Loading...
HomeMy WebLinkAboutDrainage Summary & Calculations WEIHE ENGINEERS Land Surveying(Civil Engineering Landscape Architecture Build with confidence"' y 7') rJ Zji Drainage Summary Doe And Calculations "f'114041 }=} For: FIRESTONE SERVICE CENTER Carmel, Indiana Project#W08-0700 Prepared For: Centres, INC. 26 West Dry Creek Circle, Suite 600 Littleton, CO 80120 Tele—(303) 996-4344 Fax—(303) 798-5110 Contact: Mark D. Lionberger Prepared By: Christopher M. Figueroa Certified By: James K. Shinneman, P.E. Date: 17 October 2008 Date Revised: 9 December 2008 10505 N.College Avenue I Indianapolis,IN 46280 I weihe.net 317 1 846—6611 I 800 1 452—6408 I Fax.317 1 843—0546 Allan H.Weihe,P.E.,L.S —President • LIE WEIHE ENGINEER S Land Surveying ~ Civil Engineering Landscape Architecture B «ild frith confidence" FIRESTONE SERVICE CENTER HYDROLOGY & HYDRAULIC ANALYSIS AND REPORT PROFESSIONAL CERTIFICATION LI_: W_EIHE -_ ENGINEER S Lantl Surveying I Crvii Engineering Landswpa Am011octura Huilrt uirG ~ .efidenr e. • CHRISTOPHER M. FIGUEROA Hyrdrologisl, Residallinl Dcvclopmcnt tigueroac a)weihe.net 10505 N. Collcec Avcnuc Indianapolis, IN 46280 317 1 846-6611 wcihcnet 800145?-6408 N0. = 10200392' -e ~~-. STATE OF .,~-~~ C ~~~ ~ ~ i ~ ~S' S ~ 0 N A L t ` F - ~ G ~ ~ ~ ~~ \• ~~ ~ , tz (a l os James K. Shinneman, P.E. Indiana Registration No. PEl 0200392 The following report and accompanying computations have been developed by me or under my direct supervision. 10505 N. College Avenue Indianapolis, IN 46280 ~ weihe.ncl 317 1 846-6611 ~ 800 1 452 -6408 Eex: 317 1 843-0546 Allan H. Wefhe, P.E., L.S. -President ~ ®WEIHE ENGINEER S _end 9ur•Jeping j Civlf c,~ei~eerino l.anescace Architecture Build iei:h coi~ji den ce' FIRESTONE SERVICE CENTER TABLE OF CONTENTS 1. PROJECT NARRATIVE 2. APPROVED MASTER PLAN CALCULATIONS 3. PIPE SIZING CALCULATIONS 4. WATER QUALITY CALCULATIONS • 5. BACK COVER POCKET POST-DEVELOPED PIPE-SIZING MODEL BASIN MAP LJ • PROJECT NARRATIVE ~ 1. WEIHE ENGINEERS 2nd Surucying ~ Civil Engineering Landsaace Archite~Wre &uiid with confidence'" FIRESTONE SERVICE CENTER DRAINAGE NARRATIVE AMCON Design and Consultants is proposing the development of a commercial service center in Hamilton County to be known as Firestone Service Center. The site is located on the Northeast corner of Weston Pointe Drive and U.S. 421/Michigan Road. The site is more specifically located in a part of the Southwest Quarter of Section 6, Township 17 North, Range 3 East, Clay Township, Hamilton County, Indiana. PROPOSED CONDITIONS The existing site is a portion of an overall master planned commercial development. Included in this report will be the approved calculations for the overall • development. This portion of the project is called out as Outlot #2 in the calculations. The pipes have been sized using the 10-year rainfall event. Water quality for this outlot will be handled via a water quality unit that will be install on the existing pipe that leaves the site. w J Z O d a U O U is ~. ^~ 1 ~ 9 '~ ' ~yRiV y. ~k 2S ii'& L'CYyFi R ~, F4 ~!' F r + S~~.$ i~"f •~~ ,.F 33~~ ~ ~ ~?Y qµ. ~ S~ ri~~ f 5 i b~~+"- ~ ff ~ 1vf ~,JfTU }Tait }_en~1. x .'3, r T R~+~ ~ ,µ,~~~. ~ ~~, 1~ Y- eF ~ 9 ! h !!t i vrv 5(~ a u ~ ~7 ~ $E ~ ~ . 4~6~ ~~F~ ~~ 1 sc ~ ~ ~~ ~~ x ~~ 4 c2' ~/ ~ ~~ t ~ ~i, ~_~ "tS'~`;h' j ~ ~ ~f ~ p r'~,i, g .+m^F ~ .r ~k5,„ 2 .'~ ~ ... ~ ~@ ~ J >t&'~ ~#~ ..$~'S y f~ ~l~ :, i~~ ~ ~ .e+ ~~~"_!a $$ `Y '~E '$~r3'~4~$~ ~ 7 ~'t N a ° i-31~r{! ,£j to ~~ +i` "4~~~` !~ 6e. yT ~ ~d` fe~~.R i K~ ~F.~ ~ ~~~t~ } , fi I,.a „4~ ~ ~ : ,& F .. ~ iw ~~. ~v ~ F ~ ~ ai~ a L s. ~ ~IL~ ~~~ ~- ~"~'. ~~ . w ~* ~ ~~ ~ ~'~ B +~ u ~ Tt ~. ~ gg - ir~ ~ T W SJ~08 F `F` 6 E-`~ ~ ~ ~~ j3 i ''~ „ ~ t W t 'a~ 4 p "7i~ 2~v y1 a'~'~~,~~ ~ ~N''3E 6 ' TM .. . _'Cg' ~ irxF~~ ~f ~ ~, ~~J ,CTC Y. R. $. ~ *a-3~'~w ~ '~~m ~Y _~t+ ` '~~ ~ P ~~ ~~ ~ k~ ~ ~ ~ a a3 ~m x~ 4 3 ~~ i~ ma s f p i m~~ n ' `!.n ^ z. w~ Ps.. ~'~'~' t 9 ~.. G r 5E ~~ ~x ~~~ ! Y~ ~ ~~~~.• fT~ y _ ~ % y ~ m M ~ x t° {Kl~l ~ ft ywrv ~ F ~ s¢p v ! ~r ~ ~`a ~t ,~+ F E.~,r R ~ ~ • ~ `~£5/ 7~i 9 f]AI~ ae.„„__ ~ 6 ~±tyy tl SI' d ~ " t s t „} 3+ ~ a "V f 9 t~ ~F p ~ ' i~ t {y ~ Wi R4i'J~, I"T~ ~` '%" 0 SC r ~r W 'id Z 4 "~rp rs .~pS t` a K} .. ¢~ p+ ''. ~ ~ ~ F * ~, ~ ,,,~ y . , ~ x ~ti ' u t ~ K i r to I p s~ y'R,k ~~' i"' %2,~ ~~,§'~g ~#~' < dfa'~- ~up t f ~ u ugg' I i y 6F~ ~ t 1 ~ h .} + t ~% N ~S ~ r . ~ x° ~ r~ ~# xki fF s~ ap+-br '~.,. x G ~ ( ~ ~P xx,, F r ~ + #,Y a -s ~ ~ ~ ~$ k~y w 'v ~ . ~ F3 ~y. '!~ 3I .Fj L~ }~ ~; t+i ,^ d ` ~ ~ 6 a A c 4'{ j .. ~' p. '9 °~, t tr~M ~ s t 9I r. *d"~~ +~k i..., ~' (.`~I 7 -t +- ~' ^ ~ 'h LF&- 4~ h ~ ~a r a pg.~ 'r.J 'k3fq i . r'.A r i t, , t 'G4 ~~gr .p.a ~~i - r +4s aY~fi $~ '~. ~"' ~ t jt $'2 f vYt".4 A ' 'fdt `{' ~Y! Y n ~t ~ u~ } fi ~ 5* ~ x~ ~{'~r' P 't ~ s Po ,`q'. ~"i i5 'd3 C"j~yp `~~ € e ~ "~.{n~ • S "!{de~' ~ ~~ y. F J .syy~~ fa '~- ~z£ ~ f .1 ~[ Ey ~'"t ~ . pF R ~ k tiu ! Li Y E 1~.. V "+. E ~~ t 'E 1 ~ ~~ (~ '' ~,a .{ n ~{t= ~~'4'~ yy~"}~ ~'{,'}~.; ~ S ~~x' ~ ' C n:1 ;~ ~ `~yfl 6 ~ 'F j } ~rp~'s,9} ~ ~' ~~;~! ~ tk n~3F „,, ~"'= {K' { q (~Y A~e~f"4'ft~~~ #~r~~. J,} Z'"t ` ~~ .~F. 3,~'n ~ z l~ 1{ } ~ '"'i~; ,wi k ~ I w iID ri. ~ W3 6 ' ~ a i R'R r gf S+. ~" ~}~° i ~ 3 y ~, tic ~,~ " fr~'a ' - ~ i ~ `~~IW *d k 4 bo ' F ,g F4Y Y4 ` ~ ~ yy 5 f1F' ;.l.G r`{ SS 9'~ ry' £i y 5 °1'i~ 4} ~ #Y 1 ~en. t f n t ~ . y itr tYx 5 ~ ~R w'~ f t ~ .`^~.~j'.lSaYrvtt v~S ik3hvW ft gdi.. GHk i" ~ E-F'r ~ Y i'Th~. FB ~~-2'%. ~N" ~ ~ k ~ $t 4 ~y f. ~`A d~".. 5Y 2 2R ~ ~~~~~~y '4 Y ..~.,/3 4H' ~,'; C ~~ r ~ z ~rb °„ '~ *o~ a t ~ M1[Xn Wt~{ ~ ~ .~ .°a. Y Y ~ '~ ~ &~ sa, t'Eg vi ~ ~ x {~„Y <vYk~ .a t,~y4 ~~pa.,~ ^ = + r " ` g -'' f~(p m r S.. ib`tYR~viC `' *' ^ ~ ~~ 3~'~F ~3~ '' g ~ } .S ~ ~ ~"`c ~,''~ 1 i s, u =`3 I A s~ '~ 4 ~' ` ~ k x t (~ rat f cf a ," 'z~ x ~ a>~= t'a s +`~A g Fp ~ i a. ~ zp. ~,~`fmdt st tr 3a~ d `''~ Ft ~ tt tk'9 ~~ i &~E ",- -' u~ pa ,fl S#s~ ~4 _~ ~+ : Gi, r r C kt: ' i x ^ E ' ~ ~ " s k" i, i+c. x t "~ ^ ; d '~.!^~.. om . ~.~ :+ z r$ ,;. a 3~ kd' ° J< Y ~" °~ tl ~ kt'!~ ~ . faF ~ °~ F 4 y~ ~~ ~ . ~~ ~: q"keF n y. '~ .,a+~s-~ ~s i'~-fi . - ; ~~ 'G-*: r~ak~ `a'.~,~, tt i^F ~ , . Rl I} 4 ~X M $~ ~§+ '~-^rr `t` i -unu 'y ~~.~~a~^`~ ~ ; y'io, fx}-z~~~yy~~0~ A + ,~°f°i ?,~tl ~ri ~i$ ~ s ~. ~ t~~ a~'. '6 e T R r ~ ~ `, ~ ~ c1..*=.. t ~ ~t a¢rr ~F~ x '. `~ ay i „ p ~`" t? F4,t .+~ y E''b E tl ~ rv. ~~~ ^'l Pa} ' 4 rv S S .f k~Nt N ~ t'UA - , ~ E Y a ~ t t Ki %.. 41,¢~ fn ~ J ( ~ ~ S ~,: '~ /`~`[ Ry t 5:.p ~„t~ j0 {~ A a5 `fit ?~ g ."" ¢¢G rt N x Y~E 4~ k., # ~ ~E ~f~tf ~r 4 4''~ ~-ryry '-T.. ~- ~y~S,.. y ~'+n,3,° Y F . 1 ~' .2 'fr' 4 ~ ' f aF Ems' '~'' r t ~ ^t~t ~ ~~ ~ ~# ~ ~ ' „ ~ ~ 4 ~R'~uFi ~ fl~~~°',i ~ L } A6 3~ c n° P , " _i ! s g car Fd fir 't `-s~ f 4 t E ~ "~`~'~~' '" t { i ~"~ ( ns 4k~~ F `~ w " V b I pa I SF f tF~t`p j;~ tt-'"} t k' F W @ P4 . "`t E} `~4m5~t" W +§ ~' "k t} ~F„*~j Yee` yr~ sv~~'/1 b.? g '~ ~ . y Y^ ~ z~ '~ , U ~ I Fb, g' * A a p .,~ ~ ~ ~ ~ 4 ~ ~~ #~ ai }f~ +~" kn ?+ N >~ 3v X:~ ~ggi{~43 i ~S~Y ~ i M * , ~ ~ 3 9 ~Y` ,~, i -~ ,~ $$ . . ~ ~ ~ '*$x_ .:: k4~,U F ~x~ ' ky ~~ F ~ . `- m .,P ~.~ .nt..rm31+~.~ ~. ~"~ nW ~~ x ~ rry '3.;~ ~ i x~- .fY,.vwi F ~t ~J ~ ~ b ... ~' r6 a,tta , g yL~~ *d 9) ~v bL~~ `W F'4y i ~~' E ~a ,k.F ../S"C a,. ;rte. ~:B .mow-. F .4.. uh. f p W d ,~ ..:'n-. ~uF±Ff1- • SITE LOCA~ON MAP • 0 APPROVED MASTER PLAN • 0 Drainage Analysis • Project: Westoa Pointe Retail Center U.S. 421 and W"eston Pointe Drive Carmel, Indiana Prepared For: Williams Realty Group 9830 Bauer Drive Indianapolis, Indiana 46280 Original Date: June 17, 2005 Revised Date: August 9, 2005 Designer. Aaron Hurt, PE, AIQ' • Job Number: 05-123 Civil Designs, LLP 2415 Directors Row, Suite E Indianapolis, Indiana 46241 Phone: 317-244-1968 Fax: 317-244-1969 o-~o. ~~98~ODD5©.=. ~. : ~~ 7•, srao~a~ . ~•: ~•.i Rte., ~. 8~4'2oos • DRAINAGE SUMMARY EXISTING SITE The existing site contains approximately 10.0 acres of vacant property. The proposed commercial property is part of the Weston Pointe Section One development previously platted by Pomait Homes, LLC. An existing detention pond has been constructed south of Weston Pointe Drive and currently drains the site. The pond is design to handle the fully developed retail property: A drainage report prepared by Steoppelwerth and Associates is included in the appendix of this analysis. • Looking North on US 421 .4 a O ~O a c 0 a~ d 0 h ~' bA C .