 12 4x4 4x6 3x4 3x4 6x8 1.5x4 1.5x4 4x6 3x4 3x4 8-10-08-10-0 17-8-08-10-0 -1-0-0 1-0-0 5-7-9 5-7-9 8-10-0 3-2-7 12-0-7 3-2-7 17-8-0 5-7-9 18-8-0 1-0-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [10:0-4-0,0-3-4] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.19 0.51 0.13 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.11 -0.23 0.02 (loc) 2-10 2-10 8 l/defl >999 >923 n/a L/d 240 180 n/a PLATES MT20 Weight: 73 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 3-4-4, Right 2x4 SPF No.2 3-4-4 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 8=0-3-8 Max Horz 2=102(LC 13) Max Uplift 2=-9(LC 14), 8=-9(LC 14) Max Grav 2=767(LC 2), 8=767(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-888/44, 4-5=-693/58, 5-6=-693/58, 6-8=-888/44 BOT CHORD 2-10=0/656, 8-10=0/656 WEBS 5-10=-23/539 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 8-10-0, Exterior(2R) 8-10-0 to 12-1-9, Interior(1) 12-1-9 to 18-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss D03 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099153 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:34 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-xnjcu2GjHMu5c8z6TKajUHlE8_KgnwluAnoe9azna2p Scale = 1:43.9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 31 30 29 28 27 26 25 24 23 22 21 20 19 18 3x6 4x4 6x6 4x4 3x6 17-8-017-8-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 18-8-0 1-0-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [15:0-1-14,0-2-0], [16:0-2-12,0-1-11], [31:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.06 0.03 0.08 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 0.00 (loc) 17 17 16 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 96 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Right 2x4 SPF No.2 0-10-7 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 17-8-0. (lb) - Max Horz 31=-110(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 31, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18, 16 Max Grav All reactions 250 lb or less at joint(s) 31, 24, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18, 16 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-2-0, Exterior(2N) 2-2-0 to 8-10-0, Corner(3R) 8-10-0 to 11-10-0, Exterior(2N) 11-10-0 to 18-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 27, 28, 29, 23, 21, 20, 19, 16. 12) 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss E01 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099154 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:35 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-QzH_5OHL2g0yEIYI115y1UHPuOgyWNB2PRYBh0zna2o Scale = 1:40.9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 26 25 24 23 22 21 20 19 18 17 16 28 29 3x6 4x4 6x6 4x4 3x6 16-4-016-4-0 -1-0-0 1-0-0 8-2-0 8-2-0 16-4-0 8-2-0 17-4-0 1-0-0 0-8-116-2-00-8-118.00 12 Plate Offsets (X,Y)-- [13:0-1-14,0-2-0], [14:0-2-12,0-1-11], [27:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.06 0.02 0.07 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 0.00 (loc) 15 15 14 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 86 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Right 2x4 SPF No.2 1-8-1 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 16-4-0. (lb) - Max Horz 27=-103(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 27, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14 Max Grav All reactions 250 lb or less at joint(s) 27, 21, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 8-2-0, Corner(3R) 8-2-0 to 11-2-0, Exterior(2N) 11-2-0 to 17-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 24, 25, 20, 18, 14. 12) 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss E02 Truss Type Common Qty 1 Ply 1 TG44 Job Reference (optional) I50099155 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:37 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-MMPlW3IbaHGgTbih9S8Q6vNbVCEw_G?Lsl1Ilvzna2m Scale = 1:39.