Loading...
HomeMy WebLinkAboutM003.016023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200 MiTek USA, Inc. Re: The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by 84 Components - 0783. August 1,2022 Garcia, Juan Pages or sheets covered by this seal: I53406534 thru I53406587 My license renewal date for the state of Indiana is July 31, 2024. 2201512-2201512A TG45 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use,the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2. 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss A01 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406534 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:29 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-Ir79AX67MRgOjXkLuefNal01f2D48XKrn7ValXysFO0 Scale = 1:62.3 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 55 56 57 58 3x6 6x6 3x6 3x6 4x8 3x6 4x8 35-2-035-2-0 -1-0-0 1-0-0 17-7-0 17-7-0 35-2-0 17-7-0 36-2-0 1-0-0 0-6-89-4-00-6-86.00 12 Plate Offsets (X,Y)-- [2:0-3-8,Edge], [28:0-3-8,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.08 0.05 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in 0.00 0.00 0.01 (loc) 28 29 28 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 219 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 15-42, 14-43, 16-41 REACTIONS.All bearings 35-2-0. (lb) - Max Horz 2=121(LC 14) Max Uplift All uplift 100 lb or less at joint(s) 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 41, 40, 2, 39, 38, 36, 35, 34, 33, 32, 31, 30 Max Grav All reactions 250 lb or less at joint(s) 28, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 41, 40, 2, 39, 38, 36, 35, 34, 33, 32, 31, 30 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 14-7-0, Corner(3R) 14-7-0 to 20-7-0, Exterior(2N) 20-7-0 to 33-2-0, Corner(3E) 33-2-0 to 36-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 7) All plates are 1.5x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Gable studs spaced at 1-4-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 41, 40, 2, 39, 38, 36, 35, 34, 33, 32, 31, 30. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss A02 Truss Type Common Qty 2 Ply 1 TG45 Job Reference (optional) I53406535 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:31 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-EEFwbD8Ou2w6yruk?3hrfA6HtshkcNS8ER_hpQysFO_ Scale = 1:65.0 1 2 3 4 5 6 7 8 9 10 11 16 15 14 13 12 23 24 25 26 27 28 29 30 31 32 3x6 6x6 3x6 6x6 3x8 MT18HS 4x8 3x4 3x4 1.5x4 3x4 3x4 1.5x4 3x8 MT18HS 6x6 9-3-79-3-7 17-7-08-3-9 25-10-98-3-9 35-2-09-3-7 -1-0-0 1-0-0 5-11-9 5-11-9 12-5-6 6-5-14 17-7-0 5-1-10 22-8-10 5-1-10 29-2-7 6-5-14 35-2-0 5-11-9 36-2-0 1-0-0 0-6-89-4-00-6-86.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.48 0.87 0.33 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.26 -0.44 0.12 0.09 (loc) 14-16 14-16 10 14-16 l/defl >999 >955 n/a >999 L/d 360 240 n/a 240 PLATES MT20 MT18HS Weight: 144 lb FT = 20% GRIP 197/144 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 1650F 1.5E *Except* 13-15: 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 7-14, 5-14 REACTIONS. (size)2=0-3-8, 10=0-3-8 Max Horz 2=121(LC 14) Max Uplift 2=-118(LC 14), 10=-118(LC 15) Max Grav 2=1592(LC 3), 10=1592(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2746/210, 3-5=-2524/194, 5-6=-1806/220, 6-7=-1806/220, 7-9=-2524/194, 9-10=-2746/210 BOT CHORD 2-16=-238/2390, 14-16=-111/1952, 12-14=-43/1952, 10-12=-117/2390 WEBS 6-14=-80/1337, 7-14=-646/176, 7-12=-5/564, 9-12=-332/169, 5-14=-646/176, 5-16=-5/564, 3-16=-332/169 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 14-7-0, Exterior(2R) 14-7-0 to 20-7-0, Interior(1) 20-7-0 to 33-2-0, Exterior(2E) 33-2-0 to 36-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are MT20 plates unless otherwise indicated. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=118, 10=118. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss A03 Truss Type Common Qty 1 Ply 1 TG45 Job Reference (optional) I53406536 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:33 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-BcMg0v9eQfAqC8277UjJkbBcLfND4HyRhkTntIysFNy Scale = 1:62.8 1 2 3 4 5 6 7 8 9 10 15 14 13 12 11 22 23 24 25 26 27 28 29 30 31 3x6 6x6 3x6 3x8 MT18HS 6x6 3x4 3x4 1.5x4 4x8 3x4 3x4 1.5x4 3x8 MT18HS 6x6 9-3-79-3-7 17-7-08-3-9 25-10-98-3-9 35-2-09-3-7 -1-0-0 1-0-0 5-11-9 5-11-9 12-5-6 6-5-14 17-7-0 5-1-10 22-8-10 5-1-10 29-2-7 6-5-14 35-2-0 5-11-9 0-6-89-4-00-6-86.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.48 0.87 0.33 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.26 -0.44 0.12 0.09 (loc) 13-15 13-15 10 13-15 l/defl >999 >955 n/a >999 L/d 360 240 n/a 240 PLATES MT20 MT18HS Weight: 142 lb FT = 20% GRIP 197/144 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 1650F 1.5E *Except* 12-14: 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 7-13, 5-13 REACTIONS. (size)10=Mechanical, 2=0-3-8 Max Horz 2=128(LC 14) Max Uplift 10=-100(LC 15), 2=-118(LC 14) Max Grav 10=1541(LC 3), 2=1593(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2748/212, 3-5=-2526/196, 5-6=-1808/222, 6-7=-1808/222, 7-9=-2530/201, 9-10=-2753/219 BOT CHORD 2-15=-244/2392, 13-15=-118/1954, 11-13=-68/1955, 10-11=-143/2398 WEBS 7-13=-648/177, 7-11=-7/569, 6-13=-81/1338, 9-11=-337/170, 5-13=-646/176, 5-15=-5/564, 3-15=-332/169 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 14-7-0, Exterior(2R) 14-7-0 to 20-7-0, Interior(1) 20-7-0 to 32-2-0, Exterior(2E) 32-2-0 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are MT20 plates unless otherwise indicated. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=100, 2=118. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss A04 Truss Type Roof Special Qty 2 Ply 1 TG45 Job Reference (optional) I53406537 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:34 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-fpw2DFAGBzIhpIdJgBEYHojnG3jcph?awOCLPlysFNx Scale = 1:75.7 1 2 3 4 5 6 7 8 9 10 11 12 22 21 20 19 16 15 14 13 18 1731 32 33 34 35 36 3x6 6x6 3x6 3x6 1.5x4 3x4 3x4 3x4 3x4 1.5x4 3x6 4x8 3x4 4x8 6x8 3x4 6x8 1.5x4 1.5x4 4x8 6x6 1.5x4 1.5x4 9-3-79-3-7 15-6-06-2-9 19-0-03-6-0 25-10-96-10-9 35-2-09-3-7 -1-0-0 1-0-0 5-11-9 5-11-9 12-4-6 6-4-13 12-5-6 0-1-0 15-6-0 3-0-10 17-7-0 2-1-0 19-0-0 1-5-0 22-7-12 3-7-12 22-8-10 0-0-13 29-2-7 6-5-14 35-2-0 5-11-9 0-6-89-4-00-6-82-0-06.00 12 Plate Offsets (X,Y)-- [12:0-0-0,0-0-13], [13:0-3-12,0-2-0], [17:0-2-4,0-3-0], [18:0-2-4,0-3-0], [22:0-1-8,0-2-0] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.47 0.86 0.53 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.18 -0.36 0.16 0.11 (loc) 17-18 13-27 12 17-18 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 180 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. Except: 10-0-0 oc bracing: 18-20, 15-17 JOINTS 1 Brace at Jt(s): 18, 17 REACTIONS. (size)12=Mechanical, 2=0-3-8 Max Horz 2=128(LC 14) Max Uplift 12=-96(LC 15), 2=-113(LC 14) Max Grav 12=1414(LC 2), 2=1476(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2547/206, 3-5=-2268/186, 5-6=-2379/229, 6-7=-2317/257, 7-8=-2203/252, 8-9=-2279/225, 9-11=-2271/191, 11-12=-2553/214 BOT CHORD 2-22=-239/2201, 12-13=-138/2208, 17-18=-8/1779 WEBS 9-13=-280/77, 18-22=-127/2174, 7-17=-114/919, 13-17=-73/2106, 11-13=-348/174, 5-22=-383/54, 3-22=-344/172, 7-18=-141/958 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 14-7-0, Exterior(2R) 14-7-0 to 20-7-0, Interior(1) 20-7-0 to 32-2-0, Exterior(2E) 32-2-0 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=113. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. MEMBERS SHOWN DASHED TO BE REMOVED AFTER TRUSS IS INSTALLED. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss A05 Truss Type Roof Special Qty 1 Ply 1 TG45 Job Reference (optional) I53406538 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:36 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-bB2pexCWjaYP3cmiocH1MDp88tPJHbUtOihRUdysFNv Scale = 1:74.5 1 2 3 4 5 6 7 8 9 10 11 21 20 19 18 15 14 13 12 17 16 30 31 32 33 34 35 3x6 6x6 3x6 3x6 1.5x4 3x4 3x4 3x4 3x4 1.5x4 3x6 4x8 3x4 4x8 6x8 3x4 6x8 1.5x4 1.5x4 4x8 4x8 1.5x4 1.5x4 9-3-79-3-7 15-6-06-2-9 19-0-03-6-0 25-10-96-10-9 35-2-09-3-7 5-11-9 5-11-9 12-4-6 6-4-13 12-5-6 0-1-0 15-6-0 3-0-10 17-7-0 2-1-0 19-0-0 1-5-0 22-7-12 3-7-12 22-8-10 0-0-13 29-2-7 6-5-14 35-2-0 5-11-9 0-6-89-4-00-6-82-0-06.00 12 Plate Offsets (X,Y)-- [1:0-0-0,0-0-13], [11:0-0-0,0-0-13], [12:0-3-12,0-2-0], [16:0-2-4,0-3-0], [17:0-2-4,0-3-0], [21:0-1-8,0-2-0] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.44 0.84 0.53 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.18 -0.36 0.16 0.11 (loc) 16-17 12-29 11 16-17 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 179 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. Except: 10-0-0 oc bracing: 17-19, 14-16 JOINTS 1 Brace at Jt(s): 17, 16 REACTIONS. (size)1=Mechanical, 11=Mechanical Max Horz 1=115(LC 14) Max Uplift 1=-96(LC 14), 11=-96(LC 15) Max Grav 1=1415(LC 2), 11=1414(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2555/216, 2-4=-2274/193, 4-5=-2382/232, 5-6=-2321/261, 6-7=-2205/255, 7-8=-2281/228, 8-10=-2273/193, 10-11=-2555/216 BOT CHORD 1-21=-241/2210, 11-12=-140/2209, 16-17=-9/1781 WEBS 8-12=-281/77, 17-21=-129/2179, 12-16=-75/2108, 10-12=-348/174, 4-21=-379/50, 2-21=-349/174, 6-17=-142/960, 6-16=-114/919 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-7-0, Exterior(2R) 14-7-0 to 20-7-0, Interior(1) 20-7-0 to 32-2-0, Exterior(2E) 32-2-0 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. MEMBERS SHOWN DASHED TO BE REMOVED AFTER TRUSS IS INSTALLED. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss A06 Truss Type Common Qty 7 Ply 1 TG45 Job Reference (optional) I53406539 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:38 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-XaAZ3cDnFCo6Iww4v1JVReuTUg4PkYBAr0AYYWysFNt Scale = 1:62.2 1 2 3 4 5 6 7 8 9 14 13 12 11 10 21 22 23 24 25 26 27 28 29 30 3x6 6x6 3x6 3x8 MT18HS 4x8 3x4 3x4 1.5x4 4x8 3x4 3x4 1.5x4 4x8 3x8 MT18HS 9-3-79-3-7 17-7-08-3-9 25-10-98-3-9 35-2-09-3-7 5-11-9 5-11-9 12-5-6 6-5-14 17-7-0 5-1-10 22-8-10 5-1-10 29-2-7 6-5-14 35-2-0 5-11-9 0-6-89-4-00-6-86.00 12 Plate Offsets (X,Y)-- [1:Edge,0-0-13], [9:0-0-0,0-0-13] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.45 0.87 0.33 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.25 -0.44 0.12 0.09 (loc) 12-14 12-14 9 12-14 l/defl >999 >960 n/a >999 L/d 360 240 n/a 240 PLATES MT20 MT18HS Weight: 141 lb FT = 20% GRIP 197/144 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 1650F 1.5E *Except* 11-13: 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 6-12, 4-12 REACTIONS. (size)9=Mechanical, 1=Mechanical Max Horz 1=115(LC 14) Max Uplift 9=-101(LC 15), 1=-101(LC 14) Max Grav 9=1542(LC 3), 1=1542(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2754/222, 2-4=-2531/203, 4-5=-1809/224, 5-6=-1809/224, 6-8=-2531/203, 8-9=-2754/222 BOT CHORD 1-14=-247/2399, 12-14=-119/1956, 10-12=-70/1956, 9-10=-145/2399 WEBS 6-12=-648/177, 6-10=-7/569, 5-12=-83/1340, 8-10=-337/170, 4-12=-648/177, 4-14=-7/569, 2-14=-337/170 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-7-0, Exterior(2R) 14-7-0 to 20-7-0, Interior(1) 20-7-0 to 32-2-0, Exterior(2E) 32-2-0 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=101, 1=101. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss A07 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406540 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:41 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-y9riheFfX7Bh9Nffb9sC3HW4buJrxyIcX_PC9rysFNq Scale = 1:61.6 1 2 3 4 5 6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 53 543x6 6x6 3x6 3x6 4x8 3x6 4x8 35-2-035-2-0 17-7-0 17-7-0 35-2-0 17-7-0 0-6-89-4-00-6-86.00 12 Plate Offsets (X,Y)-- [1:0-3-8,Edge], [27:0-3-8,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.08 0.05 0.11 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.01 (loc) - - 27 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 217 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 14-40, 13-41, 15-39 REACTIONS.All bearings 35-2-0. (lb) - Max Horz 1=-118(LC 15) Max Uplift All uplift 100 lb or less at joint(s) 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 39, 38, 37, 36, 34, 33, 32, 31, 30, 29, 28, 1 Max Grav All reactions 250 lb or less at joint(s) 27, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 39, 38, 37, 36, 34, 33, 32, 31, 30, 29, 28, 1 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-0-0 to 2-11-0, Exterior(2N) 2-11-0 to 14-7-0, Corner(3R) 14-7-0 to 20-7-0, Exterior(2N) 20-7-0 to 32-2-0, Corner(3E) 32-2-0 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 1-4-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 39, 38, 37, 36, 34, 33, 32, 31, 30, 29, 28, 1. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss B01 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406541 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:43 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-uYzS6KHv3kRPPhp2iavg8ibQfh?dPs0v?IuJDjysFNo Scale = 1:41.9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 28 27 26 25 24 23 22 21 20 19 18 17 16 3x6 4x4 3x6 6x6 17-8-017-8-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 18-8-0 1-0-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [16:0-3-12,0-1-8], [28:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.11 0.03 0.10 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.00 0.00 (loc) 15 15 16 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 94 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 17-8-0. (lb) - Max Horz 28=-141(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 28, 16, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 Max Grav All reactions 250 lb or less at joint(s) 28, 16, 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-2-0, Exterior(2N) 2-2-0 to 5-10-0, Corner(3R) 5-10-0 to 11-10-0, Exterior(2N) 11-10-0 to 15-6-0, Corner(3E) 15-6-0 to 18-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 1-4-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 28, 16, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss B02 Truss Type Common Qty 2 Ply 1 TG45 Job Reference (optional) I53406542 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:45 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-qw5DX0JAbLh7e_yQq?x8D7hd0VUvtmFCScNQIcysFNm Scale = 1:39.7 1 2 3 4 5 6 7 8 17 18 19 20 21 22 4x6 4x4 6x10 8x8 4x6 4x4 8-10-08-10-0 17-8-08-10-0 -1-0-0 1-0-0 8-10-0 8-10-0 17-8-0 8-10-0 18-8-0 1-0-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [4:Edge,0-3-8], [6:Edge,0-0-0], [6:0-0-0,0-0-0] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.69 0.81 0.12 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.18 -0.30 0.05 0.13 (loc) 8-15 8-15 2 8-11 l/defl >999 >709 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 58 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 1-6-0, Right 2x4 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=127(LC 11) Max Uplift 2=-61(LC 12), 6=-61(LC 13) Max Grav 2=886(LC 24), 6=886(LC 25) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-948/90, 4-6=-948/90 BOT CHORD 2-8=0/739, 6-8=0/739 WEBS 4-8=0/512 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-10-0, Exterior(2R) 5-10-0 to 11-10-0, Interior(1) 11-10-0 to 15-8-0, Exterior(2E) 15-8-0 to 18-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss B03 Truss Type COMMON GIRDER Qty 1 Ply 3 TG45 Job Reference (optional) I53406543 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:47 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-mJCzyhKQ7zxrtI6pxQzcIYm18IGtLbyVvwsXMVysFNk Scale = 1:40.2 1 2 3 4 5 6 9 8 7 16 17 18 19 20 21 22 23 24 25 10x16 5x12 MT18HS 4x8 8x8 1.5x4 8x8 1.5x4 10x16 5-11-35-11-3 11-8-135-9-10 17-8-05-11-3 4-5-12 4-5-12 8-10-0 4-4-4 13-2-3 4-4-4 17-8-0 4-5-13 18-8-0 1-0-0 0-8-116-7-60-8-118.00 12 Plate Offsets (X,Y)-- [1:0-1-3,Edge], [5:0-1-3,Edge], [7:0-4-0,0-4-8], [9:0-4-0,0-4-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MSH 0.39 0.40 0.42 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.10 -0.18 0.02 0.05 (loc) 7-9 7-9 5 7-9 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 MT18HS Weight: 296 lb FT = 20% GRIP 197/144 244/190 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 WEDGE Left: 2x10 SP No.2 , Right: 2x10 SP No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8, 5=0-3-8 Max Horz 1=-123(LC 8) Max Uplift 1=-493(LC 12), 5=-507(LC 13) Max Grav 1=6486(LC 3), 5=6674(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-8644/677, 2-3=-8525/713, 3-4=-8616/712, 4-5=-8734/676 BOT CHORD 1-9=-564/7104, 7-9=-328/4964, 5-7=-493/7181 WEBS 3-7=-423/5163, 3-9=-422/4985 NOTES- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-10-0, Exterior(2R) 5-10-0 to 11-10-0, Interior(1) 11-10-0 to 15-8-0, Exterior(2E) 15-8-0 to 18-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 7) All plates are MT20 plates unless otherwise indicated. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=493, 5=507. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Continued on page 2 August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss B03 Truss Type COMMON GIRDER Qty 1 Ply 3 TG45 Job Reference (optional) I53406543 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:47 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-mJCzyhKQ7zxrtI6pxQzcIYm18IGtLbyVvwsXMVysFNk NOTES- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1395 lb down and 116 lb up at 1-8-12, 1522 lb down and 121 lb up at 3-8-12, 1522 lb down and 121 lb up at 5-8-12, 1522 lb down and 121 lb up at 7-8-12, 1522 lb down and 121 lb up at 9-8-12, 1522 lb down and 121 lb up at 11-8-12, and 1522 lb down and 121 lb up at 13-8-12, and 1522 lb down and 121 lb up at 15-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-51, 3-6=-51, 10-13=-20 Concentrated Loads (lb) Vert: 7=-1225(F) 9=-1225(F) 20=-1233(F) 21=-1225(F) 22=-1225(F) 23=-1225(F) 24=-1225(F) 25=-1225(F) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss C01 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406544 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:48 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-FVmL91L2uG3iVSh?V7VrrlJGOiiv48Qe8ab4vxysFNj Scale = 1:27.0 1 2 3 4 5 6 7 8 9 10 11 20 19 18 17 16 15 14 13 12 21 22 3x6 4x4 3x6 10-7-010-7-0 -1-0-0 1-0-0 5-3-8 5-3-8 10-7-0 5-3-8 11-7-0 1-0-0 0-8-114-3-00-8-118.00 12 Plate Offsets (X,Y)-- [12:0-3-12,0-1-8], [20:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-R 0.11 0.03 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 -0.01 0.00 (loc) 11 11 12 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 48 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS.All bearings 10-7-0. (lb) - Max Horz 20=95(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 20, 12, 17, 18, 19, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 20, 12, 16, 17, 18, 19, 15, 14, 13 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-0-0, Corner(3R) 2-0-0 to 8-7-0, Corner(3E) 8-7-0 to 11-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable requires continuous bottom chord bearing. 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 1-4-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12, 17, 18, 19, 15, 14, 13. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss C02 Truss Type Common Qty 2 Ply 1 TG45 Job Reference (optional) I53406545 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:49 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-jhKjNNMgfaBZ7cGB3r04OzrPL6?RpbInNELeRNysFNi Scale = 1:27.2 1 2 3 4 5 8 7 6 9 10 4x6 4x6 1.5x4 4x4 5-3-85-3-8 10-7-05-3-8 -1-0-0 1-0-0 5-3-8 5-3-8 10-7-0 5-3-8 11-7-0 1-0-0 0-8-114-3-00-8-118.00 12 Plate Offsets (X,Y)-- [6:Edge,0-3-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.22 0.20 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.01 -0.03 0.00 0.01 (loc) 6-7 6-7 6 7-8 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 34 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)8=0-3-8, 6=0-3-8 Max Horz 8=95(LC 11) Max Uplift 8=-45(LC 12), 6=-45(LC 13) Max Grav 8=480(LC 2), 6=480(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-444/90, 3-4=-444/90, 2-8=-429/155, 4-6=-429/155 BOT CHORD 7-8=0/295, 6-7=0/295 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Exterior(2R) 2-0-0 to 8-7-0, Exterior(2E) 8-7-0 to 11-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss C03 Truss Type Common Qty 3 Ply 1 TG45 Job Reference (optional) I53406546 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:50 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-Buu6ajMIQuJQkmrOcYXJwAOaqWKiY2Yxcu4BzpysFNh Scale = 1:27.2 1 2 3 4 7 6 5 8 9 4x6 4x6 1.5x4 4x4 5-3-85-3-8 10-7-05-3-8 -1-0-0 1-0-0 5-3-8 5-3-8 10-7-0 5-3-8 0-8-114-3-00-8-118.00 12 Plate Offsets (X,Y)-- [5:Edge,0-3-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.24 0.20 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.01 -0.03 0.01 0.01 (loc) 6-7 6-7 5 6-7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 33 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)7=0-3-8, 5=Mechanical Max Horz 7=90(LC 11) Max Uplift 7=-45(LC 12), 5=-24(LC 13) Max Grav 7=484(LC 2), 5=408(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-450/94, 3-4=-446/92, 2-7=-432/156, 4-5=-356/105 BOT CHORD 6-7=0/299, 5-6=0/299 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Exterior(2R) 2-0-0 to 7-5-4, Exterior(2E) 7-5-4 to 10-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss CJ01 Truss Type Diagonal Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406547 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:52 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-7G0s?POZyVZ7_3?mkzZn?bTvjJ3F0wHE3CZI2iysFNf Scale = 1:29.1 1 2 3 4 6 5 10 11 12 13 14 1.5x4 4x4 3x4 3x4 4x4 4-2-34-2-3 8-4-54-2-3 -1-5-0 1-5-0 4-2-3 4-2-3 8-4-5 4-2-3 0-8-114-7-155.66 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.28 0.06 0.16 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.01 -0.01 0.00 0.00 (loc) 6 5-6 5 6 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 44 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-4-9, 5=Mechanical Max Horz 2=138(LC 39) Max Uplift 2=-66(LC 14), 5=-87(LC 14) Max Grav 2=434(LC 2), 5=403(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-488/92 BOT CHORD 2-6=-110/379, 5-6=-110/379 WEBS 3-5=-436/172 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-4-15 to 2-9-15, Exterior(2R) 2-9-15 to 8-2-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 82 lb down and 58 lb up at 2-9-8, 82 lb down and 58 lb up at 2-9-8, and 116 lb down and 99 lb up at 5-7-7, and 116 lb down and 99 lb up at 5-7-7 on top chord, and 5 lb down and 9 lb up at 2-9-8, 5 lb down and 9 lb up at 2-9-8, and 25 lb down at 5-7-7, and 25 lb down at 5-7-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss CJ01 Truss Type Diagonal Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406547 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:52 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-7G0s?POZyVZ7_3?mkzZn?bTvjJ3F0wHE3CZI2iysFNf LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-51, 5-7=-20 Concentrated Loads (lb) Vert: 12=-20(F=-10, B=-10) 13=3(F=1, B=1) 14=-24(F=-12, B=-12) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss CJ02 Truss Type Jack-Open Girder Qty 2 Ply 1 TG45 Job Reference (optional) I53406548 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:53 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-bTaEClPBjph_bDazIg40Yp045jOrlP1NIsJra8ysFNe Scale = 1:10.3 1 2 5 3 43x6 1-11-01-10-8 -1-8-0 1-8-0 1-11-0 1-11-0 0-8-111-5-141-1-81-5-144.80 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MR 0.30 0.10 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in 0.00 0.00 -0.00 -0.00 (loc) 4-5 4-5 3 5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 7 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 1-11-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-4-13, 3=Mechanical, 4=Mechanical Max Horz 5=36(LC 10) Max Uplift 5=-66(LC 10), 3=-30(LC 20), 4=-11(LC 20) Max Grav 5=281(LC 21), 3=17(LC 21), 4=27(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss CJ03 Truss Type Jack-Open Qty 1 Ply 1 TG45 Job Reference (optional) I53406549 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:54 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-3f7cQ5QpU6prDN89rObF50YH47ljUsHXXW2O6bysFNd Scale: 1"=1' 1 2 3 4 3x4 2-8-72-8-7 -1-5-0 1-5-0 2-8-7 2-8-7 0-6-81-9-131-5-31-9-135.66 12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-13] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.16 0.06 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in 0.00 -0.00 -0.00 -0.00 (loc) 4-7 4-7 3 4-7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 8 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-8-7 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-3-7, 4=Mechanical Max Horz 2=55(LC 14) Max Uplift 3=-28(LC 14), 2=-33(LC 14) Max Grav 3=75(LC 21), 2=263(LC 21), 4=46(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss H01 Truss Type Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406550 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:56 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-02FNrmR3?k4ZShIYzpejAReWZxNOyiQp_pXVBTysFNb Scale = 1:40.7 1 2 3 4 5 6 7 10 9 8 17 18 19 20 21 22 23 4x8 4x8 6x8 3x4 8x8 1.5x4 3x4 6x8 6-0-06-0-0 11-3-85-3-8 16-7-05-3-8 22-7-06-0-0 -1-0-0 1-0-0 6-0-0 6-0-0 11-3-8 5-3-8 16-7-0 5-3-8 22-7-0 6-0-0 23-7-0 1-0-0 0-8-114-7-74-8-110-8-114-7-78.00 12 Plate Offsets (X,Y)-- [2:0-1-12,0-0-12], [3:0-4-0,0-1-9], [5:0-4-0,0-1-9], [6:0-1-12,0-0-12], [9:0-4-0,0-4-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MSH 0.61 0.31 0.28 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.07 -0.15 0.03 0.05 (loc) 9-10 9-10 6 9-10 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 116 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 WEDGE Left: 2x6 SP No.2 , Right: 2x6 SP No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-3-8 oc purlins, except 2-0-0 oc purlins (3-5-6 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 6=0-3-8 Max Horz 2=-89(LC 38) Max Uplift 2=-97(LC 12), 6=-117(LC 13) Max Grav 2=1434(LC 2), 6=1600(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2037/212, 3-4=-2438/277, 4-5=-2438/277, 5-6=-2292/234 BOT CHORD 2-10=-141/1607, 9-10=-143/1604, 8-9=-101/1806, 6-8=-101/1820 WEBS 3-9=-169/1140, 4-9=-378/139, 5-9=-147/880, 5-8=0/492 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Exterior(2R) 2-0-0 to 10-2-15, Interior(1) 10-2-15 to 12-4-1, Exterior(2R) 12-4-1 to 20-7-0, Exterior(2E) 20-7-0 to 23-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=117. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 620 lb down and 111 lb up at 10-7-12, 83 lb down at 12-6-4, and 83 lb down at 14-6-4, and 420 lb down and 94 lb up at 16-6-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss H01 Truss Type Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406550 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:56 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-02FNrmR3?k4ZShIYzpejAReWZxNOyiQp_pXVBTysFNb LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-51, 3-5=-61, 5-7=-51, 11-14=-20 Concentrated Loads (lb) Vert: 8=-420(F) 21=-544(F) 22=-55(F) 23=-55(F) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss H02 Truss Type HIP GIRDER Qty 1 Ply 3 TG45 Job Reference (optional) I53406551 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:59 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-QdxVToTyIfS8J816exBQo4G2k8MH91QGgnm9ooysFNY Scale = 1:38.5 1 2 3 4 5 6 7 14 13 12 11 10 9 82324252627282930 6x6 4x4 6x6 6x6 6x6 4x4 3x6 3x4 6x6 8x8 1.5x4 6x6 3x6 3x4 2-10-52-10-5 6-11-04-0-11 11-3-84-4-8 15-8-04-4-8 19-8-114-0-11 22-7-02-10-5 2-10-5 2-10-5 6-11-0 4-0-11 11-3-8 4-4-8 15-8-0 4-4-8 19-8-11 4-0-11 22-7-0 2-10-5 0-8-115-2-35-4-00-8-115-2-38.00 12 Plate Offsets (X,Y)-- [3:0-3-5,Edge], [5:0-3-5,Edge], [10:0-3-0,0-4-4], [11:0-4-0,0-4-8], [12:0-3-0,0-4-4] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MSH 0.55 0.42 0.33 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.10 -0.20 0.04 0.06 (loc) 10-11 10-11 7 11-12 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 386 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 1-6-0, Right 2x4 SPF No.2 1-6-0 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8 (req. 0-4-11), 7=0-3-8 (req. 0-4-7) Max Horz 1=-86(LC 35) Max Uplift 1=-671(LC 12), 7=-614(LC 13) Max Grav 1=8965(LC 2), 7=8495(LC 3) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-10850/888, 2-3=-10469/894, 3-4=-10549/906, 4-5=-10549/906, 5-6=-10863/898, 6-7=-11333/898 BOT CHORD 1-13=-710/8903, 12-13=-710/8903, 11-12=-674/8666, 10-11=-658/8986, 9-10=-718/9304, 7-9=-718/9304 WEBS 2-13=-105/448, 3-12=-272/3724, 3-11=-254/2858, 4-11=-451/124, 5-11=-250/2470, 5-10=-277/3994, 6-10=-254/99, 6-9=-112/567 NOTES- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 2-10-5, Exterior(2R) 2-10-5 to 19-8-11, Exterior(2E) 19-8-11 to 22-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) WARNING: Required bearing size at joint(s) 1, 7 greater than input bearing size. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=671, 7=614. Continued on page 2 August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss H02 Truss Type HIP GIRDER Qty 1 Ply 3 TG45 Job Reference (optional) I53406551 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:04:59 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-QdxVToTyIfS8J816exBQo4G2k8MH91QGgnm9ooysFNY NOTES- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1526 lb down and 115 lb up at 0-7-12, 1394 lb down and 116 lb up at 2-7-12, 1394 lb down and 116 lb up at 4-7-12, 1394 lb down and 116 lb up at 6-7-12, 1522 lb down and 121 lb up at 8-7-12, 1522 lb down and 121 lb up at 10-7-12, 1522 lb down and 121 lb up at 12-7-12, 1522 lb down and 121 lb up at 14-7-12, 1522 lb down and 121 lb up at 16-7-12, and 1522 lb down and 121 lb up at 18-7-12, and 1522 lb down and 121 lb up at 20-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-51, 3-5=-61, 5-7=-51, 15-19=-20 Concentrated Loads (lb) Vert: 13=-1232(B) 12=-1233(B) 17=-1229(B) 23=-1232(B) 24=-1225(B) 25=-1225(B) 26=-1225(B) 27=-1225(B) 28=-1225(B) 29=-1225(B) 30=-1225(B) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss H03 Truss Type Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406552 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:01 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-M?3GuUVCqGisZSBVmMDutVLRFy6md_NY85FGshysFNW Scale = 1:37.5 1 2 3 4 5 6 7 8 13 12 11 10 9 20 21 22 23 24 25 26 27 28 29 30 31 32 6x6 4x4 4x4 4x6 3x4 3x4 3x4 4x8 3x4 3x4 4x4 4-5-14-5-1 8-4-53-11-4 12-3-113-11-5 16-2-153-11-4 20-8-04-5-1 -1-0-0 1-0-0 4-5-1 4-5-1 8-4-5 3-11-4 12-3-11 3-11-5 16-2-15 3-11-4 20-8-0 4-5-1 21-8-0 1-0-0 0-6-84-7-74-8-110-6-84-7-76.00 12 Plate Offsets (X,Y)-- [2:Edge,0-2-0], [4:0-3-0,0-2-7], [7:Edge,0-2-0] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MSH 0.35 0.16 0.17 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.05 -0.10 0.02 0.02 (loc) 12 10-12 7 12 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 106 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-9-13 oc purlins, except 2-0-0 oc purlins (4-9-4 max.): 4-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-3-8, 7=0-3-8 Max Horz 2=-60(LC 15) Max Grav 2=1391(LC 39), 7=1384(LC 39) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2230/54, 3-4=-1757/67, 4-5=-1476/89, 5-6=-1745/72, 6-7=-2216/61 BOT CHORD 2-13=0/1927, 12-13=0/1927, 10-12=0/1487, 9-10=0/1914, 7-9=0/1914 WEBS 3-12=-496/82, 4-12=0/545, 5-10=0/520, 6-10=-495/84 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 4-1-7, Exterior(2R) 4-1-7 to 16-6-9, Interior(1) 16-6-9 to 18-8-0, Exterior(2E) 18-8-0 to 21-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 82 lb down at 2-0-12, 63 lb down at 4-0-12, 83 lb down and 34 lb up at 6-0-12, 83 lb down at 8-0-12, 83 lb down at 8-8-5, 83 lb down at 10-7-4, 83 lb down at 12-7-4, 83 lb down and 34 lb up at 14-7-4, and 63 lb down at 16-7-4, and 82 lb down at 18-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss H03 Truss Type Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406552 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:01 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-M?3GuUVCqGisZSBVmMDutVLRFy6md_NY85FGshysFNW LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-51, 4-5=-61, 5-8=-51, 14-17=-20 Concentrated Loads (lb) Vert: 11=-55(B) 12=-55(B) 10=-55(B) 26=-60(B) 27=-61(B) 28=-74(B) 29=-55(B) 30=-74(B) 31=-61(B) 32=-60(B) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss J01 Truss Type Jack-Open Qty 2 Ply 1 TG45 Job Reference (optional) I53406553 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:02 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-qBce5qWqbaqjAcmhJ3l7PiugsLU_MTGiMl_qO7ysFNV Scale = 1:13.0 1 2 5 3 43x6 1-10-151-10-15 -1-0-0 1-0-0 1-10-15 1-10-15 0-8-111-11-158.00 12 Plate Offsets (X,Y)-- [5:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MR 0.11 0.04 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in 0.00 -0.00 -0.00 -0.00 (loc) 5 5 3 5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 7 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 1-10-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=50(LC 12) Max Uplift 5=-13(LC 12), 3=-27(LC 12) Max Grav 5=161(LC 2), 3=40(LC 24), 4=31(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss J02 Truss Type Jack-Open Qty 2 Ply 1 TG45 Job Reference (optional) I53406554 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:03 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-IOA0J9XSMtyZolKutnGMywQphlow5wVrbPkNxZysFNU Scale = 1:19.6 1 2 5 3 4 3x6 3-10-153-10-15 -1-0-0 1-0-0 3-10-15 3-10-15 0-8-113-3-158.00 12 Plate Offsets (X,Y)-- [5:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MR 0.16 0.12 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.01 -0.02 0.01 0.01 (loc) 4-5 4-5 3 4-5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 12 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-10-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=89(LC 12) Max Uplift 5=-6(LC 12), 3=-59(LC 12) Max Grav 5=228(LC 2), 3=101(LC 24), 4=70(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss J03 Truss Type Jack-Open Qty 4 Ply 1 TG45 Job Reference (optional) I53406555 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:04 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-nakOWVX47B4QQvv4RUnbV7z?m99aqNl?q3TwT?ysFNT Scale = 1:10.6 1 2 3 4 3x4 2-0-02-0-0 -1-0-0 1-0-0 2-0-0 2-0-0 0-6-81-6-81-1-131-6-86.