~ O O Fa ~c a r c .o a G O a+ N 0 w ... y v ay.7a Y. z b0 d O O I-a • • • PROPOSED DRAINAGE -The proposed storm sewer piping has been designed to maintain adequate capacity (Q) and velocities exceeding 2.5 feet per second during the 10 year storm event. Please see the attached Rational Method -Storm Sewer Sizing spreadsheet for further detail. The proposed storm sewer system will tie into the Weston Pointe storm system and further conveyed to the on-site detention pond. CONCLUSION The proposed design will ensure proper drainage by conveying storm water at an adequate velocity through a pipe network towazds the existing storm water detention facility. This detention facility will regulate the outflow to pre-development standards as set forth by Hamilton County and Carmel. As a result, the stormwater design effectively manages the runoff from the site without burdening downstream property owners. u • Clvll Dwigm Pmecl No.0552] Ploecl W¢alon POlnle Retail Centel Lormion us. BZtnwezlan Pmme Dnve Baacrlellon oralnaGE Design Smrm FraQUellcy= 10 Year Manning'a n= 0.019 6forrR Onln flow LbVlaflon Porm By iCW Dale N]I2005 cnecxea Dam- 6iPVCluRE LEncll OwNwo r•nl E nPGA' A o RUNOFF COEFFIC .A.c.c. ROW ]°E^a°°' ] = O~ A RAINFALL NiEN51i '.'IOiRI. RUNOFF ~ PIPf EiER DU 9LOPf OF EWER a ~'fULL'' CAPACI]Y oclir _ f I Oevpn P. F ° M[ 9 rvoWl° sl ON A]Ols suv y INVER] UIS sv SWCWn n ~ CIS fe~clv~° °v °~= quciV NVENiRS IDROP ° o n n=I ~ I' "° U'S ws IMI IBSr.,I _ :ul _ ^c ° r°ml (mlol IM INmrl _ •'1°l.)',_ InI s :::Im+l - IWil _ N1 lnl nl In llg p IN Or InI 1111 1}5 0.10 B,10 B5p 031 0}] 5.00 003 "I.BI 1.BB 0.]1 :1.pp- 25] p01p3 p01.13 PoB,pS pN.sB 3.)0 p01.21 3 15 0,15 eB0 0.11 Spp ~1.1] - 025 9.]I:. W.15 ].15 0.}B p011B 4 5 05 O.BI OBI B,BI a.11 OI] 5,01 ].pa'•' I.BO 011 .<.Il.:' 3» p01.10 00,11 0.0} ].OS 0.11 W]e5 p0].5 ] 5 120 011 OBS B.]I 1.11 B.BI °.BB B,1B r.p }5'.~ 111 :. IB.]0 9.38 Pof,IB I.OB )]I 0.61 pOd O] 5 0 I}0 002 B.BS 0,5} i.BS 9d1 0.50 S,SI I001c 150 °1p .Il p]r: ]35 PoI.)B p0a5] PoO p} Bp951 I.p] I.B6 031 p0]II po].I ~ i Ix] 0.51 ],BB _0,05 OII p.B} B.50 SSO IB.OS- }.Se o31 . }0;16 I,IB pB1.B) pBI.}I Bpp,18 Bpp,gB IpB 1B1 0, ]] p0]01 p0].)1 ] 15 II} 0.11 I,II OSS 0]5 ]B] SBI :.',]0 <9"' 0.]1 :pl p} 90<,]1 PoI BO Bpe00 1p1 ]VI 010 p0}.00 p02.11 ~ ]w-- vaz,l ll r ~ - 7 , i = r r - ~ r . i i ~ ~ I 1 i i a = . ~ ` - ~ ~ - ~ 1 ~ i ! I 1 ~ ~ . R~I..J storm ]=wr D=crpn W°•F~1n=10F1}].vN \ _` ~ `~~ `' \\ ~A c u°~~ ^.., 1 FA, .Y ~~ x ~ Y' N.p \\ AREA = 4.16 AC ; \, ~ ~ \ i \ '°~n v\~ ~ ~n'~ ~~ I ~, \ h / i s' t' \\\ i \\ \. \\\ /yo •r s \\~ ,eh \ \\\ v ~ v \ as s ~~` ~ ~,:~ 0 1y\ N a ~(° r' P° \ ~° ~~ ~~ ~~~ \ V ~'! ,~ m \ ;;;; ~ x x^°y~ ~'p~~ %~a \Y \ r. x x " ~\\ \ ~~\:,~ \\yr ~ \\\ \ ~v~ v ~ - \\\ ~ vvv ~.. ~vv.~~t \ ~~ \ \\\ ~ \\~ \ .~ , v v° ~ ~;,v \~\ % `. xF r \\\ \\~ \ ~' .~ ~~ ~~\1~ A~ ~„o .~° - \\ \\ \\\ ~ FO \\l \ \\\ \ r„~ ~~~.\ ~\°~ ~~ ~, ...... Pei y~/// ~k ` C/~ ~s _.. i ~r ~ P AREA = 1.23 AC ~ ~ ~ ,~ ° - - . _-\ \ Md S „3 ~. ~~,. .^'x°~ '" d~`xB. ~, s ,'. ~ :', ~~ alQ~ ~.y 1 s ~ 0 I ~XiSTW(,.y 17 RAiN AUE 13 ~k~,,.t< +' \\\\\ P\ a ~\,\ `\ ~ a i~fl'~ A~\VA / ~ ~A~ A .~. ~C~^~ \ ~' Y\~ 1\ g\ ai,~ \\ \ q q,~ ¢ „~' / ,rd y~. ~ \ \ ~ ~ of ~i 1 \q \ ,, \\ \ \ _ f \\ 1 ~~(~i'I /~ AREA=3.85 AC \\, \~,_.. •`J , tl 'i~l \\\ I ~ i ii Y ~ II \ 1~ "* 1 n ~Y 1 °'~° ,~~,n, a ;~ ~~ d• ~` P P.u ,..a,._.... __F, _._~ ._ ~._. ,. Wa:._...-.._.,i ..,~ _, J-' a VA ~ ~ ~ _ N~~ wES~ tv xm~ ~~~ ~w + y, „3 \~__ I `\ z la.:,, ~.1 14.i` ~~. --, -_- ~ i ~~ ~ i -• ,r ~~~ ~U" ~ t ti\\iN4 \l~\\ -R''i'-i M1\ \\ ~X \ ;ill ,d 1k' \\ \ I j 1~ ~o u' qrv t .M .- w' I k o t / I __- ---_ __-_sw ` rraP~ .7 /P~~I V?J~ g35~do~ I. r'` -.._._. ._._._ ._ -._._... ,-..__.~ 47L1 y_, Q t `~, I~ ~ - _. _.. - _-~ __..___... °1111 ;( ~~~_ ~ `~ ~ ~~~ ~~; \ ~ .,w i S. t • c f ..f ~ ' ~~~ ~ iila'i F11 ~ cf V ~ ~ '~ Z~ _ 1 `>x ~ - n l+ 4 .z. \ y b n ]lS K ~° n d _ ~ x x ~, wM o a e xm1Yi ~' ~ _ „W 1 _ ~:' ~'_- - ''~ vaw ~'"" A V 91'6. a N~"" e6c ~ i ~ \: I r /~c~a '\ o) Yxr\ ~ ~~ '" N~ 5 x \ aii I i 1RA ~~' I' eae.~~, ~ '\ Y ,~:wC~. 1 lo~i~o \ \ 1, 1 ~ ~ ~ ~ 6u\xieo bG \ µyp~ ~ \ ~ \ 1 - ~ i s aed6 015 MY ~ ~1 i. ~ ~ .. 1 i' aop10N ,Sg \ `~ ~ ` 1~ xx ~~ ~ ~ ~ \ Y ®P~®1 11 ~ V x I x\ ~ ~ ~ e ~ ~~Y~~ ~ ~ I~. d- a 1 \ ,~ ~ ~ s' I x.~~ '/ ~ ~ ', A, ~ I ~\ ce «` °cyd e9 ZGL' p~ ~ ~ R n ~ ~~~ ~ A ~ ~ 5` ~~x"I \ EJMI ` W x ~. ~ - 1 ~ sp Y. ~ eaedse ab ~ m~mA °w~'::Iw ~, ~ A ~ ib ~ U' ~ ~ - 9V I ~ i~ I 'e~° ~e e+~ . jg 008 V ~ d l / V '~ A - 1 _ ~, Z , ~V e ~'~ pVC t6 v K t~.+ V/ ~ ~~~~`°oo~~~w ~~ eems ee € ~ I ~`~~~~ x ~ i 1 ~ °~ '` 3a ~ x.+ \.\`b, `\n`V A_A/`~e~oa ~y w cx A:es w"'`a ss ~ .. 7 I I 1 .. J Y 'A IP~ i - ~1~~ """ l„il ,"'~`~"y \ na ~ S ~ _ ' `` I I1 n ~ '~ ~^"w .. it \'( I ~ w iyw _ . ~ 1 . e.~m\ ``\ ~ ~ ~ .,\- ~ t 11 c ~. i 1+ f~ tnn".j x''r'wnI \:-. c 0 ~O `\ ` \ \ I \!q ~ ~ ~~ ~ ~ ~ ~ / yy 11 ~x Ax i x W,..~ , _. «©i / w x ~: Ew .'{'d ~ .~ •A 1 / ` ) A /.WI ~peQ'~a -Wl T~a . / B`0 \ 1 L/ \ ~* ~Oe :~ _ ~ / fin. "~.~ ys /a r ~., rl ~iR"~ ~.,` //`~~~~,°°-ra~'`o PB6Zt s~ ~ ~ maae=37x~ -'a~1 1II 1 \~ ~ /~ \ e_S OtlpL / 1 t ~ ~ i° ~< e:y Sti s a"az ~~ ' , a~5 ~' ~ ~ ~. 8 \ ~ yO o ~ 1~~~ ~ ~\ a x "-- - -- ~ ~ 1 ~- c-: ., , • • • ROONE ooa rcE1 v> =; t~l T. ll N, ~ COUNTY MoC3 D r _~ O Z C7 O c z -i -~ ~, z _o D Z D N S m m Z s C w ? ~ ~ _ ~ ~ ~ ~ - ~ ~ ~ I ~v~ .~o.uo l--- 'Uri ~~ - i ~ ,' ~ ~ _ i ~ ~ r ~ ;~ \~A ~ ~ i ~ Q s., ` ~ , 0-vf , ~T _/1~ ~~'iA , ~~~ a- ' , ~ _f ) i, ~ \~~ _ ~ ,p '~ ~ ' \~\~\.. I 'T'a\~ ,rte i~~ ,L~I~ `"i ~ ~ rv O VA ~ 'k~- C~ ~ ~.- O,~ A\\ rte" V e lJ ~c~1 ` -~ ~ ti ~ A ~ / ~ e o0 \ \ G ~ A~ 1 ~ s ..., ~ ~ / ~/ ~V 1 i~ ~ ; ~ V 'n A ~'- I ~ \ ~ C' A ~ o'" V I ~ ' ' ~ r.y ~ w _ ~ ~ \ p~~ \~ ~~ . _ ,~ ~ ~~ n ~~ i ~, ~T ~ ~~ - ~. ~ ~,.; -~ ``~ . I' ~ i i ~ ~~~,7>, I) ~w o ~ ~' 1 ~ ~ J ' ~ _ ~. ~~^ ` ~ s -- > >> ~ -~~ ~ - ~ , ~ -~r ~ ~ ~<~~ '~ n •~~.I~i~ - ~ s / ~, o / ~\ w 's`ly .i` ~~~\~ ~ ~ ~~.) d ~-iii 1 "~~\\\ L ~ ~ 1.i~ ~ '° ~ ''~ - 1 .. ~ ~p~i - ~ ~ A o ~ ~ -'~ A~~F` ~ 3Naos 3NS .' ~ s ~ ~ ~ ~ ~) ~ 1AA i ~ 2 a ~ _ _ ~ •` 1 ~ adod i ~~ ~ ~ ~. .,~ A s v ff / 7 ri . ~ i~~~~ A ~~ I. ~ ~ Iii-~ ) ~~ M ~~ ~~ ~~FJI ~~1'~}~~- i~p1~/~ 1} c--~~. JI .`ilk 41 1S M ~ ~ ~I \~ ~ I IJ\~ ~~ \ ~~~ '~ ~ r ~~~~~ ) ) w ~ I~~;~re~~~~ ~~ tip ~ m~ ~~la ~\,~...;/// gee' ~:l i\N~ +~ ,~`' _ ~~~ ,i ;~ If~L~~~n r' °y'~ " ~ I~ ~ i~ ~ , ~ I ~A nV' i r ~'' ~ I of \~ ~ ~ ~ ~ ~~ - ~'~_~ ~~ ,_ ,.p ' '1 ~ J/r ~~ ~ ~ l "~ \~ ~~I (`-~/ ~ l ~ j~ ~ ~ ~~ l)/`~4. lip ~ ~ ~ f 4 ~I~1.`~ ~ ~ L,~~ ~4 ~~ ~,. ,j spa ~ /1/,;'l\~ ~ ~~l i{ I ~ r ~ I ~U /~ :3 ., r ~., _...;> >.... o ... .-~-- ° "' ° _ ._ Stage-Storage Computations • Civil Designs Project No. OS-123 ey TCW Date 8/3/2005 • • Project Weston Pointe Retail Center Location - U.S. 421-& Weston Pointe Drive Description Retention Pond V; =Incremental volume (acre-ft) h =Elevation difference (ft) A =Surface area (acres) h = ElevationZ - Elevation Average Area = (Ai + AZ + (Ai Az)°'S)/3 Conic Volume: V, = h[(A~ + Az + (AtAzJ°-5)/3] Elevation Area Average Area h V; Total Volume (ft acres) (acres) ft acre-ft) (acre-ft) 898.30 0.36 0.00 0.59 .1.70 1.01 900.00 0.86 1.01 0.91 1.00 0.91 901.OD 0.96 1.92 1.01 1.00 1.01 902.00 1.D6 2.92 1.11 1.00 1.11 903.00 1.16 4.03 1.21 1.00 1.21 904.00 1.26 5.24 Checked Date POND Stage-Storage Worksheet.xls • Return Period -Rainfall Intensity (in/hrl Hours Minutes 2 I 5 t0 25 50 100 0.08 5 4.75 6.14 6.99 8.08 8.83 9.69 0.17 10 3.63 4J5 5.48 I 6.40 7.07 7.77 0.25 7 5 I 2.97 3.92 4.55 I 5.34 5.94 6.53 0.5 30 t .98 2.64 3.09 3.65 4.10 4.50 1 60 1.25 1.67 1-.96 2.31 2.62 2.88 2 720 0.76 7.02 1.20 1.40 7.59 1.75 - 3 180 0.56 -- 0.75 0.88. 7.03 1.77 7.29. 6 360 0.33 0.44 0.52 0.60 0.68 0.75 12 720 0.20 026 0.30 0.35 0.39 0.43 24 1440 0.11 0.15 0.17 0.20 0.22 025 Return Period -Rainfall De th (in} Hours Minutes 2 5 10 25 50 100 0.08 5 0.40 0.51 0.58 0.67 0.74 0.81 0.17 10 0.61 0.79 0.91 1.07 1.18 1.30 0.25 15 .0.74 0.98 1.14 1.34 ~ t.49 1.63 0.5 30 0.99 1.32 -' 1.55 1.83 2.05 2.25 1 60 '1.25 1.67 1.96 2.31 2.62 2.88 2 120 1.52 204 2.40 2.80 3.18 3.50 - 3 180 1.68 2.25 2.64 ~ 3.09 3.51 3.87 6 360 1.98 2.64 3.12 3.60 4.08 4.50 12 720 2.40 3.12 3.60 420 4.68 5.16 24 1440 2.64 3.60 4-08 4.80 528 6.00 TABLE 202-2: IDF and IDD Tables for Indianapolis, IN C1Ty of Indianapolis Stormwater Sped6cations Manual Appendix pane A2-2 May 10, 1995 • Appendix: • Weston Pointe Section 1 Drainage Report • WESTON POIIVTE SECTION Z DRAINAGE REPORT . . PREPAREp FOR: PortrduHomes; L.L.C. 8250 HaversjickRoad Suite I10 Indiknapohs; IN 46240 • - REPARED BY • ' . . } P Christopher M Ftguerog ` c ,$'toeppelwerth, and Associates,. {317), 577- 3400; ext.33 : . ~ DATE PREPARED .:. - December I5, 2003: ` ` ... DAVE REVISED: .. March 17, 2009 • WESTON POINTS SECTION 1 TABLE OF. CONTENTS I. ,PROJECT NARRATIVE 2., POST-DEVELOPED.CONDITIONS 3. PIPE SIZING CALCULATIONS 4. VJATERQL?ALITY:CALClII;ATIONS 5. BACK COVER POCKET • .> _.