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 4x6 3x6 3x4 3x4 6x8 3x6 3x4 3x4 8-2-08-2-0 16-4-08-2-0 -1-0-0 1-0-0 8-2-0 8-2-0 16-4-0 8-2-0 17-4-0 1-0-0 0-8-116-2-00-8-118.00 12 Plate Offsets (X,Y)-- [2:0-3-12,0-0-11], [6:0-3-12,0-0-11], [8:0-4-0,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.69 0.57 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.11 -0.21 0.02 (loc) 2-8 2-8 6 l/defl >999 >952 n/a L/d 240 180 n/a PLATES MT20 Weight: 62 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 4-10-6, Right 2x4 SPF No.2 4-10-6 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=-95(LC 12) Max Uplift 2=-10(LC 14), 6=-10(LC 14) Max Grav 2=806(LC 24), 6=806(LC 25) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-865/45, 4-6=-864/45 BOT CHORD 2-8=0/652, 6-8=0/652 WEBS 4-8=0/492 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 8-2-0, Exterior(2R) 8-2-0 to 11-2-0 , Interior(1) 11-2-0 to 17-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss EB01 Truss Type Monopitch Qty 6 Ply 1 TG44 Job Reference (optional) I50099156 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:38 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-qYz7jPJELbOX5lHtiAfff7vvtbhijkzU5PmrILzna2l Scale = 1:9.9 1 2 3 5 4 1.5x4 1.5x4 3x6 1-0-01-0-0 -1-0-0 1-0-0 1-0-0 1-0-0 0-8-111-4-118.00 12 Plate Offsets (X,Y)-- [5:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.08 0.02 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 5 5 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 5 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. (size)4=Mechanical, 5=0-1-8 Max Horz 4=37(LC 14) Max Uplift 4=-33(LC 18), 5=-35(LC 14) Max Grav 4=6(LC 15), 5=153(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5. 8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 5. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss F01 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099157 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:41 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-E7eGMRL6eWm6yD?SOICMGlXQ6pjOw5CwnM?Vugzna2i Scale = 1:32.8 1 2 3 4 5 6 7 8 9 10 11 12 13 23 22 21 20 19 18 17 16 15 14 24 25 3x6 4x4 3x6 4x4 12-8-012-8-0 -1-0-0 1-0-0 6-4-0 6-4-0 12-8-0 6-4-0 13-8-0 1-0-0 0-8-114-11-60-8-118.00 12 Plate Offsets (X,Y)-- [11:0-1-14,0-2-0], [12:0-2-12,0-1-11], [23:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.08 0.02 0.03 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 0.00 (loc) 13 13 12 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 61 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Right 2x4 SPF No.2 1-0-14 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 12-8-0. (lb) - Max Horz 23=-84(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 23, 12, 19, 20, 21, 22, 17, 16, 15, 14 Max Grav All reactions 250 lb or less at joint(s) 23, 12, 18, 19, 20, 21, 22, 17, 16, 15, 14 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 6-4-0, Corner(3R) 6-4-0 to 9-4-0, Exterior(2N) 9-4-0 to 13-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 19, 21, 17, 15. 12) 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss F02 Truss Type Common Qty 1 Ply 1 TG44 Job Reference (optional) I50099158 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:42 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-iKCeZnMkPquzaNaex?jbpz4V1D?ffXw400l3R6zna2h Scale: 3/8"=1' 1 2 3 4 5 6 7 8 9 10 4x6 3x6 3x4 3x4 3x6 3x4 3x4 1.5x4 6-4-06-4-0 12-8-06-4-0 -1-0-0 1-0-0 6-4-0 6-4-0 12-8-0 6-4-0 13-8-0 1-0-0 0-8-114-11-60-8-118.00 12 Plate Offsets (X,Y)-- [2:0-4-0,0-0-3], [6:0-4-0,0-0-3] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.45 0.27 0.07 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.03 -0.07 0.01 (loc) 2-8 2-8 6 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 48 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 3-9-3, Right 2x4 SPF No.2 3-9-3 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=-76(LC 12) Max Uplift 2=-13(LC 14), 6=-13(LC 14) Max Grav 2=567(LC 2), 6=567(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-593/63, 4-6=-593/63 BOT CHORD 2-8=0/387, 6-8=0/387 WEBS 4-8=0/294 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-4-0, Exterior(2R) 6-4-0 to 9-4-0, Interior(1) 9-4-0 to 13-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss J01 Truss Type Jack-Open Qty 3 Ply 1 TG44 Job Reference (optional) I50099159 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:43 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-BWm0n7NMA70qBW9qVjEqMAckBcN?O?CDFgUczYzna2g Scale: 1"=1' 1 2 5 6 3 7 43x4 3-10-83-10-8 -1-0-0 1-0-0 3-10-8 3-10-8 0-4-141-10-51-6-01-10-54.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.23 0.14 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.02 -0.02 -0.00 (loc) 2-4 2-4 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 10 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-8 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-1-12, 4=Mechanical Max Horz 2=44(LC 16) Max Uplift 3=-23(LC 16), 2=-47(LC 16), 4=-7(LC 12) Max Grav 3=129(LC 21), 2=271(LC 21), 4=75(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 3-9-12 zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4. 