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.08 0.03 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in 0.00 -0.00 0.00 -0.00 (loc) 7 4-7 3 7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 6 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=43(LC 14) Max Uplift 3=-23(LC 14), 2=-21(LC 14) Max Grav 3=55(LC 21), 2=184(LC 21), 4=35(LC 7) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss J04 Truss Type Jack-Closed Qty 3 Ply 1 TG45 Job Reference (optional) I53406556 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:05 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-FmImkrYjuVCH13UG?CIq1LW6YZS9Zq?82jDU?SysFNS Scale = 1:29.5 1 2 3 5 4 3x6 4x4 3x4 6-0-06-0-0 -1-0-0 1-0-0 6-0-0 6-0-0 0-8-114-8-114-2-24-8-118.00 12 Plate Offsets (X,Y)-- [5:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.33 0.20 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.06 0.01 0.02 (loc) 4-5 4-5 3 4-5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 22 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=136(LC 9) Max Uplift 5=-25(LC 12), 3=-71(LC 12) Max Grav 5=304(LC 2), 3=156(LC 24), 4=123(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-267/150 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss J06 Truss Type Jack-Closed Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406557 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:06 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-jzs9xBZLfoK8fD3TYvp3aY2FxzkNIHFIHNy1XuysFNR Scale = 1:29.6 2 1 389 6x6 1.5x4 3x4 6-0-06-0-0 6-0-0 6-0-0 0-8-114-8-118.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.48 0.46 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.06 -0.13 -0.00 0.05 (loc) 3-5 3-5 3 3-5 l/defl >999 >556 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 27 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=0-3-8, 3=Mechanical Max Horz 1=121(LC 11) Max Uplift 1=-38(LC 12), 3=-89(LC 12) Max Grav 1=611(LC 2), 3=625(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 388 lb down and 44 lb up at 2-0-12, and 388 lb down and 44 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 2-6=-51, 1-3=-20 Concentrated Loads (lb) Vert: 8=-341(B) 9=-341(B) August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss J07 Truss Type Jack-Open Qty 2 Ply 1 TG45 Job Reference (optional) I53406558 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:07 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-B9QX9XazQ6S?HNef6dKI6lbW_MBH1kVRW1ia4KysFNQ Scale = 1:12.3 1 2 3 4 3x4 2-0-02-0-0 -1-0-0 1-0-0 2-0-0 2-0-0 0-6-81-10-81-5-51-10-88.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.08 0.03 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in 0.00 -0.00 0.00 -0.00 (loc) 7 4-7 3 7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 7 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)3=Mechanical, 2=0-1-12, 4=Mechanical Max Horz 2=57(LC 12) Max Uplift 3=-28(LC 12), 2=-15(LC 12) Max Grav 3=48(LC 24), 2=155(LC 2), 4=35(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss J08 Truss Type Monopitch Qty 2 Ply 1 TG45 Job Reference (optional) I53406559 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:08 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-fL_vMtabBQasuXDrgKrXfz8dxmU5mBlalhR8cnysFNP Scale = 1:26.1 1 2 3 4 1.5x4 3x4 1.5x4 -1-0-0 1-0-0 5-5-0 5-5-0 0-6-84-1-133-10-50-3-84-1-138.00 12 Plate Offsets (X,Y)-- [2:0-0-0,0-0-10] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.32 0.25 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.08 0.01 0.03 (loc) 4-7 4-7 2 4-7 l/defl >999 >836 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 20 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SP No.3 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-1-12, 4=0-1-8 Max Horz 2=117(LC 11) Max Uplift 2=-25(LC 12), 4=-44(LC 12) Max Grav 2=277(LC 2), 4=219(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 4. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss LAY1 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406560 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:09 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-7YXHZDbDxjijWgo1E1NmCAgs5AsMVe6kzLBh8DysFNO Scale = 1:39.1 1 2 3 4 5 8 7 63x4 4x4 3x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 10-5-010-5-0 5-2-8 5-2-8 10-5-0 5-2-8 6-3-214.42 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.11 0.05 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 43 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 10-5-0. (lb) - Max Horz 1=-120(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-167(LC 12), 6=-167(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=287(LC 23), 6=287(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-261/204, 4-6=-261/204 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-12 to 3-2-8, Exterior(2R) 3-2-8 to 7-2-8, Exterior(2E) 7-2-8 to 10-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=167, 6=167. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss LAY2 Truss Type GABLE Qty 2 Ply 1 TG45 Job Reference (optional) I53406561 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:10 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-bk5fnZcri1qa8qNEnlu?kOD_eaCqE4EtC?wFgfysFNN Scale = 1:38.1 1 2 3 5 43x4 1.5x4 1.5x4 1.5x4 1.5x4 4-8-3 4-8-3 0-0-46-11-1217.89 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.31 0.04 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 4 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 25 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-8-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=4-8-3, 4=4-8-3, 5=4-8-3 Max Horz 1=186(LC 9) Max Uplift 1=-86(LC 8), 4=-91(LC 11), 5=-205(LC 12) Max Grav 1=190(LC 11), 4=97(LC 8), 5=275(LC 23) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-5=-298/305 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=205. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss M01 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406562 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:11 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-3wf2_vdTTLzRm_yQLSPEHbm8l_UtzSm1RfgoD5ysFNM Scale = 1:24.9 1 2 3 4 6 5 21 22 3x4 3x4 3x4 5-9-65-9-6 11-3-85-6-2 -1-0-0 1-0-0 5-9-6 5-9-6 11-3-8 5-6-2 0-4-144-7-114-4-30-3-84-7-114.50 12 Plate Offsets (X,Y)-- [13:0-1-13,0-0-12] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.35 0.31 0.43 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.06 0.01 0.02 (loc) 5-6 5-6 5 6-20 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 53 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-1-12, 5=0-1-8 Max Horz 2=147(LC 13) Max Uplift 2=-66(LC 10), 5=-67(LC 14) Max Grav 2=509(LC 2), 5=494(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-749/110 BOT CHORD 2-6=-86/678, 5-6=-86/678 WEBS 3-6=0/258, 3-5=-736/159 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-10-13, Exterior(2R) 6-10-13 to 11-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) All plates are 1.5x4 MT20 unless otherwise indicated. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 11) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 5. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss M02 Truss Type MONOPITCH Qty 5 Ply 1 TG45 Job Reference (optional) I53406563 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:12 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-Y7DQCEd6Ee5IN8XcvAwTppIJVNq6iv0AfJPLlYysFNL Scale = 1:26.1 1 2 3 4 6 5 10 11 1.5x4 3x4 3x4 1.5x4 3x4 5-9-65-9-6 11-3-85-6-2 -1-0-0 1-0-0 5-9-6 5-9-6 11-3-8 5-6-2 0-4-144-7-114-4-30-3-84-7-114.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.35 0.31 0.43 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.06 0.01 0.02 (loc) 5-6 5-6 5 6-9 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 41 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-1-12, 5=0-1-8 Max Horz 2=147(LC 13) Max Uplift 2=-66(LC 10), 5=-67(LC 14) Max Grav 2=509(LC 2), 5=494(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-749/137 BOT CHORD 2-6=-118/678, 5-6=-118/678 WEBS 3-6=0/258, 3-5=-736/194 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 8-1-12, Exterior(2E) 8-1-12 to 11-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 5. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss M03 Truss Type Monopitch Qty 8 Ply 1 TG45 Job Reference (optional) I53406564 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:13 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-0JnoPaek?yD9?I5pTtRiM0rUanBLRS_Kuz9vH_ysFNK Scale = 1:14.2 1 2 3 4 8 1.5x4 3x4 1.5x4 -1-0-0 1-0-0 5-0-0 5-0-0 0-4-142-3-61-11-140-3-82-3-64.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.33 0.24 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.06 0.00 0.02 (loc) 4-7 4-7 2 4-7 l/defl >999 >944 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 15 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-3-8, 4=0-1-8 Max Horz 2=69(LC 13) Max Uplift 2=-48(LC 10), 4=-28(LC 14) Max Grav 2=302(LC 21), 4=227(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss M04 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406565 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:14 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-UVLAdwfMmGL0dSg?0byxuEOitBZ?AvUT7duSpQysFNJ Scale = 1:14.2 1 2 3 4 6 5 7 1.5x4 1.5x4 3x4 1.5x4 1.5x4 -1-0-0 1-0-0 5-0-0 5-0-0 0-4-142-3-64.50 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.17 0.09 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) in -0.00 0.00 0.00 (loc) 1 1 5 l/defl n/r n/r n/a L/d 120 90 n/a PLATES MT20 Weight: 16 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)5=5-0-0, 2=5-0-0, 6=5-0-0 Max Horz 2=68(LC 11) Max Uplift 5=-38(LC 21), 2=-39(LC 10), 6=-49(LC 14) Max Grav 5=10(LC 14), 2=216(LC 21), 6=351(LC 21) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-273/274 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 1-4-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ01 Truss Type Jack-Closed Girder Qty 2 Ply 1 TG45 Job Reference (optional) I53406566 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:15 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-yivYqGg_XZTsEbFBaIUARRwpubq_vM6cMHe0MtysFNI Scale = 1:13.5 1 2 3 4 7 6 5 8 9 10 11 3x6 4x4 1.5x4 4x4 6x6 1-2-121-2-12 3-0-01-9-4 6-0-03-0-0 -1-0-0 1-0-0 1-2-12 1-2-12 6-0-0 4-9-4 0-8-111-5-31-6-81-5-38.00 12 Plate Offsets (X,Y)-- [7:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.41 0.42 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.07 -0.15 -0.02 0.04 (loc) 5-6 5-6 4 5-6 l/defl >999 >463 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 23 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)7=0-3-8, 5=Mechanical, 4=Mechanical Max Horz 7=42(LC 9) Max Uplift 7=-36(LC 12), 4=-60(LC 9) Max Grav 7=304(LC 36), 5=122(LC 5), 4=145(LC 1) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 5-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 12) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10 lb down and 38 lb up at 1-2-12, and 18 lb down and 50 lb up at 2-0-12, and 18 lb down and 50 lb up at 4-0-12 on top chord, and 8 lb down and 14 lb up at 1-2-12, and 8 lb down and 8 lb up at 2-0-12, and 8 lb down and 8 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ01 Truss Type Jack-Closed Girder Qty 2 Ply 1 TG45 Job Reference (optional) I53406566 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:16 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-QuTx1chcItbjslqO80?P_fT_e?9DepLmaxNZuJysFNH LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-51, 2-3=-51, 3-4=-61, 5-7=-20 Concentrated Loads (lb) Vert: 6=2(B) 10=-1(B) 11=-1(B) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ02 Truss Type Jack-Closed Qty 2 Ply 1 TG45 Job Reference (optional) I53406567 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:17 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-u40JFyhE3BjaUvPaijWeWs?C6OYjNFnvpb76QlysFNG Scale = 1:16.9 1 2 3 4 7 6 5 3x6 4x4 3x4 1.5x4 3x6 2-8-122-8-12 6-0-03-3-4 -1-0-0 1-0-0 2-8-12 2-8-12 6-0-0 3-3-4 0-8-112-4-132-6-82-4-132-1-58.00 12 Plate Offsets (X,Y)-- [7:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.23 0.22 0.01 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.02 -0.04 0.03 0.02 (loc) 6 6 4 6 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 20 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)7=0-3-8, 5=Mechanical, 4=Mechanical Max Horz 7=71(LC 9) Max Uplift 7=-33(LC 12), 4=-40(LC 9) Max Grav 7=304(LC 2), 5=101(LC 5), 4=138(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ03 Truss Type Jack-Closed Qty 2 Ply 1 TG45 Job Reference (optional) I53406568 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:18 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-MGahSIisqUrR53_mFQ1t34YNiouB6i132EsgzCysFNF Scale = 1:22.8 1 2 3 4 7 6 5 3x6 4x4 3x4 1.5x4 3x6 4-2-124-2-12 6-0-01-9-4 -1-0-0 1-0-0 4-2-12 4-2-12 6-0-0 1-9-4 0-8-113-4-133-6-83-4-133-1-58.00 12 Plate Offsets (X,Y)-- [7:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.24 0.20 0.01 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.02 -0.05 0.04 0.02 (loc) 6-7 6-7 4 6-7 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 23 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)7=0-3-8, 5=Mechanical, 4=Mechanical Max Horz 7=100(LC 11) Max Uplift 7=-34(LC 12), 5=-14(LC 9), 4=-19(LC 9) Max Grav 7=304(LC 2), 5=103(LC 2), 4=119(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-250/135 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ04 Truss Type Jack-Closed Qty 2 Ply 1 TG45 Job Reference (optional) I53406569 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:18 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-MGahSIisqUrR53_mFQ1t34YLGouC6iD32EsgzCysFNF Scale = 1:28.1 1 2 3 5 4 3x6 6x6 3x4 6-0-06-0-0 -1-0-0 1-0-0 5-8-12 5-8-12 6-0-0 0-3-4 0-8-114-4-134-2-24-4-138.00 12 Plate Offsets (X,Y)-- [3:0-2-9,Edge], [5:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.33 0.20 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.06 0.01 0.02 (loc) 4-5 4-5 3 4-5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 21 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=136(LC 9) Max Uplift 5=-25(LC 12), 3=-71(LC 12) Max Grav 5=304(LC 2), 3=156(LC 24), 4=123(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-267/150 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ05 Truss Type Jack-Closed Qty 2 Ply 1 TG45 Job Reference (optional) I53406570 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:19 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-qT83gejVbozIjDZyp8Y6bH5V0CERr9TCGucDVeysFNE Scale = 1:29.5 1 2 3 5 4 3x6 4x4 3x4 6-0-06-0-0 -1-0-0 1-0-0 6-0-0 6-0-0 0-8-114-8-114-2-24-8-118.00 12 Plate Offsets (X,Y)-- [5:0-3-12,0-1-8] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.33 0.20 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.03 -0.06 0.01 0.02 (loc) 4-5 4-5 3 4-5 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 22 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=136(LC 9) Max Uplift 5=-25(LC 12), 3=-71(LC 12) Max Grav 5=304(LC 2), 3=156(LC 24), 4=123(LC 5) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-267/150 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ06 Truss Type Half Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406571 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:21 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-nrGq5Jkl7PD0yWjLxZaahiAuj0zZJ3JVkC5KZWysFNC Scale = 1:13.1 1 2 3 4 6 5 10 11 1.5x4 3x4 3x4 6x6 4x4 2-0-02-0-0 5-5-03-5-0 -1-0-0 1-0-0 2-0-0 2-0-0 5-5-0 3-5-0 0-6-81-10-81-5-00-5-81-10-88.00 12 Plate Offsets (X,Y)-- [3:0-4-4,0-2-4] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 NO IRC2018/TPI2014 CSI. TC BC WB Matrix-MP 0.19 0.03 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.00 -0.00 0.00 0.00 (loc) 6 5-6 5 6 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 27 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-5-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)2=0-1-12, 5=0-1-8 Max Horz 2=52(LC 11) Max Uplift 2=-44(LC 12), 5=-36(LC 9) Max Grav 2=277(LC 2), 5=206(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 5. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 88 lb down and 121 lb up at 2-0-0, and 65 lb down and 55 lb up at 4-0-12 on top chord, and 20 lb down and 20 lb up at 2-0-0, and 10 lb down and 8 lb up at 4-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Continued on page 2 August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ06 Truss Type Half Hip Girder Qty 1 Ply 1 TG45 Job Reference (optional) I53406571 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:21 2022 Page 2 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-nrGq5Jkl7PD0yWjLxZaahiAuj0zZJ3JVkC5KZWysFNC LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-51, 3-4=-61, 5-7=-20 Concentrated Loads (lb) Vert: 6=-1(F) 3=-2(F) 11=-1(F) 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss MJ07 Truss Type Half Hip Qty 1 Ply 1 TG45 Job Reference (optional) I53406572 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:22 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-F2qCIflNujLtagHXUG6pDwj3xPHY2Wcezsqt6zysFNB Scale = 1:21.2 1 2 3 4 6 5 10 1.5x4 3x4 1.5x4 6x6 3x4 4-0-04-0-0 5-5-01-5-0 -1-0-0 1-0-0 4-0-0 4-0-0 5-5-0 1-5-0 0-6-83-2-82-11-00-3-83-2-88.00 12 Plate Offsets (X,Y)-- [3:0-4-4,0-2-4] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-AS 0.16 0.11 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL) in -0.01 -0.01 0.00 0.01 (loc) 6-9 6-9 2 6-9 l/defl >999 >999 n/a >999 L/d 360 240 n/a 240 PLATES MT20 Weight: 24 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied. REACTIONS. (size)2=0-1-12, 5=0-1-8 Max Horz 2=93(LC 11) Max Uplift 2=-31(LC 12), 5=-29(LC 9) Max Grav 2=277(LC 2), 5=205(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Exterior(2R) 2-0-0 to 4-0-0, Exterior(2E) 4-0-0 to 5-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2, 5. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V01 Truss Type Valley Qty 1 Ply 1 TG45 Job Reference (optional) I53406573 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:23 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-jEOaV?m?e1TkCqsk2_d2m7FGzpesnzSoBWaRePysFNA Scale = 1:7.7 1 2 3 3x4 3x6 3x4 3-0-13-0-1 1-6-1 1-6-1 3-0-1 1-6-1 0-0-41-0-00-0-48.00 12 Plate Offsets (X,Y)-- [2:0-3-0,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.02 0.04 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 6 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-0-1 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=3-0-1, 3=3-0-1 Max Horz 1=13(LC 11) Max Uplift 1=-5(LC 12), 3=-5(LC 13) Max Grav 1=82(LC 2), 3=82(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V02 Truss Type Valley Qty 1 Ply 1 TG45 Job Reference (optional) I53406574 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:24 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-BQxyjLndPKbbp_Rwch8HILoQTD_tWQSxQAJ_ArysFN9 Scale = 1:14.7 1 2 3 4 3x4 4x4 3x4 1.5x4 0-0-60-0-6 6-0-15-11-11 3-0-1 3-0-1 6-0-1 3-0-1 0-0-42-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.10 0.05 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 15 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=5-11-5, 3=5-11-5, 4=5-11-5 Max Horz 1=-33(LC 10) Max Uplift 1=-18(LC 12), 3=-22(LC 13) Max Grav 1=108(LC 2), 3=108(LC 2), 4=187(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V03 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406575 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:25 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-fdVKwhoFAejSR806APfWrYLcudKVFte5fq3XiIysFN8 Scale = 1:20.4 1 2 3 4 5 8 7 63x4 4x4 3x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 9-0-19-0-1 4-6-1 4-6-1 9-0-1 4-6-1 0-0-43-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.05 0.03 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 27 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 9-0-1. (lb) - Max Horz 1=-52(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Exterior(2R) 3-5-12 to 5-6-5, Exterior(2E) 5-6-5 to 8-6-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V04 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406576 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:26 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-7p3j81ouxyrJ3IbJj6AlOmtnh1gq_KuEtUo5FkysFN7 Scale = 1:24.5 1 2 3 4 5 6 7 12 11 10 9 8 13 14 3x4 4x4 3x4 12-0-112-0-1 6-0-1 6-0-1 12-0-1 6-0-1 0-0-44-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.05 0.02 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 39 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 12-0-1. (lb) - Max Horz 1=-71(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 12, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Exterior(2R) 3-5-12 to 8-6-5, Exterior(2E) 8-6-5 to 11-6-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 12, 9, 8. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V05 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406577 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:27 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-b?d5LNpWiF_AgSAVHph_wzQxtQ0YjnsN68YenAysFN6 Scale = 1:30.1 1 2 3 4 5 6 7 12 11 10 9 8 13 14 3x4 4x4 3x4 15-0-115-0-1 7-6-1 7-6-1 15-0-1 7-6-1 0-0-45-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.08 0.06 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 53 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 15-0-1. (lb) - Max Horz 1=-91(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 12, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 9 except 12=252(LC 23), 8=253(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-6-1, Interior(1) 3-6-1 to 4-6-1, Exterior(2R) 4-6-1 to 10-6-1, Interior(1) 10-6-1 to 11-6-1, Exterior(2E) 11-6-1 to 14-6-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 12, 9, 8. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V06 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406578 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:28 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-4CBTZjq8TZ60IblhrXCDTBz71qL1SEnXLoHCJcysFN5 Scale = 1:38.1 1 2 3 4 5 6 7 8 9 16 15 14 13 12 11 10 17 18 19 20 3x4 4x4 3x4 6x6 18-0-118-0-1 9-0-1 9-0-1 18-0-1 9-0-1 0-0-46-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.06 0.04 0.06 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 9 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 69 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 18-0-1. (lb) - Max Horz 1=-110(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 14, 15, 16, 12, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 9, 13, 14, 15, 16, 12, 11, 10 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 6-0-1, Exterior(2R) 6-0-1 to 12-0-1, Interior(1) 12-0-1 to 14-6-5, Exterior(2E) 14-6-5 to 17-6-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 14, 15, 16, 12, 11, 10. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V07 Truss Type Valley Qty 1 Ply 1 TG45 Job Reference (optional) I53406579 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:29 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-YOlrm2rmEtEtwlKtPEkS?OVISEhGBhxgaS1lr3ysFN4 Scale = 1:7.7 1 2 3 3x4 3x6 3x4 0-0-60-0-6 3-0-02-11-10 1-6-0 1-6-0 3-0-0 1-6-0 0-0-41-0-00-0-48.00 12 Plate Offsets (X,Y)-- [2:0-3-0,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.02 0.04 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 6 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=2-11-4, 3=2-11-4 Max Horz 1=-13(LC 10) Max Uplift 1=-5(LC 12), 3=-5(LC 13) Max Grav 1=81(LC 2), 3=81(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V08 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406580 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:30 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-0aJDzOrO?AMkXvv4yyFhYc2Sye1Hw8xqo6mIOVysFN3 Scale = 1:14.7 1 2 3 4 3x4 4x4 3x4 1.5x4 6-0-06-0-0 3-0-0 3-0-0 6-0-0 3-0-0 0-0-42-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.10 0.05 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 15 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=6-0-0, 3=6-0-0, 4=6-0-0 Max Horz 1=-32(LC 8) Max Uplift 1=-18(LC 12), 3=-22(LC 13) Max Grav 1=108(LC 2), 3=108(LC 2), 4=187(LC 2) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V09 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406581 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:31 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-UntcBks0mUUb93TGWfmw5pbeN2Nvfb7z1mWswxysFN2 Scale = 1:20.4 1 2 3 4 5 8 7 63x4 4x4 3x4 1.5x4 1.5x4 1.5x4 1.5x4 1.5x4 9-0-09-0-0 4-6-0 4-6-0 9-0-0 4-6-0 0-0-43-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.05 0.03 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 5 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 27 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 9-0-0. (lb) - Max Horz 1=-52(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Exterior(2R) 3-5-12 to 5-6-4, Exterior(2E) 5-6-4 to 8-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V10 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406582 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:33 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-Q9_McQuHI5kJONdfe4oOAEg_wr3T7VdGU4?z_qysFN0 Scale = 1:24.5 1 2 3 4 5 6 7 12 11 10 9 8 13 14 3x4 4x4 3x4 12-0-012-0-0 6-0-0 6-0-0 12-0-0 6-0-0 0-0-44-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.05 0.02 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 39 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 12-0-0. (lb) - Max Horz 1=-71(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 12, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Exterior(2R) 3-5-12 to 8-6-4, Exterior(2E) 8-6-4 to 11-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 12, 9, 8. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V11 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406583 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:34 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-uLYkpmvv3PsA0WCrBnJdiSD86FPBsybPjkkWXGysFN? Scale = 1:30.1 1 2 3 4 5 6 7 12 11 10 9 8 13 14 3x4 4x4 3x4 15-0-015-0-0 7-6-0 7-6-0 15-0-0 7-6-0 0-0-45-0-00-0-48.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.08 0.06 0.04 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 7 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 52 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 15-0-0. (lb) - Max Horz 1=91(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 12, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 9 except 12=252(LC 23), 8=252(LC 24) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-6-0, Interior(1) 3-6-0 to 4-6-0, Exterior(2R) 4-6-0 to 10-6-0, Interior(1) 10-6-0 to 11-6-0, Exterior(2E) 11-6-0 to 14-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 12, 9, 8. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V12 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406584 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:35 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-NY6616vXqj_1egn1lVqsFflJGfkfbOjZyOU33iysFN_ Scale = 1:34.9 1 2 3 4 5 6 7 8 9 10 11 18 17 16 15 14 13 12 19 20 21 22 3x4 3x6 3x6 3x4 6x6 18-0-018-0-0 8-2-0 8-2-0 9-10-0 1-8-0 18-0-0 8-2-0 0-0-45-3-85-5-50-0-45-3-88.00 12 Plate Offsets (X,Y)-- [5:0-3-5,Edge], [7:0-3-5,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.06 0.04 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 11 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 68 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 18-0-0. (lb) - Max Horz 1=-98(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 16, 17, 18, 14, 13, 12 Max Grav All reactions 250 lb or less at joint(s) 1, 11, 15, 16, 17, 18, 14, 13, 12 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 3-11-1, Exterior(2R) 3-11-1 to 14-0-15, Interior(1) 14-0-15 to 14-6-4, Exterior(2E) 14-6-4 to 17-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Provide adequate drainage to prevent water ponding. 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 16, 17, 18, 14, 13, 12. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V13 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406585 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:37 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-JwEtRoxnLKElt_xQtwtKK4qf0SQI3IAsPizA6bysFMy Scale = 1:35.6 1 2 3 4 5 6 7 8 9 10 11 12 13 22 21 20 19 18 17 16 15 14 23 24 3x4 3x6 3x6 3x4 6x6 21-0-021-0-0 7-8-0 7-8-0 13-4-0 5-8-0 21-0-0 7-8-0 0-0-44-11-85-1-50-0-44-11-88.00 12 Plate Offsets (X,Y)-- [5:0-3-5,Edge], [9:0-3-5,Edge] LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 20.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-S 0.04 0.03 0.05 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 13 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 82 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-9. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.All bearings 21-0-0. (lb) - Max Horz 1=-91(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 17, 16, 15, 14 Max Grav All reactions 250 lb or less at joint(s) 1, 13, 18, 19, 20, 21, 22, 17, 16, 15, 14 FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Exterior(2R) 3-5-12 to 17-6-4, Exterior(2E) 17-6-4 to 20-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Provide adequate drainage to prevent water ponding. 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 18, 19, 20, 21, 22, 17, 16, 15, 14. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V14 Truss Type GABLE Qty 1 Ply 1 TG45 Job Reference (optional) I53406586 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:38 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-n7oFf7yP6eMcV8WcQdOZtINqSsmSolp?eMijf1ysFMx Scale = 1:18.3 1 2 3 5 4 3x4 1.5x4 1.5x4 1.5x4 1.5x4 4-7-12 4-7-12 0-0-43-1-38.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.06 0.03 0.02 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 4 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 15 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 4-7-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=4-7-12, 4=4-7-12, 5=4-7-12 Max Horz 1=79(LC 9) Max Uplift 4=-14(LC 9), 5=-58(LC 12) Max Grav 1=77(LC 24), 4=58(LC 23), 5=206(LC 23) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 16023 Swingley Ridge RdChesterfield, MO 63017 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Componentavailable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601Safety Information WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Job 2201512-2201512A Truss V15 Truss Type Valley Qty 1 Ply 1 TG45 Job Reference (optional) I53406587 8.610 s May 20 2022 MiTek Industries, Inc. Mon Aug 1 10:05:39 2022 Page 1 84 Components (Franklin), Franklin, IN - 46131, ID:ieWjV0GTWr?k7AW5Wob_9QzyQJD-FJLdsTy1txUT7I5o_LvoPVw?FG6fXCQ8t0SHBUysFMw Scale = 1:11.7 1 2 3 3x4 1.5x4 1.5x4 2-7-12 2-7-12 0-0-41-9-38.00 12 LOADING (psf) TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL 20.0 15.4/20.0 10.0 0.0 * 10.0 SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-0-0 1.15 1.15 YES IRC2018/TPI2014 CSI. TC BC WB Matrix-P 0.06 0.04 0.00 DEFL. Vert(LL) Vert(CT) Horz(CT) in n/a n/a 0.00 (loc) - - 3 l/defl n/a n/a n/a L/d 999 999 n/a PLATES MT20 Weight: 7 lb FT = 20% GRIP 197/144 LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-7-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size)1=2-7-6, 3=2-7-6 Max Horz 1=40(LC 9) Max Uplift 1=-3(LC 12), 3=-17(LC 12) Max Grav 1=81(LC 2), 3=85(LC 23) FORCES.(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. August 1,2022 PRODUCT CODE APPROVALSLATERAL BRACING LOCATIONIndicates location where bearings(supports) occur. Icons vary butreaction section indicates jointnumber where bearings occur.Min size shown is for crushing only.Indicated by symbol shown and/orby text in the bracing section of theoutput. Use T or I bracingif indicated.The first dimension is the plate width measured perpendicular to slots. Second dimension isthe length parallel to slots.Center plate on joint unless x, yoffsets are indicated.Dimensions are in ft-in-sixteenths.Apply plates to both sides of trussand fully embed teeth.1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.5. Cut members to bear tightly against each other.6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.13. Top chords must be sheathed or purlins provided at spacing indicated on design.14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.15. Connections not shown are the responsibility of others.16. Do not cut or alter truss member or plate without prior approval of an engineer.17. Install and load vertically unless indicated otherwise.18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.21.The design does not take into account any dynamic or other loads other than those expressly stated.Failure to Follow Could Cause PropertyDamage or Personal Injury (Drawings not to scale)© 2012 MiTek® All Rights ReservedMiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020edge of truss.from outside"16/1-0ICC-ES Reports:ESR-1311, ESR-1352, ESR1988ER-3907, ESR-2362, ESR-1397, ESR-3282JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISEAROUND THE TRUSS STARTING AT THE JOINT FARTHEST TOTHE LEFT.CHORDS AND WEBS ARE IDENTIFIED BY END JOINTNUMBERS/LETTERS.W 4 - 6 W3-6W3- 7 W2-7W1-7C1-8 C5-6C6-7C7-8C4-5 C3-4C2-3C1-2TOP CHORD TOP CHORD 87654321BOTTOM CHORDSTOP CHORDSBEARING4 x 4PLATE SIZEThis symbol indicates the required direction of slots inconnector plates."16/1For 4 x 2 orientation, locateplates 0- 1"4/3PLATE LOCATION AND ORIENTATIONSymbolsNumbering SystemGeneral Safety Notes *Plate location details available in MiTek 20/20software or upon request.Industry Standards:ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.DSB-89: Design Standard for Bracing.BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.6-4-8WEBSTrusses are designed for wind loads in the plane of the truss unless otherwise shown.Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.dimensions shown in ft-in-sixteenths