` 'POST-DEVELOPED STORAGE-ROUTING MODEL BASIN MAP POST=DEVELOPED PIPE-SIZING MODEL BASIN MAP , • WESTON::POINTE - SECTION 1 :;:. DRAINAGE NAI2RATI~'E Portrazt Homes, L:L C is proposing the development of a,multtfamily residential • subdivtsron i]x Hamrltori County to be knowri as"Weston P6inte,.Seetioii One: The site is located on the.);-ast Side of Michigan Road azd3ust north of West 106` Street. •The site is more pecifically located:in a part'of the Soutnwest;Quarter of Section 6 .Township 12; North'; Rahge 3 East in Hamrlton County, Indiana.' EXISTING CO1S'DITIONS ` The pre=developed', Weston PomYsite has been analyzed`ima prsuious study -. known as The Crooked. Ceek Watershed Analysis Inalris studyahere rs' a:defermmed release rate of Q:~S c f s 'per acre Our site is located entirely m basin E~(see exhtbit,l0` attaelied) The•overall acreage of our srte is 34:83 acres; it was also determined that there is a total of 6~33:acras o£offsite coming directly onto the"northern portion of our site: The total acreage that was aced rs 41.'.1.5:acres , .. ' T1~e stfe zs almost~entirely surrounded by'othei ubdivisions To the south of the site there are two subdivisions known as,The;Village at,VJeston Place, Section Two; and . Park at Weston Place Section Two': To the east there:is.a subdivision known:as Park at` ' Weston Place, Section Tluee. To the~north there is a medium sized'cornmereialsrte; ' .:.. "; There,is a sma1T parhon of offsite that enters•the eastern poition of the srte. This offste , '- '` consist of agricultural land • ` `The, sons fDr the: site are an even mixture of B. and C, Brookston and'Crosby with , .small pockets of Miami soil. The Weston Pointe site is cuaently: agricultural land with ,... -"some'densewoods`fotha;east. , -:. . To estabhsh the d=0-year allowable dischargeTafe:for the post developed Weston ' ' ... Pointe srte, the'.10-ybar starin event wasrun:for the pre=developed onsite Basin, and the" lOQ-year storm event was,rixn for the pre=developed offsite basins. Likewise; to establish the 2'-year-allowable discharge rate; the 2=year-storm event•was run for.the gre developed onsife'basin, and the 10-yeai storm event was run fot-the prc-developed offsite basins.. Time of Chncentiations (Tc"s) and Curve Numbers (CN's) were calculated,for the basin using TR-~5 mefhodology. These.pre=determined values were eritered into ICPR ., and.used tq compute:multiple.hydrographs. 2-year and 10-year hydrogiaphs were developed for the single basin.. • '"-I ~ ~I ~ ~.~ I I~ ~ 'il ``ji ~t" ~'' j txhiDit 1_ c ( ..t I 1 L. p /oi/~ I I F. I I ~ ! jf I '" I r .~II ' ''~eo, J" !J ~J ~ )1 Crooked creek w s ,_rzisr`L 1 ,.~.-~,..a~~ _ s, _ 32 , ) ( d Waters hed • ~ '~' ! 1~-^i;.lv' ~ I/fin .l I I; ! /I - lil peveloped Conditiol pp ) , / .J a ~ ' ~'. ~' I l u l 1 ,1 ., of /~,~~; '' , p ,I j~., i ' 11 I I { J -1 = ~ ~~I°~ ~~ 1 G. I 9 i //,. I. I. {{++ I, 1 ~ t, l\' 1 e~ 1uerN ~ 'y¢s 7 O /~/. ae _-r evs 1/ ~i~ I ~ iaev ', e _ -~ '~~ .'Deis ~ ~ " ' ~ ,. '~ ~:: /i.. ,. '~. ./ \ p+" nii e'r Gr ~~_~ 1~ . - 7 ! ~ ~ it f/ f / 1 1 ~1 ~ ~, e 11(~~9 • " >f ,I .i ..,~:~ o ,I 1• p 1 /i p t ~ / . 1 / .1 ~ I . ir' j f. ).y.'.'• .~",` / 'I 1, ~ 1 I.I. I L ~/ / I 1~ c~ I: -7 o',i 11 ;e _ I I _ ~ as 1 ., ,y, / " • II . I ~ f ~ J~,. ~I,/ 1 /' 1~.1. 1, e>y e t '-`1 ,1.'. S ~ 1 '~ 1 ~ 801 ~ / °-~. ~ Go ovr 1 ~> ) ~:; ~. I I" \'" ~.~ `,r~// ~. i1'` '-': ..,"," .. •, :'~7"_!f /pie 'b J J,gI' `" .. I. /%i /~. :~`' //OT~AR~T"OkI /f ~ ~ !' ~ ,u Goll rJ.,~l ~) ~• ~• ~' -` Rc~tRTGE /'~'ii~ /~'/ ., ~ L OG4T/~-- ~._'';-. I,'I' @,IR's[~;~ 1 `1 !~~ "- Eq I '> D LOW A L ~ '. ~, ~ ~ , t ~I ,= - ~ 5/~/ ~r! ~1! r ~ ' '_. .: :[: ~_.1~ i__- / (..ter .! I /! I , .. ti~ :~-. ~ o • r s~ `•~~s /rF J ~ •• ~1 1 ~ ' O I ! ~` •. it ~ `' `~ r t. l //. , ~ 1 ~ ` I j 6.. ~`~ ~ 7 _ iIl>` (14KIi '. b31 ,¢L_ r. ~I I - ~ ~ ~ ",~. 1~~j1., it M1~e_ \., E~,~E~ , .. ". ,G / ~ ~ \~; IV' ~ •.I /~' 1. f~ ] PIP ~I~') ~~;/.~_ •' G ~ >x ~ I ' I. •,'~!. 1, <~~:'1}~!- ~~ l °I Sir; ~[~l-~~,. ~ ~ ' " W ~ . Gdu i Gours[ I ' \ ~ _ ! f' I I J 1 •' ~'~ ' r __ F L r ~ •. Norih August, 1•° ! - /' <.~ ~t. .:(~~~(. 651 i / I ~: ((v°CPNI CP/PE ~,; dd!t><on-•,i ~/)I ,F~-( I ~%'` ~ aIJD `/--. r; e 1 ~ / '~ I ii-- ~~H h1AYFlCjI~.~ ~F`~ - r`• L -'/ col i I`~.1 . /•,.. ~ 1-i ~~4/ .y •• • •. w~ r- nc rr BMA l fl52 ~ SrR E7" ' 1 lBJI " i~C -,~LJC*E° . es7 ~ IN7 1AN r §> / ' Tr [. 859 ~ ,: \ .. - ~..-. 18< •i J o I ~! ;- .'em`u ~, 1 ~ ~ 1 +'~l \ `"~ ~. I I `.IIZ~ i ~ J (' ~ J\ ~ °' I „!pI I 1 l ~ I 6 5 ~ r') _ I ~) ~ I ~~~ ~ ~ 5 / ~ ~ ' 1 • ~'~ ~I~/~ 1 I ! N§ ~~ , ~~ t ~ `~~~I() /' o _ y . ' ~ 1{~ ~ •~'a III [I~t ~C€1 ii ~/I y p .k: e I i. ":161 i fzr' I - l=- d d:! ~ -I I c ~ - r - g,yr ;~ • ~S- (11 I i '.I pp \\~ ~I. I~~~~°'' lII ) i_ mot.- ~ /''`:h. ~~; ' ~Ita l/ - -I~ JI .IG ~!~ fl ~ •', s'I II9 ~!rr~J !~r es• ~! ~s~'°l ~I I I ~/~t\/\?'~~^~.h; I~~l.' ..~b-,~ .I= ,e.~ I I .Ilt y I~i~.s <~r DI I...I \. T~ - - nN'~ r r firm ,~ I/ r 1 L• IL,__,5, f. ~~~ - L.., e~q Oill ~- I':j'• S ..l'. -ass LcJ[c~E~. • .n G ~{/. Il.,p~::~ > /: ~ <<.bl ~"71 I . ~7 c,+-`' ~_ <C Z O 1- R U O Q J_ Weston Pointe Job# 37963 Post-Developed Site Basin 603 to Str. 603. Area 2.04 ac 2.D4 ac ~ 608 to Pond 1 • Subbasin Area - CN Commercial 10.67 ac 90 Total - 10.67 ac 90 Basin 612 to Pond 1 ac Basin 614 to Pond 1 Subbasin - Area CN Apartments - 1:98 ac 90 Total ~ 1.98 ac 90' Date: 11 /21 /03 Basin 621 to Str. 621 Subbasin Area CN Apartments D.33 ac 90 Total 0.33 ac 90 Basin 622 to Str. 622 Subbasin Area CN Apartments 0.48 ac -90 Total 0,48 ac 90 Basin 622A to Str. 622A Area D.39 ac D.39 ac Basin 623 to Str. 623 Subbasin Area CN Apartments 1.19 ac 90 Total 1.19 ac 90 • Weston Pointe Job# 37963 Post-Developed Site Basin 630 to Pond 2 • Subbasin Area CN Apartments 3.23 ac 90 Total ~ 3.23 ac 90 tsasrn oaa to rona s Subbasin Area CN Apartmants ~ 1.13 ac 90 Total 1.13 ac 90 Basin 642 to Pond 3 Area 1.68 ac 1.68 ac Subbasin Area CN Apartments 2.85 ac 90 - Total 2.85 ac 90 Basin 648 to Pond 2 Pond 1 to Pond 1 Subbasin Area CN Residential 0.74 ac 79 Impervious 0.83 ac 98 Total 1.57 ac 89 Pond 2 to Pond 2 Subbasin ~ Area CN Residential Impervious 1.62 ac 0.64 ac 79 98 Total 2.26 ac 64 Pond 3 to Pond 3 Subbasin Area CN Residential 0.45 ac 79 Impervious 0.62 ac 98 Total 1.07 ac 90 Off 648 to Pond 2 Subbasin Area CN Agricultural 5.68 ac 78 Total 5.68 ac 78 • Weston Pointe Job# 37963 Post-Developed Sile Date: 11/21/03 Time of Concentrations ICPR Basin Sheet Flow Manual LN Descrlplion L= pi= T,' Oo](nL)O.BI(Pr'z'1 nezcriptivn V= L= TI=LN Dezcdpllon V= L= iI=LN Te (total) T~ (fatal) Basin 603 Grass Ont7 20 2,6G 0.02 0.054G Gurfer/Swele 2.00 375 0.0521 Pipe Flaw 2.G0 407 0.0452 0.1519 9.1 Basin 608 Grass 0.011 60 2.66 0.02 0.0147 Gufter/Swale 2.DD .400 0.0556 Pi eFlow 2.50 122' 0.0136 0.0638 5.0 Basin 612 Grass 0.15 80 2.66 0.02 0.1490 Gutter/Swale 2.00 260 0.0361 Pi e Flow 2,50' 20 0.0022 0.1682 11.3 Basin 614 Grass 0.15 GO 2.66 0.02 0.1190 Gulfer/Sra~ale Z.00 6D O.D063 Pi eFlow 2,50 Z96 0,0329 0.1602 9.fi Basin 621 A arfinerrt 0.15 64 2.66 O.OZ 0,1253 Gufter/Swale 2.00 100 0.0139 Pi eFlow 2,50 0 0.0000 0.1392 6.4 Basln s22 A artment 0.15 45 2.66 0.02 0,0946 Gufter/Swale 2.00 - 20 0.0028 Pi e Flow 2.50 0 0.0000 0.0973 5.8 Basin 622A A artment- 0.15 70 2.66 .0.02 0,1346 Gufter/Swele' 2,OD 120 0.0167 Pi eFlow 2.50 0 -0.0000 0.1513 9,1 Basin 623 A arlrnenf 0.15 90 2.66 0,02 0.1646 Gutter/Swale 2.OD 60 0.0083 Pi a Flow 2.50 426 0.0473 0.2203 13.2 Basin 630 A admen( 0.15 80 2.66 0.02 0,1498 .~ ~ Gufter/Swale 2.00 10 0.0014 Pi e Flow 2,50 662 0.0736 0.2248 17.5 Basin 638 Aartmenl 0.15 60 2.66 0.02 0.1190 Gutter/Swale 2.00 0 0.0000 Pi eFlow 2,50 140 0.0156 0.1346 6,1 Basin fi42 A artment 0.15 45 2.66 0.02 0.0946 - Gulfer/Swale 2.00 80 0.0111 Pi eFlow 2.50 394 0.0438 0.1494 9.0 Basin 648 A artment 0.15 80 2.66 0.02. 0,1498 Gulfer/Swale 2.00 240 0.0333 Pi eFlow 2.50 321 0.0357 0.2188 13.1 Pond1 Grass 0.15 45 2.66 0.02 0,0946 Gutter/Swale 2.00 0 0.0000 Pi eFlow 2.50 0 0.0000 0,0946 5.7 Pm1d2 Grass 0.15 100 2.68 0.02 0.1791 Gufter/Swale 2.00 0 0.0000 Pi eFlow 2,50 0 0,0000 0.1791 10.7 Pond 3 Grass 0.15 40 2.66 0,02 0.0861 Gv@er/Swale 2.00 0 0.0000 PI e Flow 2.50 0 0.0000 0.0861 5.Z Uft 648 Agri 0.17 300 2.66 0:004 0.9076 Gufter/Swale Z.00 60 0.0083 Pipe Flow 2.50 175 0.0194 0.9354 56.1 Nodes A Stage/Area V 5Cay a/Volume T Time/Stage M Manhole Basins 0 Overland FLow U SCS Wilt Nydco S Santa Barbara . Links P Pipe w Weir C channel D Drop Structure e Dr itlge R RaCLng CV rve II B[ea ch A: PON U1 U: BAS608 ' U:BA5614 U: POND1 I D: P1-603 A: STR603. u: BA56D3 A: POND2 V: tlfl]0]V U: BA5690 U: PON02 U: OFF649 P; P2-619 A: STR 619 P:fi19-620 P: 620-621 A: 5'fP 620 A: STR 621 i ~~ -->- P: 621 622A i U: BA5621 ,_,,. P 603-602 A; STR602`- `----_ P: 602-601 Ai STR601 ~. P: 601-600 ~A:STft 600~J-~~~----~ I C; 6G0-OUT2 ___I . ..