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss J02 Truss Type Half Hip Girder Qty 1 Ply 1 TG44 Job Reference (optional) I50099160 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:46 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-b5S9P8PFS2PO2_uPAroXzpEDDqPvbMKfxejGatzna2d Scale = 1:9.4 1 2 3 4 6 5 8x8 3x4 3x4 Special Special 1-10-01-10-0 3-10-82-0-8 -1-0-0 1-0-0 1-10-0 1-10-0 3-10-8 2-0-8 0-4-141-1-24.50 12 Plate Offsets (X,Y)-- [2:0-1-11,0-1-8], [3:0-4-0,0-2-4] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.37 0.13 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.01 -0.01 0.00 (loc) 6 6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 15 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-8 oc purlins, except 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-1-12, 5=Mechanical Max Horz 2=28(LC 12) Max Uplift 2=-69(LC 12), 5=-68(LC 12) Max Grav 2=265(LC 32), 5=170(LC 31) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-319/150 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 11) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 69 lb down and 31 lb up at 1-10-0 on top chord, and 10 lb down and 30 lb up at 1-10-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 VERTICAL SUPPORT OF FREE ENDOF CHORD IS REQUIRED. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss J02 Truss Type Half Hip Girder Qty 1 Ply 1 TG44 Job Reference (optional) I50099160 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:46 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-b5S9P8PFS2PO2_uPAroXzpEDDqPvbMKfxejGatzna2d LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-51, 3-4=-61, 2-5=-20 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss J03 Truss Type Jack-Open Qty 1 Ply 1 TG44 Job Reference (optional) I50099161 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:48 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-XUZvqqRV_gf6II2oIGq?3EKbad6e3GRyOyCNemzna2b Scale: 1.5"=1' 1 2 3 4 3x4 2-5-102-5-10 -1-5-0 1-5-0 2-5-10 2-5-10 0-4-141-0-120-4-00-8-111-0-123.18 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.19 0.05 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 2-4 2-4 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-5-10 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-7-6, 4=Mechanical Max Horz 2=27(LC 12) Max Uplift 3=-15(LC 20), 2=-70(LC 12), 4=-4(LC 12) Max Grav 3=24(LC 21), 2=261(LC 21), 4=42(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10; Min. flat roof snow load governs. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4. 11) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss J04 Truss Type Jack-Open Qty 1 Ply 1 TG44 Job Reference (optional) I50099162 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:49 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-?g7H1AS7lznzvRd_szLEbRsnG1S8ojh6dcxwBCzna2a Scale = 1:8.3 1 2 3 43x4 1-10-01-10-0 -1-0-0 1-0-0 1-10-0 1-10-0 0-4-141-1-20-8-131-1-24.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.07 0.03 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 -0.00 (loc) 2 2-4 3 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 6 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 1-10-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-1-12, 4=Mechanical Max Horz 2=27(LC 16) Max Uplift 3=-6(LC 16), 2=-38(LC 16), 4=-3(LC 12) Max Grav 3=43(LC 21), 2=171(LC 21), 4=36(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4. 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss LAY1 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099163 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:50 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-TshfFWSlWHvqXbBBPhtT8fPwFRoQXAHFsGhUjezna2Z Scale = 1:40.8 1 2 3 4 7 6 5 8 3x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 5-11-14 5-11-14 6-4-1212.82 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.24 0.03 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 29 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-11-14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 5-11-14. (lb) - Max Horz 1=161(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 6, 7 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6, 7 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-305/309 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3) 0-4-1 to 4-6-15, Exterior(2R) 4-6-15 to 5-10-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M01 Truss Type Half Hip Girder Qty 1 Ply 1 TG44 Job Reference (optional) I50099164 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:52 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-QFpQgCU02u9YmvLZX6vxD4U75FRt?xhYJaAanXzna2X Scale = 1:20.7 1 2 3 4 6 5 7 8 9 10 11 6x6 4x6 4x6 3x4 3x4 3x4 NAILED NAILED NAILED NAILED NAILED NAILED NAILED 3-10-83-10-8 9-11-86-1-0 -1-0-0 1-0-0 3-10-8 3-10-8 9-11-8 6-1-0 0-4-141-8-151-10-51-8-154.50 12 Plate Offsets (X,Y)-- [2:0-1-11,0-1-8], [4:Edge,0-2-0] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.80 0.15 0.62 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.02 -0.05 0.01 (loc) 6 5-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 45 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=Mechanical, 2=0-1-12 Max Horz 2=43(LC 12) Max Uplift 5=-124(LC 8), 2=-164(LC 12) Max Grav 5=611(LC 31), 2=745(LC 32) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1213/255, 4-5=-304/60 BOT CHORD 2-6=-247/1118, 5-6=-242/1101 WEBS 3-6=-50/318, 3-5=-942/209 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=124. 12) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 15) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines. 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M01 Truss Type Half Hip Girder Qty 1 Ply 1 TG44 Job Reference (optional) I50099164 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:52 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-QFpQgCU02u9YmvLZX6vxD4U75FRt?xhYJaAanXzna2X LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-51, 3-4=-61, 2-5=-20 Concentrated Loads (lb) Vert: 3=-73(F) 6=-17(F) 7=-68(F) 8=-68(F) 9=-150(F) 10=-17(F) 11=-17(F) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M02 Truss Type Half Hip Qty 1 Ply 1 TG44 Job Reference (optional) I50099165 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:54 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-MdwA4tVGaWPG0DVyeXxPIVaXL24OTxnrnufhsQzna2V Scale = 1:21.4 1 2 3 4 6 5 7 8 9 10 11 12 6x6 3x4 3x4 1.5x4 3x4 5-10-85-10-8 9-11-84-1-0 -1-0-0 1-0-0 5-10-8 5-10-8 9-11-8 4-1-0 0-4-142-5-112-7-52-2-30-3-82-5-114.50 12 Plate Offsets (X,Y)-- [2:0-1-6,0-0-6] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.56 0.34 0.20 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.07 -0.07 0.01 (loc) 2-6 2-6 5 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 34 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 8-6-8 oc bracing. REACTIONS. (size)2=0-1-12, 5=0-1-8 Max Horz 2=59(LC 16) Max Uplift 2=-89(LC 16), 5=-85(LC 12) Max Grav 2=550(LC 36), 5=405(LC 35) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-613/423 BOT CHORD 2-6=-428/489, 5-6=-412/480 WEBS 3-5=-548/461 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-10-8, Exterior(2E) 5-10-8 to 9-9-12 zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 5. 11) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M03 Truss Type Half Hip Qty 1 Ply 1 TG44 Job Reference (optional) I50099166 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:55 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-qqUYIDWuLpX7dM48CESeri6e0SNwCOg_?YOFOszna2U Scale = 1:23.1 1 2 3 4 6 5 7 8 9 10 11 6x8 1.5x4 3x6 1.5x4 3x4 7-10-87-10-8 9-11-82-1-0 -1-0-0 1-0-0 7-10-8 7-10-8 9-11-8 2-1-0 0-4-143-2-113-4-52-11-30-3-83-2-114.50 12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-9] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.82 0.52 0.16 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.19 -0.21 0.01 (loc) 2-6 2-6 5 l/defl >613 >557 n/a L/d 240 180 n/a PLATES MT20 Weight: 34 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E *Except* 3-4: 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-9-13 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 9-10-4 oc bracing. REACTIONS. (size)2=0-1-12, 5=0-1-8 Max Horz 2=75(LC 16) Max Uplift 2=-84(LC 16), 5=-78(LC 16) Max Grav 2=582(LC 36), 5=401(LC 36) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-511/264 BOT CHORD 2-6=-290/371, 5-6=-274/360 WEBS 3-6=-329/334, 3-5=-688/521 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 7-10-8, Exterior(2E) 7-10-8 to 9-9-12 zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 5. 11) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M04 Truss Type Monopitch Qty 1 Ply 1 TG44 Job Reference (optional) I50099167 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:18:58 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-EPAhwFZnekvhUqpjtM0LSLkGUfNAPkHQhWdv?Bzna2R Scale = 1:24.6 1 2 3 4 5 6 7 8 9 10 3x4 4x4 1.5x4 8x12 M18AHS 9-11-89-11-8 -1-0-0 1-0-0 5-3-0 5-3-0 9-11-8 4-8-8 0-4-144-1-113-10-30-3-84-1-114.50 12 Plate Offsets (X,Y)-- [2:0-0-2,Edge], [5:Edge,0-3-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.35 0.61 0.23 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.49 -0.59 0.01 (loc) 2-5 2-5 5 l/defl >240 >198 n/a L/d 240 180 n/a PLATES MT20 M18AHS Weight: 34 lb FT = 20% GRIP 197/144 142/136 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF 1650F 1.5E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-1-12, 5=0-1-8 Max Horz 2=95(LC 16) Max Uplift 2=-78(LC 16), 5=-84(LC 16) Max Grav 2=458(LC 2), 5=439(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-572/208 BOT CHORD 2-5=-304/511 WEBS 3-5=-515/280 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 9-9-12 zone; cantilever left and right exposed ; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 5. 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M05 Truss Type Monopitch Qty 8 Ply 1 TG44 Job Reference (optional) I50099168 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:00 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-BnIRLxa19MAPk8y6?n2pYmpb9T9fthQj9q6033zna2P Scale = 1:14.1 1 2 3 4 5 6 1.5x4 3x4 1.5x4 4-11-84-11-8 -1-0-0 1-0-0 4-11-8 4-11-8 0-4-142-3-31-11-110-3-82-3-34.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.41 0.22 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.03 -0.06 0.00 (loc) 2-4 2-4 l/defl >999 >984 n/a L/d 240 180 n/a PLATES MT20 Weight: 15 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 4=0-1-8 Max Horz 2=52(LC 16) Max Uplift 2=-16(LC 16), 4=-2(LC 16) Max Grav 2=308(LC 21), 4=215(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 4-9-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M06 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099169 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:03 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-bMzazycvSHY_bbhggwbW9ORCvgEM42oArnKggOzna2M Scale = 1:14.1 1 2 3 4 5 8 7 6 9 10 1.5x4 1.5x4 3x4 1.5x4 1.5x4 1.5x4 1.5x4 -1-0-0 1-0-0 4-11-8 4-11-8 0-4-142-3-34.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.06 0.03 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 -0.00 0.00 (loc) 1 1 6 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 17 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 4-11-8. (lb) - Max Horz 2=55(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7 Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7, 8 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-3-8, Exterior(2N) 2-3-8 to 4-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M07 Truss Type GABLE Qty 2 Ply 1 TG44 Job Reference (optional) I50099170 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:04 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-3ZXyBIdXDagrClGtEd7lic_Lp4YwpVPJ4R4DDqzna2L Scale = 1:10.4 1 2 3 4 5 1.5x4 1.5x4 3x4 -1-0-0 1-0-0 2-11-8 2-11-8 0-4-141-6-34.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.11 0.08 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 0.00 0.00 (loc) 1 1 l/defl n/r n/r n/a L/d 120 120 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)4=2-11-8, 2=2-11-8 Max Horz 2=35(LC 16) Max Uplift 2=-19(LC 16) Max Grav 4=117(LC 21), 2=216(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 2-9-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss M08 Truss Type Monopitch Qty 6 Ply 1 TG44 Job Reference (optional) I50099171 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:05 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-Xl5KOeeA_uoiqvr3oKe_FpXWuUuIYyfSJ5pnlHzna2K Scale = 1:10.4 1 2 3 4 5 1.5x4 3x4 1.5x4 2-11-82-11-8 -1-0-0 1-0-0 2-11-8 2-11-8 0-4-141-6-31-2-110-3-81-6-34.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.09 0.07 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.01 0.00 (loc) 2-4 2-4 4 l/defl >999 >999 n/a L/d 240 180 n/a PLATES MT20 Weight: 9 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 4=0-1-8 Max Horz 2=35(LC 13) Max Uplift 2=-28(LC 16) Max Grav 2=224(LC 21), 4=106(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 2-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V01 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099172 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:06 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-?xfjc_folCwZS3QFL29Dn13iSuF5HOpcXlZKHjzna2J Scale = 1:47.0 