__.._..: T: OUT LET2~ P: 622A-622 Interconnected Channel and Pond Routing Model (ICPR) ®2002 Streaniline Tec(mologies, trnc. • Name: B.aS'o03 Group: 3a.SS On_t Hydrograph: UH494 Ra ir.f all F11 e: Rainfall Amount (in). 0.000 Area(ac): 2.090 Curve Number: 90.00 DCIA(}): 0.00 Nzme: H^5609 Groop: RASE Un_t Hydrograph: DH4B9 Rainfall File: fiain.`a_'_ Amount (ial: 0.000 Area (ac): 10.60 Curve Number: 90.00 - DCIA(t): 0.00 Name: BAS 614 Group: BASE Unit Hydrograoh: UH5 B4 Rainfall File: Rainfall Amocnt (in): 0:000 Area lac): 1.980 Curve Number: 90.00 DCIA (i): O.DD Name: HAj621 Group: HAS Unit Nyd rooraph: UH984 Rainfall File: • Rainfall Amount (in): 0.000 Area (ap : 0.330 Cu_-ve Number: 9D. OD DCIA(%1: 0.00 Name: 3AS622 Group: HP.jE Uait Hytlrograph: -H99V Rainf ail File: Rainfall Amount (inl: 0.000 Area(acl: D.4BD Curve Number: 90. OD DCIA(&): 0.00 Name: BA5622A Group: HASE Unit HydrograoR: UH994 Rainfall Fila: Rain`. all Amount (1n7: D. DOD Area (aU : 0.390 Curve Number- 90.00 DCIA(%): 0.00 Name: 3AS 630 Group: 3ASE • Unit Hydrograph: UR494 Rainfall File: Rainfall Amount lin): 0.000 Area la c): 3.230 Curve Number: 90.00 Node: STR6C3 States: Oosite Tyne: SCS Unit Hydrograph Peaking Ea ctor 984.0 Storm Dur ati on lh rsl: O.OD Time of Conc (min): 9.10 Time Sbift(hxs7: 0.00 N.ax Allowable q(c'_s7: 999999.000 Notle: PON-1 S'aivs: On site Type: SCS Unit Hydrograph Peaking Fzctor: 484.0 Storm DurationlRrs): 0,00 Time of Conclmin): 5.00 Time 5h ift(hrsl: O.OD Max Al towable q(cf s): 999999.000 Notle: PONDI Status: Onsite Type: SCS Urit Hydrograph Peaking Factor: 484.0 ' Storm Dur atron (hrs): 0.00 Time of Conc Amin): 9.60 Time Shin (h rs): 0,00 Max Allowable q(cfsl: 990999.000 Notle: STR62'_ jtat us: On site Type: SCS Unit Hydrograph Peaking Factor: 484.0 Storm Duration lhrs): 0.00 Time of Conc (min): 8.40 Time Shifi(hrs): 0.00 Max .411 ovable p(cf s): 999999.000 Node: jTA622 Status: Onsite Type: SCS Unit Hytlrograph Peaking Factor: 484.0 jtonn Duration (hrsl: 0.00 Time of Conclmin): 5. R0 Time Shin lhzs): 0.00 Max Allowable D(cfs): 999999.000 Node: jTR62 Z4 Statvs: onsite Type: SCS Unit Hytlrograph peaking Factor: 484.0 Storm Durat ion lhrs): 0.00. Time of Conc (min): 9.10 ime jhiftlhrs): 0.00 Hax Allowable q(cfs): 999999.000 Noae: PDND2 Status: Dnsite Type: SCS Unit Hydrograoh Peaking Factor- 489.0 Storm Duration(hzs~: 0.00 Time of Conc(min): ?3.50 Time Shift (hrs): 0.00 Hax ALlowable q(cfs): 999999.000 Intercoanecied Charme] and Pond Rovting Model CCPR) ®2002 Streamline Technologies, Inc. Page 1 of 3 • DCAIt 0.00 Name: 3A5638 Node: PONDS Stites: Onsite Group: BASE Tyne: SCS Unit 5ydrograph unit Hydrograph: 05499 Peaking :actor: 484.0 Ra in `. all File:- Storm Durzt on (hrs7: 0.00 Rainfall Amount (in?; 0.000 Time o: Conc (mLn): H.10 Area (acd: 1.130 Time Shia (Crs7: 0.00 Curve Number: 90.00 Max Allowable Q(c°s): 939939.000 _ ________________e_____ Name- 3AS'42 _ _________ _____________________________ Node: PONDS __ Status: _____. Onsite Group: RASE - Type: SCC Unit Hyd mgraph Unit Rytlroa raph: UH4H4 Pea Y.ing Factor: 984.0 Rainfall File: Storm Duration (hrs7: 0.00 - Rainfall Amount (in7: 0.000 Time o£ Conc(min): 9.00 Area (ac): 1.680 Time Sh_'t (hrsl: 0.00 Curve Number 90.06 Max Allowable D(c£s): 999999.000 DCIA (:): 0.00 Name: 985648 Node: PDND2 5`atvs- Onsite Group:- BASE Type: SCS Unit Hydrograph Vnit Hytlr ograph: UH484 Peaking Factor. 484.0 Rainfall File: - ~ Storm Dura tion (hrs7: 0.00 Rainfall Amounilin): 0.000 Time o£ Coaclminl: 13.10 Area (ac): 2. 850 Time Shift(hrsl: 0.00 Curve N•.vaber: 90.00 riax A1'_owable Q(cf s): 999999.600 _ DCIP.(a): 0.00 Name: OFF646 Node: POND2 ~ Status: Ons i`e Grovp: HASS Type: SCS Unit Hydrocraph Unit Hydrograph: DH4 E4 Peakino Factor: 489.0 Rainfall File: Storm Dura tion (hrs;: D.OD Rainfall Amount (in): 0-000 Time of Conc(min): 56.10 Area(aU : 5.680 Time Shift ;Ars): 0.00 Curve Number: ]8.00 Y.ax Allowable O(cfs): 999999.000 DCIAIY): 0.00 - Name: POND1 Node: PDND1 Status: Onsite Grovp: BASE Type: SCS Unit Hydrograph Unit Hydrograph: ^H9 B4 Pea Y,i ng Facm r: 484.0 Rainfall File: Storm Du ration (h rs): 0.00 Rainfall Amount lip): O.ODD Time of Conc(min): 5.]0 - Area(ac): 1590 Time Shift (hrs7: 0.00 Curve Number: B9. 00 Max Allowable O(cfs7: 999999.000 _ DCIA(&): 0.00 Name: PON02 Notle: PJN02 Status: OnsitE Group: 9AEE~ Type: SCE Dnit Hydrograph' Unit Hydrograph: ^H984 Peaking Factor: 484.0 Rainfall File: Storm Duration[hrs1: 0.00 Rainfa l'_ Amount(in): 0.000 - Time o£ Conc(min): 10.]0 Arealac): 2.260 Time Shift (hrs7: 0.00 Curve Number: 89.00 Max Allowable O(cfsl: 999999.000 DCIAIt): 0.00 __________________ _____ Name: PONDS ___________ ___________________________ ___ Node: PONDS __________ Status: __ ____ On site Grouo: 2ASE Twe: SCS Un_t Hydrograpb Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Techno]ogieB, Inc. P$ge 2 of 3 tinit Yyd=oG=aoT: ^H494 ?e aking Faccor: 499.0 Rainfall F_le: • Storm Duration fbrs): 0.00 3ain fa it Amount h-v~: 0.000 m 0£ cone lminl: `.20 P.reaaq: 1.000 Time Shiftfhal: 0.00 Cuwe Namber: 90,00 Max Allo.ahle Q(cfsl: 999999.000 DCIAISI: 0.00 • Lnterconnectad Channel aad Pond Routing Model (ICPR) X2002 Streamline Technologies, Lnc. Page 3 of 3 Name: OUTLETI Base Flo'.+1 c`_s): 0-000 init Stage (ft) : 390 .490 • Group: nP.SE Warn Stage(Y ): ' 898 .]90 Type: Time/Stage ___ Time(hrs) ____________ ______ Stage (.q _________ 0.00 896.990 12.50 99&.790 30.00 846.490 0 Name: OUTLE T2 Base Flow (cfsl: 0.000 in it stagelftl: 896 .880 Group: BASE ~ Warn Stage(EJ : B9B .d20 Type: Time/Stage ___ Timelhrs) ____________ Stage (ftl 0.00 896. b80 '_2.50 &98.280 30.00 896. 880 ' Name: POND1 Base Flow (cf s): 0.000 - Init St age (ft7: 898. 300 Group: BASE Warn Stage (ftl: 904. 440 Type: Stage/Area Stage lftl Arealacl 298 300 0 6800 B 99.000 0.]500 900.000 0.8500 901.000 0.9500 902.000 1.0500 903.000 1.1500 ~ 904.000 1.290D 904.990 1.3100 ^ • Name: POND2 9a se Flowlcfsl: 0.000 Ini; Siage(f t): 898. 5"10 Group: BASE Warn stage(fi): 904. 200 Type: Stage/Area - Stage (ft) - Area lac) ' 898.510 0.5600 ' ' 299.000 0.5900 900.000 0.6500 - ' ' 901.000 0.]200 ' 902.000 0.7900 ' 903.000 0.8600 909.000 0.9300 - 904.200 0.9500 G Name: POND3 Base Flov (cf s1: 0.000 ~ Init Stage (ft): 896. ]00 ' Group: BASE - Warn Stage (ftl: 902. 000 Type: Stage/Area Stage (ftl Area lac) 896 700 0 6200 99].000 0.6400 998.000 0.]000 d39. 000 0.]800 900.000 0.8500 901.000 0.9300 902.000 S.ODOO 903.000 1.0900 Name: STR600 ease Flow lcfs): 0.000 Init Stage (ft): 89]. 110 Group: 385E war: Stage lftl: 898. 360 Type: Stage/Area I Interconnected Channel and Pond Routing Model (ICPR) C`'2002 Streamline Technologies, Leo. Page I of 3 • 9=age It:) Ar=-IaU ______ _______ _______________ 097.i~0 O. DOOfi 898.350 0.0006 O Name: STR6D1 Base Fl ovicfsl: 0.0 CD Group: BABE Type: Stage/Area Sage (ft) Area lac) 89].130 0.0006 900.100 0.0006 _ Pame: STA602 ease Ei ov (cfs): O.D00 Group: EASE Type: Stage/Area Stage (ftl Area (ap 8,9].330 0 OOOb 90D. 500 0.0006 Fame: STR603 Base F1ov (cis): 0.000 - - Group: HASE ' Type: Stage/Area Stage (ftl A-ea (acl _______________ _ _____________ 89].380 O.OD06 90D.260 O.OD06 O blame: ETR619 Base F1 ow (cfsl: 0-DOD • G oup. EASE Type: Stage/Area St age (ftl Arealac) _____ ________ ___________ ___ 898.920 D. 0006, 9D4. 6D0 0.0006 ' ' Name: ETA620 Base Elov (cfs): 0.000 ' Group: BASE Tyne: Stage/Area Eta qe (ft) .lea (ac) 898.180 0.0006 903.700 0.0006 Name: STA521 Base Elw (cis ): O.ODO Group: EASE Type: ,Stage/Area Stage (i t) Area (aG _____ ___ ___________ 89].870 0.0006 9C1.630 0.0006 Name: ETk622 Base F1 ov (tts): 0.000 Group: BASE Type: Stage/Area Stage (ftl ]L ealac) Init Sta qe lfti: 897.130 u am Stage iftl: 900-100 Init Stage (ftl: 897.310 ' Warn Stage (ftl: 900.500 Init Stage.(.[): 897.380 Wain Stagelftl: 900.250 Init Stage(ft): 898.420 Warn Sta ge lftl: 904.600 Init Stage lft): 898:180 Warn Sta9e(ftl: 903.]00 Init Etage (ft): 891.8]0 warn Stage (ftl: 901.650 IDit St age (ft): 89]J00 Warr. Stage lftl: 902.680 • Interoonnected Channel and Pond Routing Model (ICPR) ®2002 Streamline Technologies, inc. ~ Page 2 of 3 r~ d 9].]DD 902.080 Name: STR 622.4 Group: BASE Type: Stage/Area 0.0006 0.0006 Base Fl ovlcfsl: 0.000 Stagelft) Area(ac~ ' _______________ _______________ 89].800 O.OD06 902.]80 O.DD06 Name: STA 623 Base F1 ov(cfs): O. ODO G.