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 21 22 3x4 4x4 3x4 6x6 21-2-021-2-0 10-7-0 10-7-0 21-2-0 10-7-0 0-0-47-0-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.04 0.03 0.07 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 11 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 88 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF 1650F 1.5E BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 21-2-0. (lb) - Max Horz 1=-105(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 17, 18, 19, 20, 15, 14, 13, 12 Max Grav All reactions 250 lb or less at joint(s) 1, 11, 16, 17, 18, 19, 20, 15, 14, 13, 12 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 10-7-0, Exterior(2R) 10-7-0 to 13-7-0, Interior(1) 13-7-0 to 20-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 19, 20, 15, 13, 12. 9) 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V02 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099173 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:08 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-yKnT0gg2HpAHhMaeTTBhsS92phxZlJhv?32RMczna2H Scale = 1:35.6 1 2 3 4 5 6 7 8 9 16 15 14 13 12 11 10 17 18 19 20 3x4 4x4 3x4 6x6 17-2-017-2-0 8-7-0 8-7-0 17-2-0 8-7-0 0-0-45-8-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.04 0.03 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 9 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 65 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 17-2-0. (lb) - Max Horz 1=84(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 14, 15, 16, 12, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 9, 13, 14, 15, 16, 12, 11, 10 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 8-7-0, Exterior(2R) 8-7-0 to 11-7-0, Interior(1) 11-7-0 to 16-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 15, 16, 12, 11, 10. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V03 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099174 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:09 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-QWKrE0hg27I8JW8q1AiwPfhDa5HuUmE2Djn_u2zna2G Scale = 1:27.3 1 2 3 4 5 6 7 12 11 10 9 8 13 14 3x4 4x4 3x4 13-2-013-2-0 6-7-0 6-7-0 13-2-0 6-7-0 0-0-44-4-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.04 0.02 0.03 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 44 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 1650F 1.5E OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 13-2-0. (lb) - Max Horz 1=-64(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 6-7-0, Exterior(2R) 6-7-0 to 9-7-0, Interior(1) 9-7-0 to 12-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 9, 8. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V04 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099175 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:10 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-uiuDRMiIpQQ_xgj1auD9ytEOEVc0DDcBSNXXQUzna2F Scale = 1:20.2 1 2 3 4 5 8 7 63x4 4x4 3x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 9-2-09-2-0 4-7-0 4-7-0 9-2-0 4-7-0 0-0-43-0-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.05 0.03 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 27 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 9-2-0. (lb) - Max Horz 1=-43(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-7-0, Exterior(2R) 4-7-0 to 7-7-0, Interior(1) 7-7-0 to 8-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V05 Truss Type Valley Qty 1 Ply 1 TG44 Job Reference (optional) I50099176 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:11 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-MvSbfhjwakYrYqID8blOU4nYlvy8ygxLh1G5yxzna2E Scale = 1:14.1 1 2 3 4 3x4 4x4 3x4 1.5x4 0-0-60-0-6 5-2-05-1-10 2-7-0 2-7-0 5-2-0 2-7-0 0-0-41-8-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.06 0.04 0.01 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 13 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=5-1-4, 3=5-1-4, 4=5-1-4 Max Horz 1=-22(LC 12) Max Uplift 1=-7(LC 14), 3=-7(LC 14) Max Grav 1=90(LC 2), 3=90(LC 2), 4=156(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V06 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099177 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:12 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-q50_s1jZK2giA_tPiJGd1IJkhJIXh7xUwh0eVNzna2D Scale = 1:28.3 1 2 3 4 5 6 7 12 11 10 9 8 13 14 3x4 4x4 3x4 13-8-013-8-0 6-10-0 6-10-0 13-8-0 6-10-0 0-0-44-6-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.05 0.03 0.03 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 47 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 1650F 1.5E OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 13-8-0. (lb) - Max Horz 1=-66(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 6-10-0, Exterior(2R) 6-10-0 to 9-10-0, Interior(1) 9-10-0 to 13-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 9, 8. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V07 Truss Type GABLE Qty 1 Ply 1 TG44 Job Reference (optional) I50099178 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:13 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-IHaM4NkB5LoZo7SbG0nsZVsvMieeQZKe8LlC1pzna2C Scale = 1:21.2 1 2 3 4 5 8 7 63x4 4x4 3x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 9-8-09-8-0 4-10-0 4-10-0 9-8-0 4-10-0 0-0-43-2-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.06 0.04 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 29 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 9-8-0. (lb) - Max Horz 1=-45(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-10-0, Exterior(2R) 4-10-0 to 7-10-0, Interior(1) 7-10-0 to 9-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2200669-2200669A Truss V08 Truss Type Valley Qty 1 Ply 1 TG44 Job Reference (optional) I50099179 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Feb 7 09:19:14 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:MeBmaWpctqDPk6cHlmSu0IzoZH8-mU8kHjlpsfwQPH1opjI56jP3j6_i90enN?VlZFzna2B Scale = 1:14.9 1 2 3 4 3x4 4x4 3x4 1.5x4 0-0-60-0-6 5-8-05-7-10 2-10-0 2-10-0 5-8-0 2-10-0 0-0-41-10-110-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.08 0.05 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 14 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-8-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=5-7-4, 3=5-7-4, 4=5-7-4 Max Horz 1=-24(LC 12) Max Uplift 1=-8(LC 14), 3=-8(LC 14) Max Grav 1=101(LC 2), 3=101(LC 2), 4=175(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. February 7,2022 PRODUCT CODE APPROVALSLATERAL BRACING LOCATIONIndicates location where bearings(supports) occur. Icons vary butreaction section indicates jointnumber where bearings occur.Min size shown is for crushing only.Indicated by symbol shown and/orby text in the bracing section of theoutput. Use T or I bracingif indicated.The first dimension is the plate width measured perpendicular to slots. Second dimension isthe length parallel to slots.Center plate on joint unless x, yoffsets are indicated.Dimensions are in ft-in-sixteenths.Apply plates to both sides of trussand fully embed teeth.1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.5. Cut members to bear tightly against each other.6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.13. Top chords must be sheathed or purlins provided at spacing indicated on design.14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.15. Connections not shown are the responsibility of others.16. Do not cut or alter truss member or plate without prior approval of an engineer.17. Install and load vertically unless indicated otherwise.18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.21.The design does not take into account any dynamic or other loads other than those expressly stated.Failure to Follow Could Cause PropertyDamage or Personal Injury (Drawings not to scale)© 2012 MiTek® All Rights ReservedMiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020edge of truss.from outside"16/1-0ICC-ES Reports:ESR-1311, ESR-1352, ESR1988ER-3907, ESR-2362, ESR-1397, ESR-3282JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISEAROUND THE TRUSS STARTING AT THE JOINT FARTHEST TOTHE LEFT.CHORDS AND WEBS ARE IDENTIFIED BY END JOINTNUMBERS/LETTERS.W 4 - 6 W3-6W3- 7 W2-7W1-7C1-8 C5-6C6-7C7-8C4-5 C3-4C2-3C1-2TOP CHORD TOP CHORD 87654321BOTTOM CHORDSTOP CHORDSBEARING4 x 4PLATE SIZEThis symbol indicates the required direction of slots inconnector plates."16/1For 4 x 2 orientation, locateplates 0- 1"4/3PLATE LOCATION AND ORIENTATIONSymbolsNumbering SystemGeneral Safety Notes *Plate location details available in MiTek 20/20software or upon request.Industry Standards:ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.DSB-89: Design Standard for Bracing.BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.6-4-8WEBSTrusses are designed for wind loads in the plane of the truss unless otherwise shown.Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.dimensions shown in ft-in-sixteenths