-oep: BASE Type: Btage/Area Ira Sage lftl: 49].800 warn Stagelftl: 902.]80 Init Stage (ft): 897.560 warn Stage(f t1: 909.500 Btage(ft~ Area(acl ________ _______________ 897.560 0.0006 904.500 O.ODO 6' Int°,rconnect`d Channel and Pond Routine Model (ICPR) ®2002 Streamline Techaologies; Inc. Page 3 of 3 • • • Name: '001-000 Group: SASE JPGTREAH Geometry: Crcular Sp an lip): 24.00 R'_se lip): 24.00 - Invert (f;): 83].130 Mapping's N: 0.0130 D0 Top Clip (in): 0.000 Sot Clip(in7: 0.000 From Node: 8TR 601 To Node: STR600 DOWNBTR'. ara Circular 24.00 '_9.00 89].110 0.013000 o.ooD 0.000 Ups team FHwA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Dovnst ream FNF'A Inlei Edge Oes ¢iption: C rcvlar Con c ete: Squa r= edge w/'headwall Name: 602-601 Group: SASE Fi nm Node: STR602 To Node: STR601 length if il: 8.00 Count: 1 Fri c;iun Equa ;ion:, Av erage Conveyance Solution algorithm: Actpma tic Flow: Both Entrance Loss Coef: OAO Ex_t Loss Coe.`: 0.00 Rend Loss Coef: 0.00 Outlet Ctrl Spec: Use de or ;w Zn'_et Ctrl Seec Use do Stabilizer Option: None Length (ft) Count Friction Equation Solution Algorithm Fl ov Entrance Loss Coef Exit Loss Coef Bend Loss Coe _' Outlet C:r1 Spec Inlet Ctrl Spec Stabilizer Option 08.00 1 Average Conveyanre Automatic BOYh o. DD 0.00 D. Do Use do or tw Use do None UPETREAH Geometry: Circular Span lip): 21.00 Ri se (in): 21.00 Invert(£:1: 89].310 Mapping's N: 0.013000 Top Clip lip): 0.000 Bot Ciiplin): O.D00 DOWNSTREAM Circular ?1,00 21.00 Bo].130 o.o13DOD 0.000 0.000 Opsueam FHWF Inlet Edge Descripi ion: Ci solar Con aete: Square edge w/ headwall Downstream FHWA Inlet Edqe Description: Circular Concrete: Square edge w/ headwall Name: 603-602 Group: RASE UPSTAEAH Geometry: Circu la: Soon lip): 21.00 Rise lip): 21.00 Invertl£t): 09].380 Mann ing's N: 0.013000 Ton Cl ip lip): D:DDD Sot C1 ip (inl: 0.000 Fr am Node: 8TR603 TO Node: S.A6D2 DOWNSTREAM Circular 21.00 21.00 89].310 D. 013000 D.ooo 0.000 Upstream FHWA Inle[ Edge Des cripii on: Circular Concrete: Square edge v/ headwall Downstream FHWA Inlet Edge Description: Circul az Concrete: Square edge v/ haadva'_1 Name: 619-620 Group: RASE UPSTREAM Geometry: Circular Span (in): 15.00 Aise(in): 15.00 Invert ifU : 858.420 Mapping's N: 0.013000 Tap Cliplin): D ODO Bot Cliplin): D.OOD From Node: STR619 To Node: ST R62D DOWNBTREA". Crcular 15.00 15.00 05B.1Bo 0.013000 0.000 0.000 Length lft): 35.00 Count: 1 ' Friction Equation: Average Conveyance Solution Algorithm: Automatic Flow: Both Entrance Loss Coe`: 0.00 Exit Loss Coef: O.DO Bend Loss Coe £: 0.00 Outlet Ctrl Spec: Use do or tv Inlet C[rl Spec: Use tln Stabilizer Option: None Length lftl Count Fri c*_i on Equation Solcti on Algori :hn Flow Entrance Loss Coef Exit Loss Coef Bend Loss Coef Outlet Ctrl Soec Inlet Ctrl Spec STabili zer Option 80.00 1 Average Cnnveyance Automatic Both 0.00 0.00 D. oD Use do or tv Use tln None Upstream FHWA Inlet Edge Uescripti on: Circular Concrete: Square edge v/ headwall Interconnected Channel and Pond Routing Model (CPR) 62002 Streamline Techno]o~ies, Inc. - Pz~e 1 of 3 u • Downstream FYWP. ln'_et Edce Description: Circvl=_r Concrete: Savare edge w/ heatlwa 11 Name: 620-621 Group: BP_SE UPSTREAM Geometry: Circu lai 9oan (in): 15.00 Ri se (in): 15.00 Tnvert if tJ: 89E.100 Manning's N: 0.013000 Top Clip (in): 0.000 Hot Cliplin): 0.000 From Notle: 5°4620 .o Node: STR621 COWNSTREAM Circular i5.00 15.00 891.370 0.013000 0.000 0.000 Len 9th (€tl: Count: Friction Equation: Solution Al ao rithm: Flow: Entrance Loss Coef: Exit Loss Coe`: Bend Lass Coef: outlet Ctrl Spec: Inlet Ctrl Spec: Etabil'_zer Option: 302. D0 1 Average Conveyanre Automat_c Both D. oa 0.00 0.00 Use tlc or tw Use tln N ane Upstream FHWA Inlet Etlge -esciiption: Ci sul ar Concrete: Square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square etlge w/ headwall Name: 621-622A Group: BASE UPSTREAM Geometry: Cimvlar Span(in): 18.00 Rise(in): 16.00 Invert(ft): 898.870 Manning's N: 0.013000 Top Clip (in): 0.000 Bot Clip(in): O. DOG Fram Natle: STR621 To Node: 9T4622A DOWNSTREAM Circular 18.00 18.00 391.000 0.013000 D.DOo D.DOD Length (ft7: Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Exit Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctil Spec: Etabi lizer Option: 25.00 1 Average Conveyance Automatic Hatn 0.00 D. Do o. Do Use do oz tw Use do None Downstream. FHWA Inlet Edge Description: Circular Concrete: Square etlge w/ headwall Upstream FHWA Inlet Edge Description: Circular Concrete: Em:are etlge w/ headwall Name: 622-623 Gi oun: BASE DPSTR&AH Oeome Lry: Circular Spanlin): 18.00 Rise(in): 10.00 Invert(ft): 891.700 Mannin g's N: 0.013000 Top Clip(in3: 0.000 Hot Cliplin): 0'. ODO From Node: STR 622 Ta Node: STR 623 DOWNSTREAM Circular 18.00 18,00 897.560 0.013000 D-000 0.000 Upstream FHWA Inlet Edge Des¢iptioa: Circular Concrete: Square etlge w/ headwall Downstream FNWA inlet Etlge Des [rioti on: Circular Concrete: Square edge w/ headwall Name: 622A-622 Group: HPSE -PSTREAi9 Geometry: Ci sul ar Spanlin): 18.00 Riselin): 10.00 Invert (ft): 097.800 Manning's N; 0.013000 Top Clip(in): 0.000 Hot Cliplin): O. ODO FSOm Node: STA622A To Node: STR622 DOWNSTREAM Circulaz 18.00 18.00 897.100 O.p13000 O.OOD O.OCD Length (ft) Count Friction Equation Solution ffigo rithm slow Entrance Loss Coef Exit Loss Coef Bend Loss Coef outlet Ctrl Spec Inlet Ctrl Spec Stabilizer Onti on Length ( f q Count: Friction Equation: Solution Algorithm; Flow: mtravice Loss Coef: Exit Loss Coef; Bentl Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec. Etabili zer Option: 48.00 1 Average Conveyance Automatic Both 0.00 0.00 0.00 Use do or t Dse an None 30.00 1 Average Conveyance Automatic Both O.DO D. DO 0.00 llse tlc or tw Use do None illierconnected Channel and Pond Roetine Model (ICPR) ©2002 Streamline 1"echnologies, Inc. Pale 2 of 3 • • Uost ream PA WA Inlet Edge Des cipti on: Ci rcclar Concrete: Square etlae w/ heady al". Do'.-nsire am FBWA Inlet Edge Description: Circclzr Con cret_=: Sovare etlge w/ headwall Name: 623-P3 Group: BASE From Node: ST3623 To Node: PONDS Len gth(£t) Court Friction Equation Solution ffigori thm Flow Entrance Loss Coef Exit loss Coef Bend loss Coe£ ov it et Ctrl Spec Inlet Cir1 Spec Stabilizer Option 28.6.00 1 Average Conveyance Automa[ic Both o. oD O. OD 0.00 Use do or tw Use do None UPSTREAM Geometry: Crovlax 6panlin): 18.00 Rise (in): 18.00 Invertlft7: 09].560 Ma nning's N: 0.013000 'Top Clip(in): O. DDO Bot Clip (in7: 0.000 DOWNSTREAM Circular 1 if . 00 18. DO 096.]00 0.013000 0.000 0.006 Cpst re am FHWA Inlet Edge Description: G rcular Concrete: Square edge w/ Ready all Downstream FHWA Inlet Edge Description: Circular Concrete: Sgvare edge w/ headvail Name; P2-619 Group: BAEE UPSTREAM Geometry: Circular Span (in): 15.00 Rise (in): 15.00 invert (£t): 890.510 Ma nning's N; 0.013000 Top Clip Ln): 0.000- Bot C1 ip (in): O.OOD From Node: POND2 To Node: STR 619 DOWNSTREAM Cirou'_ar 15.00 15.00 090.920 D. 013000 D ODO O.ODO Upstream FHWA Inlet Edge Ues cription: Circular Concrete: Square edge w/ headwall Downstream FHWA Znl et Edqe Descri ntion: Circular Concrete: square edge w/ headwall Name: P3-DDT1 Group: BRSE UPSTREAM Geometry: Circular span (in): 21.00 Rise (inl: 21.00 Invert(R1: B96.~00 Manninq`s N: D.p13000 Top C1 ip (iN : o.DOD Bot Clip (inl: O.D00 From Node: PONDS To Node: OUTLETI DOWNSTAEA.M Circular 21.00 21. DO 896.990 0.013000 0.000 0.000 Upstream FHWA Inlet Edge Description: Circular Concrete: square edge w/ headwall Downstream FHWA Inlet Edge Description: Circular Concrete: Square edge w/ headwall Length(£t): 51.00 Count: 1 Fri dion Eauati on: Average Conveyance Solution Algorithm: Av somatic Flow: Both Entrance Loss Coef: 0.00 Exit Lass Coef: 0.00 Bentl Loss Coef: O.DO Outlet Ctrl Spec: llse do or tw Inlet Ctrl Spec Use do Stabilizer Ootcon: None Length (ftl: ]0.00 Count: 1 Friction Equa tien: Average Conveyanre Solution Algori [hm: Automatic - Flow: 9o tR ' Entrzn ce Loss-Coe£: 0.06 Exit Lass Coe:: 0.00 Bend Loss Coe:: D. DO Outlet Ctrl Spec Use do or tw Inlet Ct rl 'Spec Use do Stabilizer Option: None interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 3 of 3 Name: 60D-OUT3 From Notle: ST P.600 Leng th lft7: 145. p0 Grovn: 2ASE To Node: OVTLET3 Count: 1 ^P$TRFT+*i DOWRSTREAM Fri'c.ion EgllztiOn: Average Conve yanca Geometry: Trapezoidal Trapezoidal Solution Flgoxithm: Automatic ert (Pn): 09"1.110 096. d00 Flov; 9ath ?ClpIriffi(f t): 9999-ODO 9599.000 Cont_action Coef: 0.000 Manninq's N: p.013pD0 0.013000 Exoan Sion Coef: O.OOp Tap Cliplftl: D.000 0.000 Entrance Loss Coef: p.000 Bot CLo(f t): p.OOD O.ODD Exit Loss Coef: D.000 sin XSe c: Ovtlet Ctrl Spec Use do or tv AuxElevl (f t): Inlet Ctrl Spec: Use do Aux XSeci: StaSili zex Option: None AuxElev2 (R7 Aux XSec2: ToP Witlth lfU Depth (f,): Bot Witlth (f[): 1.000 1.D00 LtSdS lplh/v): 3.D0 3. D0 RtStlSlp (h/v); 3.00 3.OD Interconnected Channel and Pond Rouiin~ Model (ICPR) G2002 Streamline Technologies, Inc. Page I of I C~ I:ame: 22-603 Group: nTSB UPSTREAM Geometry: Circular Span(in7: 12.00 ffise (in7: 12.00 Znvert (f t): d°8.300 Manning's N: 0.013000 Top Clip lin): 0.000 Sot Clip(in): 0.000 Erom Node: PONDi To Node: BTR 603 DGWNSTREAM Ci solar 12.00 12.00 89~. 380 0.013000 0.000 O.ODD 0?stream FHWA In1 et Etlge Des cip[iom Circulaz Concrete: Square edge v/ headwall Downstream FNWA Znlet Edge Descri?ti Or.: Cirwlar Concrete: Square etlge w/ headwall '*• Weir 1 of 1 for Urop Structure P1-603 *'• Count: 1 Sype: Ver[i Cal: Mavis Flow: Both Geometry: Circular Span (in): 6:00 Rise(in): 6.00 Len~h (_°,) : 264.00 Count 1 Friction Equation Solution 'AlOOrithm Flov. _nCran ce Loss Coef szi: Loss Coef Outlet Ctrl Spec Inlet Crl Spec Bottom C1 io (in7: O. OOD Top Clin(in): 0.000 Weir Disc Coe_`: 3.200 Orifice Disc Coe:: 0.600 Invert (ft): 898.300 Control F1ev (ftl: 898.300 Average Conveyance Aut oma cc both 0.000 0.000 Use tlc or tw Use tln TA3:.E Intercoawected Channel and Pond Routing Model (ICPR) ®20G2 Streatnlina Technologies, Inc. page 1 of 1 . Name: 002Ye er Filename: S:\37963\Drainage\iCPR\002y eat. A32 Overiitle Dean li s: Yes St ozm Dura ti on (1:[s): 24.DD Rsinfall Fil _: Scsii-^_4 ' Rainfall AmcunLlin): ?.°3 3ime (hrsl ?rin< Inc(min) _______________ _____ 30.000 5.00 Name: OlOyeer Filename: S.\37963\P: ainaga\ICPR\O1 Oyear.R32 Override De £a uli s: Yes St czm Duration (h rs): [9.00 Rainfall File: Scsii-29 Ra irr£all Amount in): 4.15 ^ime (h cs) ?rin< lnc (mirJ 30.D00 - 5.00 Name: 100y ear Filename: 5:\31903\Drainage\IC?R\100year.R32 Override Defaults: Yes Stc rm Duzaticn (h isl: ?9.00 Rainfall File: Scsii-24 Rainfall Amount (in): 5.75 Time (hrs) Print Inc (mi n( ___________ 30.000 5.00 • • Interconnected Channel and Pond Routing Model CPR) C~i2002 Streamline Technologies. Ln c. Page 1 of 1 Max Time Name Gmup Simulat lon 9[aya hra Max Wain ing Max Oel to Max su[t Max Tlme Max Mdx Tlme Max st aye Stage stage Area Inflow I~f lov Ou tf lov Outflow ft ft ft ft2 hra cfe hre cfe Literconnected Chennel and Pond Routing Model (ICPR) ®2002 Streamline Technologies, Inc. Page 2 of 2 Name - Group Simula tlon Maz Time Stage hrs Max Stage Et WanLLnq Stage Et Max ~ Oella Stage ft NaxBUrf Area 0.2 Max Time Inflow hra Max Inf lob cfa Max Time Outflow hre Max Outflow cfs OUT LETI BASE OlOyear 12 .50 898 .]40 898 .790 0 .0050 3 12 .15 ].961 0 .00 0.060 O U'1'LET1 BASE 100year 12 .50 895 .740 898 .]90 0 .0050 3 12 .16 10.481 0 .00 0.000 OUT1,E'fl BASE 2year 12 .50 898 .740 B9B .]90 D .ppSD 3 12 .13 - 5.503 0 .00 O.OVO OUTLF.T2 BASE OlOyea[ 12 .50 898 .880 898 .880 0 .0049 .917 11 .88 13.950 0 .00 0.000 OU'[LET2 BASE 100 year 12 .50 898 .880 898 .800 O .OU44 9P 12 .01 15.543 0 .00 0.000 WTLET2 BASE 2year 12 .50 898 .880 898 .tl50 0 .0044 91] 11 .96 12.315 O .OU 0.000 POIJ OI BA CE OlOyear ].5 .31 901 .360 90d .440 p . 0021 42999 12 .00 59.006 11 .80 1.4]5 PON D1 BASE 100yea[ 16 .53 902 .7V1 904 .940 O ,U060 48792 12 .00 89.194 17 .52 1.807 PONO1 EASE 2year 11 .5] 900 .298 904 .440 0 .0010 38323 12 .00 3P.763 1] ,04 1,151 PON02 BASE O1Vyear 13 .96 901 .120 904 .200 0 .0021 31756 12. 00 31.059 13 .68 3.615 POND2 BFlBE 100year 13 .60. 902 .509 909 .200 0 .004] 35966 12 .00 4].2]9 14 .59 5:095 PON D2 BASE 2year 1J .'42 900 .090 904 .200 0 ,000] .78590 12. 08 18.950 15 .92 2.2'18 PON D3 BASE OlOyear 12. .19 899 .026 902 .000 0 .000] 340]1 12. 00 20.33] 12 .15 ].961 PON D3 BASF. 100year 12 .21 899 .205 902 .000 O .U01] 34860 12 00 29.105 12 .16 1V.9B7 PONDS BASE 2year 12 .16 898 .842 902 .000 0 .0003 33962 12. 00 12.906 12 .13 5.503 STR600 OASE OlOyeac 12 .50 898 .878 898 .360 -0 .0099 985 12. 10 12.511 11 .88 13.950 ST R6p0 BASE 100year 12. 50 890. 879 898 .360 -0 .0099 905 12. 04 13.483 12 .01 15.593 STR600 BASE 2year 12. 50 898. 878 898 .360 -0 .0099 985 12. 10 11.480 11 .96 12.315 STR601 BASE 010year 12. 50 898. 892 900 .100 0 .0191 132 12. 00 8.992 .12 .10 12.511 STR601 BASE 100yeae 12. 50 898. 893 900 .100 -O .U190 132 12. 01 12.890 12. 09 13.483 STR601 BASE 2yeae 12. 50 898. 891 900 .100 -0 .0130 132 12. 01 6.090 12. 10 11,480 BTR602 BABe. O10year 12. 01 899. 084 900 .500 -0 .0018 125 12. 00 9.D0$ 12. 00 8.992 STR602 BASE lOVyear 12. 01 899. 381 900 .500 0 .0026 124 12. 00 12.838 12. 01 12.894 5'1'0.602 BABE 2year 12: 01- 898. 908 900 .500 -b .001B 171 12. 00 5.939 12. 01 - 6.090 S3'R6 D3 BABE pl0year 12. 00 599. 22] 900. 250 0. 0017 115 12. 00 9.093 12. 00 9,005 S'PR6p3 BASE 100year 12 00 900. 051 900. 250 -O. U064 115 12. 00 - 12.945 12. 00 12.838 BTR6V3 BASE 2year 12. 00 898. 947 900. 250 0. 0015 131 12. 00 5.963 12. 00 5.939 STR619 BABE OlOyear 13: 41 900. 835 909. 60V -0. 0097 111 13. 68 3.61$ 13. 65 3.61] STRG19 BASE 100year 13. 48 901. 976 904. 6UU -0. 0098 117 19, 59 5.045 14. 59 5.053 S'fR619 BASE 2year 13. 91 899. 974 904. 600 -0. 0099 117 15. 92 2.2]8 13. 45 2.268 BTR620 BASE 010 year 13. 31 900. 454 903. 700 -0. 0098 119 13. 68 3.617 13. 69 3.619 B'1'ft 620 BASE 100year 13. 29 901. 299 903. 100 -0. 0099 119 14. 59 5.053 19. OJ 5.116 Si'R 620 eASE 2}year 13. 91 899, 822 903. 700 -0. 0099 119 13. 45 2.268 13. 45 2.268 - STR621 eASE OlOyear 13. 10 900 011 901. 650 -0. 0097 128 13. 62 3.6]9 13. 63 3.681 B'I'Ii 621 BASE 100year 12. 09 900. 832 901. 650 -0. 0162 11] 14. 03 5.190 19. 03 B.96B sTR621 BASE 2year 13. 36 099. 694 901. 650 -0. 009'1 134 13. 35 2.313 13. 33 2.313 STR622 BASL O1Dyear 12. 06 899. 715 902. 680 0. 003] 116 12. 00 4.655 12. 02 9.593 59'0.622 BASE 100year 12. 0] 90 p. 633 902. 680 0. 0049 116 12. 00 6.170 12. 04 6.02"i STR622 BASE 2year 12. 09 899. 018 902. 680 O. Op06 150 12. 00 2.553 12. 02 2.]B'i STR622A BASE OlOyear 12. 07 899. 856 902. ]Bb 0. 0083 119 13. 58 3.755 14. 21 4.590 S'fit 6221 BASE lOVyear 12. 08 900. 779 902. "IBO 0. 0162 115 14. 03 9.057 14. 03 5.561 BTR622A BABE 2year 12. 09 899. 025 902. 780 0. 0006 195 13. 27 2.373 13. 30 2:3)8 57'0.623 BASE OlOyear 12. 07 899. 590 904. 500 -0. 0085 126 12. 02 9.543 12. 03 9.493 S'f 1i 623 BASE 100year 12, 08 900. 304 904. 500 ~ 0. 0073 126 12. 04 6.027 12. 05 5.959 STR623 BASE 2year 12. 10 898. 995 909. 500 0. 0036 198 .12. 02 2.787 18. 56 2.816 Interconnected Channel and Pond Routing Model (ICPR) C~Y1002 SU'eamlule Tec(mologies, Lle. ~ Pege 1 oC2 Weston Pointe Time of Concentrations Job# 37963 Storm CAD Post-Developed Site Date: 11/21/03 Basin Sheet Flow Manual LN eexriplion = L= (Ip Pi• (INM1Q s= (IVf9 T,=.eW(nLte.agP~ a 7 hm Desrlpllon V• (IVst L~ (11) TI=W (hrz) Ts (tolaQ (hm) T~ (total) (loin) 603 Grass 0,16. 30 2,66 0.02 0.0684 Gutter/Swaie 2 15 0,0021 0.0704 6.0 605 Grass 0.15 30 2.68 0.02 0.0684 Gulterl Swale 2 ~ 25 0.0035 0,0718 5.0 606 Grass 0.15 20 2.66 0.02 ~ 0.0494 Guller / Swale 2 115 0.0160 0.0654 5.0 607 Grass 0.15 20 2.66 0.02 0.0494 Gutter/Swaie 2 375 0.0521 0.1015 6.1 609 Grass 0.15 15 2.66 O.OZ 0.0393 Guflar/Swaie 2 190 0.0284 0.0857 6.0 610 611 613 615 615A Grass Commercial Grass Grass Grass 0.15 G.0',i 0.15 0.15 0.15 15 30 BO 40 70 2.66 2.66 2.66 2.88 2.66 0.02. - 0.02 0.02 0.02 0.02 0.0393 0.0085 0.1498 0.0861 0.1348 Guller/Swaie Guller/Swaie Guitar FSwale Guller/Swaie Guller/Swaie 2 2 2 2 2 200 30 260 165 130 0.0278 0.0042 0.0361 0.0229 0.0181 0.0670 0.0126 0:1859 0.1090 0.1527 6.0 5,0 11.2 6.5 9.2 fi1G Grass 0,15 60 2.66 0.02 0.1190 GuOer/Swaie 2 140 0.0194 0.1385 0.3 617 621 Grass Grass 0.15 0.15. 60 64 2.G6 2.66 0.02 0.02 0.1190 0.1253 Guller/Swaie Gutter/Swaie 2 2 60 100 O.OOB3 0.0139 0.1274 0.1392 7.6 8.4 622 Gress 0,15 45 2,66 0.02 0.0946 Guller/Swaie 2 20 0.0026 0.0973 5.8 622A Grass 0.15 70 2.66 0,02 0.1348 Guller/Swaie 2 120 0.0167 0.1513 9.1 625 626 G27 628 Grass Grass ~ Grass Grass 0.15 C.15 0.15 0.15 50 40 40 40 2.66 2.66 2.66 2.66 0.02 0.02 0.02 0.02 0.1029 0.0061 0.0661 0.0881 Guller/Swaie Guller/Sw le Gutter/Swaie Gutter/Swaie 2 2 2 2 20 85 BO 80 0.0028 0.0118 0,0111 0.0111 0.1056 0.0979 0.0972 0.0972 6.3 5,9 5.8 S.B 829 031 Grass Gr ss 0.15 0.15 90 30 2.68 2.06 0.02 0.02 0.1846 O.O6B4 Gutlar/Swaie Guller/Swaie 2 2 60 50 0.0083 0.0069 0,1730 0.0753 10.4 5.0 G32 Grass 0.15 20 2,88 0.02 0.0494 Guller/Swaie 2 40 0.0056 0.0550 6.0 633 Grass 0.15 90 2.66 0.02 0.0861 Guller / Swale 2 35 0.0049 0.0909 5.5 634 Grass 0.15 75 2.66 0.02 0.1423 GulleN Swale 2 ~ 10 0.0014 0.1437 8.6 635 Grass 0.15 20 2.66 0.02 0.0494 Guller/Swaie 2 110 0.0153 0.0647 5,0 636 Grass 0,15 60. 2.68 0.02 0,1498 Gulterl Swale 2 10 0.0014 0.1512 9.1 637 Grass 0.15 100 2,66 0.02 0.1791 Guller/Swaie 2 0 0.0000 0.1791 10.7 639 Grass 0.15 35 2.66 0.02 0.0773 Gutter/Swaie 2 190 0.0264 0.1037 6.2 640 Grass 0.15 40 2.66 0.02 0.0861 Gutter/Swaie 2 190 0.0264 0.1124 6.7 841 Grass 0.15 60 2.66 0.02 0.1190 Gutter!Swale 2 0 0.0000 0.1190 7.1 644 Grass 0.15 56 2.66 0.02 0.1126 Guller!Swale 2 118 0.0161 0.1287 7.7 645 Grass 0.15 60 .2.66 0.02 0.1190 Guller!Swale 2 80 0.0111 0,1301 7.8 645A Grass 0.15 45 2.66 0.02 0.0946 - Guller/Swaie 2 100 0.0139 0.1084 6.5 G46 Grass 0.15 40 2.66 0.02 0.0861 Guller!Swale 2 95 0.0132 0.0992 6.0 647 Grass 0,15 50 2.68 0.02 0,1029 Guller/Swaie 2 60 0.0083 0.1112 6,7 647A Grass 0.15 80 2.88 0.02 0,1190 ~ Gulterl Swale 2 100 0.0139 0.1329- B.0 649 Grass 0.15 40 2.66 0.02 0.0861 Guller/Swaie 2 70 0.0097 0.0958 5.7 650 Grass 0.15 80 2,66 0.02 0.1498 ~GUller/Swaie 2 205 0.0265 0.1783 10.7 651 Grass 0.15 80 ~ 2.80 0.02 0.1498 ~ Guller/Swaie 2 240 0.0333 0.1832 11.0 652 Grass 0.15 20 2.68 0.02 0.0494 Guller/Swaie 2 120 0.0167 0,0681 5.0 G53 Grass 0.15 20 2.6G 0.02 0.0494 ~ Gutter / Swale 2 140 0.0194 0.0689 5.0 Scenario: Design 11/21/03 • • Structure Input Report Structure Label Area (acres) Inlet C Time of Concentration (min) Local Rational Flow (cfs) Local Intensity (in/hr) 603 605 0.34 0.65 5.00 1.45 6.50 606 0.39 0.35 6.20 0.84 6.14 607 0.95 0.35 6.10 2.07 6.17 608 609 0.31 0.85 5.00 1.73 6.50 61 D 0.30 0.85 S.DD 1.67 6 50 611 10.06 0.85 5.00 ~ 56.03 6.50 614 615 ~ 0.49 0.70 6.50 2.09 6.05 615A 0.38 0.70 9.20 1.40 5.24 616 ~ 0.58 0.75 8.30 2.42 5.51 617 0.53 0.34 7.60 1.04 5.72 623 625 0.13 0.34 6.30 0.27 6:11 626 029 0.34 5.90 0.62 6.23 627 0.1 B 0.51 5.80 0.58 6.26 626 0.16 0.51 5.80 0.51 ~ 6.26 629 0.43 0.34 10 40 0.73 4.95 630 631 0.55 0.74 5.00 2.67 6.50 632 0.21 0.72 5.00 1.00 6.50 633 0.31 0.73 5.50 1.45 6.35 634 0.31 0.73 B.60 1.24 5.42 635 0.49 0.73 5.00 2.34 6.50. 636 0,43 0.53 9.10 1.21 527 637 0.43 0.45 10]0 0.96 4.92 636 639 .0.39 0.50 6.20 1.21 6.14 640 0.45 0.71 6 70 1.93 5.99 641 0.29 0.45 7.10 0.77 5.87 642 643 644 ~ 0.30 0.74 7.70 127 5.69 645 0.24 0.73 7.80 1.DO 5 fib 645A 0.21 0.50 6.50 0.64 6.05 646 0.35 0.7Z 6.00 - 1.57 6.20 647 0.38 0.72 6.70 1.65 5.99 547A 0.20 0.50 8.OD 0.56 5.60 648 649 0.44 0.73 5.70 2.04 6.29 650 6,18 0.32 56.10 4.28 2.18 651 0.37 0.39 11.00 0.71 4.66 652 0.87 0.72 5.00 4.10 6.50 653 0.67 0 73 .5.00 3.20 6.SD • Title: a795z Ov_rall - Prgea Engineer Dave S:oeppelwerth s:\37963Wrainagelsfonn Intl\overallstm Stoeppelv2rth & Associates, Inc 6tpnnCAD v5.5 [5.5003] 03;17/04 01:38:59 PM 0 Y,aestad INeihOos, Inc. 37 BrOOksitle Road Waterbury, CT 05708 USA +- i-203-755-160'6 Page i of 1 Scenario: Design 11/21!03 C J • Pipe Input Report Label Section Size Section Shape Constructed Slope (ft/ft) Length (P.) Upstream Node Upstream Invert Elevation (ft) Downstream Node Dowrstr=_am Invert Elevation (ft) 605-603 18.0 z 11 Arch 0.006 70.00 605 697.76 603 897.38 606-605 15 inch Circular 0.002 105.00 606 897.99 605 897.78 607-606 15 inch Circular 0.002 231.00 607 898.45 606 897.99 609-608 33 inch Circular 0.003 55.00 609 898.47 606 898.30 610-609 33 inch Circular 0.003 47.00 610 698.67 609. 698.47 61110 33 inch Circular 0.003 30.00 611 896.70 610 ~ 898.61 615-614 21 inch Circular 0.008 71.00 615 898.89 614 898.30 515A-615 18 inch Circular 0.003 35.00 615A 898.99 615 898.69 616-515A 15 inch Circular O.D03 90.00 616. 899.26 615A 698.99 617-616 12 inch Circular 0.011 99.00 617 900.30 616 899.26 625-623 15 inch Circular 0.003 69.00 625. 897.77 623 897.56 626-625 15 inch Circular O.D03 105.00 626 898.08 625 697.77 627-626 12 inch Circular 0.003 126.00 627 898.46 625 898.08 528-627 12 inch Circular 0.003 30.00 628 898.55 627 89846 629-526 72 inch Circular 0.003 103.00 629 898.86 628 896.55 631-630 21 inch Circular 0.003 132.00 631 898.97 630 898.57 632-631 21 inch Circular ~ 0.003 ]40.00 632 899.39 631 898.97 633-632 18 inch Circular 0.003 78.00 633 849.62 632 - 899.39 634-633 18 inch Circular O.D03 104.00 634 899.93 633 899.62 635-634 . 15 inch Circular 0.003 104.00 635 900.24 634 899.93 636-635 12 inch Circular 0.003 97.00 636 900.57 635 900 24 637-632 12 inch Circular 0.003 86.00 637 900.40 632 900.14 539-636 ~ 15 inch Circular 0.019 55.00 639 697.74 636 696.70 640-fi39 15 inch Circular 0.003 30.00 640 897.83 639 697.74 641-640 ~ 12 inch Circular 0.037 55.00 641 699.87 640 697.63 643-642 21 inch Circular 0-027 704.00 643 898.66 642 896.70 644-643 21 inch Circular 0.003 63.00 644 899.13 643 898.88 645-644 15 inch Circular 0.003 208.00 645 699.75 644 899.13 645A-645 12 inch Circular 0.019 20.00 645A 900.12 645 899.75 646-645A 121nch Circular 0.018 30.00 646 900.67 645A 900.12 647-647A 12 inch Circular O.D25 30.00 647 900.33 647A - 899.56 647A-644 12 inch Circular 0.025 18.00 647A 699.58 644 899.13 649-648 21 inch Circular 0.003 64.00 649 898.76 648 898.57 650-649 16 inch Circular 0.003 97.00 650 699.06 649 898 76 651-650 t2 inch Circular 0.022 . 150.00 651 902.38 650 899.06 652-649 18 inch Circular 0.005 . 226.00 652 899.96 649 898.76 653-649 15 inch Circular 0.007 166.00 653 899.94 649 898.76 • Title: 37963 Overall ProjeC. Engineer: Dave Staeppelwerth s:\37%3\n raina9e\stonn cad\0verallstm StOeppelwarth & Associates, Inc Sto.~nCAD v5.5 J5.5003J 03/77/04 Ot:39:77 PM m Haes:atl Nethods, Ina S 3moksioe Raad 1Naterbury, CT 0'0708 USA -7-203-755-t 665 Page t o; } Scenario: Design 11/21/03 • • Pipe Output Report Label Section Size Length {ft) Mannings n ConstruCed Slope (tuft) Upstream Nod=_ Upstream Invert Elevation (ft) Downstream Node Downstream Invert Elevation (ft) Average Velocity (ft/s) Full Capacity (c(s) 605-603 18.0 z 11 70.00 0.013 0.006 605 897.78 603 897.38 4.65 4.16 606-"005 '15 inch 105.00 0.013 0.002 606 897.99 605 - 897 78 2.68 2.89 607-606 15 inch 231.00 0.013 0.002 607 898.45 606 897.99 2.55 2.88 609-608 33 inch SS.DO 0.013 ~ 0.003 609 89847 608 898.30 5.64 58.80 610-609 33 inch 47.00 0.013 O.D03 610 898.61 609 898.47 5.54 57.73 611-610 33 inch 30.00 O.D73 0.003 677 898.70 670 896.61 5.56 57,93 615£14 21 inch 71.00 0.013 0.008 615 898.89 614 898.30 5.62 14.44 615A-615 18 inch 35.00 0.013 0.003 615A 898.99 615 898.89 3.55 5.61 616£15A 15 inch 90.00 O.D13 0.003 616 899.26 615A 898.99 328 3.54 617;16 12 inch 99.00 O.D13 0.071 617 900.30 616 89926 4-01 3.65 625-623 15 inch 69.00 0.013 0.003 625 897.77 623 897.56 3.03 3.54 626-625 15 inch 105.00 0.013 0.003 626 898.08 625 897.77 2.97 3.54 627-626 12 inch 126.00 0.013 O.OD3 627 898.46 626 898.08 2.76 1.95 628-627 12 inch 30.00 0.013 ~ .0.003 628 896.55 627 898.46 2.57 1.95 629-628 12 inch 103.00 0.013 0.003 629 898.86 628. 898.55 2.30 1.95 631-630 27 inch 132.00 0.013 0.003 631 898.97 630 898.57 4.11 8.68 632-637 21 inch 140.00 0.013 0.003 632 699.39 631 898.97 3.99 8.68 633-632 1 B inch 78.00 0.013 O.D03 633 899.62 632 899.39 3.68 5.75 634-633 1 B inch 104.00 0.013 0.003 634 899.93. 633 899.62 3.53 5.75 635634 15 inch 104.00 O.D13 0.003 635 90024 634 899.93 324 3.54 636535 72 inch 97.00 O.D73 0.003 636 900.57 635 900.24 2.73 2.07 637-632 12 inch 86.00 0.013 O.D03 637 900.40 632 900.14 2.48 1.96 63938 15 inch 55-OD O.D73 _ 0.019 639 897.74 638 696.70 6.93 8.88 640-639 15 inch ~ 3D-DO 0.013 0.003 640 697.83. 639 697.74 3.16 3.54 641~4D 12 inch SS.DO 0.013 O.D37 641 899.87 640 897.83 5.78 6.86 643-642 ~ 21 inch 104.00 0.013 D.D21. 643 696.88 642 696.70 8.01 22.94 64443 21 inch - 83.00' 0.013 0.003 644 099.73 643 898.68 3.91 8.70 645-644 15 inch 208.00 0.013 0.003 645 899.75 644 899.13 3.23 3.53 645A-645 12 inch 20.00 0.013 0.019 645A 900.12 645 899.75 6.00 4.85 646E45A 12 inch 30.00 0.013 D.D18 646 900.67 645A 900.12 5.49 - 4.82 647~47A t2 inch 30.00 0.013 0.025 647 -900.33 647A 699.58 6.23 5.63 647A-644 12 inch 1 6.DD 0.013 0.025 647A 699.58 644 899.13 6.66 5.63 64948 21 inch 64.00 O.D13 0.003 649 896J6 648 698.57 4.06 - 8.63 650-649 18 inch 97.00 0.013 O.D03 650 699.06 649 898.76 3.66 5.84 651-650 12 inch 150.00 0.013 0.022 651 902.38 650 899.06 '4.70 5.30 652-649 18 inch 226.00 0.013 D.DOS 652 899.96 649 898.76 4:41 7.65 653-649 15 inch 166.00 0.013 0.007 653 - 899.94 649 898.76 4.62 5,45 • ~ dl=_[ 37963 0w_ra!I Project cnoineac Dave Stoeppeiwerih stt37963W raina0elst0nn cad\ow_rallstm Stoeppelwerth S Associates, Inc StwmCAD v5 { [$.6003] C3/17/G4 OL39:2t PM 6 Haestad Methods, Inc. 37 3rookside Road Wateroury, CT 06708 USA *t¢C3-755-1'066 pane t of t Scenario: Design 1'f/21/03 • • • Pipe Output Report !I Label Section Size Length (ft) Constructed Slope (ft/tq UPStream Nnde Hydraulic Grade Line In (ft) Downstream Node Hyd~ulic Grade Line Out (ft) Total System Flow (c!sj System Intensity (in/h r) 605-603 18.0 X 11. 70.00 0.006 605 898.37 603 897.95 3.84 5.52 606-605 15 inch 105.00 O.D02 606 898.86 605 898.44 270 5.72 607-606 15 inch 231.00 O.D02 607 899.25 606 696.88 2.07 6.17 609E08 33 inch 55.00 O.D03 609 900.53 608 900.10 5879 643 610-609 33 inch 47.00 0.003 610 900.72 609 900.53 5746 6.47 611-610 33 inch 30.00 O.D03 611 900.82 610 900.72 56.03 6.50 615-614 21 inch 71.00 0.006 615 899.82 614 699.12 6.41 5.19 615A-615 18 inch 35.00 O.DD3 615A 899.98 615 699.62 4.65 5.24 616-615A 15 inch 90.00 0.003 616 90025 615A 699:98 3.42 5.51 61716 12 inch 99.00 0.011 617 900.73 616 900.25 1.04 5 72 625-623 15 inch 69.00 0.003 625 -898.47 623 698.15 2.18 4.68 626-625 15 inch 105.00 0.003 626 898.76 625 898.47 2.00 4.75 627-626 12 inch 126.00. 0.003 627 H99.14 626 698.76 1.56 4.84 628-627 12 inch 30.00 0.003 628 899.18 627 899.14 1.12 ~ 4.86 62928 12 inch 103.00 0-003 629 899.30 628 699.18 0.73 4.95 631 ~3D 21 inch 13200 0.003 631 900.33 630 699.66 862 4.78 632-631 21 inch 140.00 0.003 632 900.61 631 900-33 fi.76- 4.85 633-632 18 inch. 78.00 0.003 633 900.79 632 - 900.61 5.14 4.91 634-633 18 inch 104.00 0.003 634 900.96 633 900.79 4.07 4.97 635-634 15 inch 104.00 0.003 635 901.18 634 900.96 3.01 5.09 636-635 - 12 inch 97.00 0.003 636 901.27 635 901.16 1.21 5.27 637-632 12 inch 86.00 - 0.003 637 900.69 632 900.61 0.96 4.92 639-638 15 inch 55.00 0.019 639 898.52 638 897.27 3.75 5.77 640-639 15 inch 30.00 0-003 640 898.62 639 898.52 2.64 5.82 641-640 12 inch 55.00 0.037 641 900.24 640 698.62 0.77 5.87 643-642 21 Inch 104.00 0.021 643 899.76 642 697.31 5.95 5.23 644-643 21 inch 83.00 0.003 644 900.19 643 899.79 6.07 5.34 645-644 15 inch 208.00 0.003 645 900.67 644 900.19 3.04 5.66 645A-645 12 inch 20.00 0.019 645A 900.75 645 900.67 2.78 6.05 646-645A 12 inch 30.00 ~ 0.018 646 90120 645A 900.75 1.57 6.20 647-647A 121nch .30.00 - 0.025 647 900.88 647A 900.20 1.65 - 5.99 647A-644 12 inch 16.00 0.025 647A 900.20 644 900.19 2.11 5.60 64946 21 inch 64.00- 0.003 649 899.99 648 899.60 ~ 770 2.17 650-649 18 inch 97.00 0.003 650 900.16 649 - 899.99 ~ 4.60 2.18 651-650 t2 inch '150.00 0.022 651 - 902.73 -650 900.16 0.71 4.88 652-649 18 inU 226.00 0:005 652 900.74 649 699.49 - 4.10 6.50 653-649 15 inch 166.00 O.D07 .653 900:66 649 899.99 3.20 6.50 Tithe: 37963 0v=ell Frojea engine_r. Dave Stoeppeiwerth sa3795316rainaoe\sform cad\overall stm Stoeppelwerth S Associates, Inc StartnCAD v55 [5 5003] C3/T7P34 Ci:3926 PHI 6 Y.aesad Methods, Inc. 37 Brenk5ldE Roatl Waterbury, CT C6708 USA +;-293-755-1655 ~ Page t oT 7 • PIPE SIZING CALCULATIONS S • • • ! CIA WEIHE Firestone Service Center Time of Concentrations E N G I N P E R S land 9urveying ~ CTafi En~tna~~ing Landseap~ Hrchite~chu a Date: 10/17/08 for Hydroflow Post-Developed Site Basin Sheet Flow Manual (LN) Desen tion p n = L= pz ° s= ~~~ °.007 nL 0 8/ Y ~'SSO4 ~ ) ~ ~ z -) Description V~ L= Tt=UV T~ (tota~~ T~ (totAl) (Ct) (in/hr) (N[t) (hrs) (fVs) (R) (hrs) (hrs) (min) 'r`.~'J01%+ Grass 0.24 46 2.95 0.02 O.I331 Gutter/Swale 2 44 0.0061 0.1392 ~ 84'~+#~~5= ,,.,..~'7tj2~'t<'. Grass 0.24 40 2.95 0.02 0.1190 Gutter/Swale 2 0 0.0000 0.1190 ~"',~ '7 N dflk"'*704`,,.., Grass 0.24 23 2.95 0.02 - 0.0764 Gutter/Swale 2 33 0.0046 0.0810 ~'~'~~50 ~~~ ^t~z~s~705;7. _?~ Grass 0.24 43 2.95 0.02 0.1261 Gutter / Swale 2 0 0.0000 0.1261 , ; ,sr 5~~..,,, 7 G ~,.~' v Firestone Service Center (W08-0700) • COMPOSITE RUNOFF COEFFICIENTS (Source: Table 204-1, City of Indianapolis Stormwater SpeciScations Manual) 12/9/2008 By: CMF Area Drainin g to Storm Structure #702 Cover area (ftz) Area (ac) % Soi] Type C Mannings n Total 2585 F ,Om3000~~ 100.00 .7;~ 0 63 ~~~ 0.080 Lawn 2585 ,x'0:1-1',OQ 36.67 0.25 0.200 Roof 0 n`O~OOOOA~~1 0.00 0.90 0.011 Pvmt 0 i[_011900' 63.33 0.85 0.011 Area Drainin g to Storm Structure #705 Cover Area (ft~) Area (ac) % Soil Type C Mannings n Total 12963 ~ 02000:~~ 100.00 ~j~yQi6~1 kit 0.087 Lawn 1450 `,"'='0.0800t ~ 40.00 0.25 0.200 Roof 0 °.'~Of0000`'.:~w 0.00 0.90 0.011 Pvmt 11514 ~,~.~0~1200~"'-„- 60.00 0.85 0.011 • • Rc commmercial.xls I-lyd row Plan View u ~. Fiieslane Service r~nlei g -x"744 ~~.~ 5 Jobd WOB W00 7p4 >~~ Weihe Engineers, RJC. 705 - ~--- 705 03 '`~. ® J.r " 7a3 1 ,, 0 4 0 o' t Out(all 700 ~s ~ --~'A 4 qoa~' 2~: 701 ~1p~~~~ r~ j, a'~10 ! r ~ 702 ''~~ ~~ Project File: Run 700.stm No. Lines: 6 12-09-2008 Hytlraflow Slorm Sewers 2o05 Sto~ Sewer Inventory Report ~ ~ Page 1 Line Alignment Flow Data Physical Data Line ID No . Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss InIeU line length angle type q area coeff time EI Dn slope EI Up size type value coeff Rim EI No. (k) (deg) (cfs) (ac) (C) (min) (k) (°/) (k) (in) (n) (K) (ft) 1 End 37.0 166.0 MH 0.00 0.00 0.00 0.0 899.53 0.19 899.60 18 Clr 0.013 1.00 904.50 700-Ex. 2 1 42.0 -10.8 Genr 0.00 0.26 0.85 8.0 899.60 0.90 899.98 15 Cir 0.013 0.50 904.00 701-700 3 2 126.0 -5.3 Genr 0.00 0.30 0.63 7.0 899.98 0.29 900.35 12 Cir 0.013 1.00 901.35 702-701 4 1 92.0 86.4 MH 0.00 0.00 0.00 0.0 899.60 0.58 900.13 12 Cir 0.013 0.78 905.30 703-700 5 4 54.0 -47.4 Genr 0.00 0.22 0.85 5.0 900.13 0.69 900.50 12 Cir 0.013 0.98 904.00 704-703 6 5 117.0 -36.8 Genr 0,00 0.20 0,61 8.0 900.50 0.30 900.85 12 Cir 0.013 1.00 901.85 705-704 Project File. Run 700.stm - Number of lines: 6 Dafe: 12-09-2008 Hytlraflow Smrm Sewers 2005 Sto~Sewer Tabulation ~ ~ Page 1 Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd /Rim Elev Line ID ff I fl ll f coe ( ) ow u Line To Incr Total Incr Total Inlet Syst Size Slope Up Dn Up Dn Up Dn Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ff/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 1 End 37.0 0.00 0.98 0.00 0.00 0.72 0.0 11.2 5.1 3.66 4.57 3.54 18 0.19 899.60 899.53 900.51 900.33 904.50 0.00 700-Ex. 2 1 42.0 0,26 0,56 0.85 0.22 0.41 8.0 8.4 5.8 2.37 6.14 2.75 15 0.90 899.98 899.60 900.67 900.68 904.00 904.50 701-700 3 2 126.0 0.30 0.30 0.63 0.19 0.19 7.0 7.0 6.2 1.17 1.93 1.79 12 0.29 900.35 899.98 901.04 900.91 901.35 904.00 702-701 4 1 92.0 0.00 0.42 0.00 0.00 0.31 0.0 10.5 5.2 1.62 2.70 2.21 12 0.58 900.13 899.60 900.95 900.78 905.30 904,50 703-700 5 4 54.0 0.22 0.42 0.85 0.19 0.31 5.0 10.1 5.3 1.65 2.95 2.74 12 0.69 900.50 900.13 901.11 901.03 904.00 905.30 704-703 6 5 117.0 0.20 0.20 0.61 0.12 0.12 8.0 B.0 5.9 0.72 1.95 1.22 12 0.30 900.85 900.50 901.45 901,39 901.85 904.00 705-704 Project File: Run 700.stm Number of lines: 6 Run Date: 12-09-2008 NOTES: Intensity = 34.42 / (inlet time + 5.50) ^ 0.68; Return period = 10 Yrs. Hydraflow Storm Sewers 2005 • • ~,.,,,. ,.. , ~, , lu 4 - Via. ~, ~. ; v ~, ~ uN~ll'yW ;4 , . av0 ~ ~~~/ n7 a ~- a w.. . ". J t a ..-' Y 3F'-m _ ...... / .Y/ l .._ E ' /~ v" ,,, rM ~e ,+ _ '" -` - .., 1 pot ,.n ~ ~ .: ....- S `, cp' ;..,. r.t54p~~~~ Ml]'. .tom` t~.dyY~ "'` _,.. 1tt `V'1 tlt tt 111; ..~.. 2'.~3~i 4 ul~~`!:~~ I ~vn t 1 ~.. ty - - ~ s• la Ita . ~m .~ ,,..-.- ~+, 'a-- ~ ~fi ~ ~ ~ ~ ~ _. .III N ,,.111-.,.' U. ~~ ~_ ~~s' r ~ w~ ... t - , , ~ ~, ~ O p ` / O \ l 1;, t ., i ~LL ~ 10~ -- ~~J~ ~. x /, ~ t,t o, 9 c. 11 - ~~y "' n ~ { t .., . I t ~ =F, \\~\\~, ~, _,. - ,~ 1111 \ _,~ ;a ` \'~ ~, ~ r t ~ ~ ~ ~, `1\\ f ~i I ji I i~.. YI \\ ~ oo a ~ L ` a t, ~y~ t, 1\ N J ~ (f ~ 1 ~ ~ ~~ ~ `` ~¢~ AA ~\ ~` ?'u ~ ~' ,.v °, - ., p ~_- .. !+ i~ I 1 ~A ~~~ ~ n ~ ` ,- i ~ `~ t l ru~~t. o ....' ,.r~ ~A ... ^° y. . 1 ... ....N - .-' ~Ym ~ ~• e.. L~ 1 qq .~\f .. c~ _ ~1 „ -M ~~ ;a,: ~. t .... Y n Y. £ ~ ~... , _- o. ~\ ~.... „' 7. ' J ..w• ,mn rC Yr ON aT tou~'<v ~ .... ! DA , L~ Id ttl %`~ 00 O ~ ~w^ ,ys \~~`... 1~\ ..i.e d ~. Ham/ _y ~______ _a__-~-.~ _.. 'A '... '_i _.. -__-_.. _ _ __ __ _ _ ~'z t t~~ `. r S eaoemsa ron: ~ o~Po ` HE I:L WE 10505 N. Colle a Avevu< Ivdiavepvlie, Ivdieve 46280 ' o FIRESTONE SERVICE CENTER m. Y v: ,o E weihe.vet g , c . xmxt n: F~ J 1 ] ~ B46 - 6611 G ANCON DESIGN AND CONSTftUCTlON r ~~ " 800 X452-6408 v g `° "~ ~~9 cMEe 9~ ~tl nd ~ elA Jnleu-os4d~= P[PE ROUTING BASIN MAP ~ Fx. " u e s p r 1/h ,... FYY~/[4/[MYy/~s Yens 1011 Cp - ~ •. L.l.~! INBM e E e E • 1 ~ • WATER QUALITY CALCULATIONS 0 • Firestone Service Center water Quality Flow Calculation • -===Basins Name : Imps rvious Groan: BASE Unit Hydrograph: uh489 Rainfall File: Rainfall Pmount(in): C.000 Area (ac): 0.730 Curve Number: 96.00 OCIA (&): C.00 Name: Pervious 6ro LLO: BASE Unit Hydrograph: uh989 Rainfall File: Rainfall Amount (in): 0.000 Area (ac): 0.250 Curve Number: 67.00 DCIA (&): 0.00 ___= Hydrol ogY Simulations Node: Impervious Status: Onsi to Type: SCS Unit iydrograph CN Peaking Factor: 969.0 Storm Duration hrs): 0.00 Time of Conc lmia): 5.00 Time Snift (hrs): 0.00 Max Allowable O~cfs): 959999.000 Node: Pervious Status: Onsi to Type: SCS Una Hydrograph CN Peaking Factor: 964.0 Storm Duration (hrs): 0.00 Time of Conclmin): 6.40 Time Shi ft (hrs): 0.00 Max Allowable Q(cfs): 999599.000 Name: lin-29H Filename: H:\2008\w060700\tlrainage\water Quality\Hami'_ton County\Ln-24H.R32 Override Defaults: Yes Storm Duration (hrsl: 29.00 Rainfall File: Scsii-24 ' Rainfall Amomt(inl: 1.00 • Time (hrs) Print Inc (min) 30.000 5.00 ___= Routing Simulations Name: lin-29H Hydrology Sim: lin-29H Filename: N:\2006\41080700\drainage\water puality\Namilton County\lin-24H.I32 Execute: No Restart: No Patch: No Alternative: No Max Delta 2(ft): 1.00 Ttme Step Optimizer: 10.000 Start Time (hrs): 0.000 Min Calc Time (sect: 1.0000 Boundary Stages: Time (hrs) Print Inc (min) 30 000 10.000 Group Rnn BASE Yes • Jcc# WOB-Oi00 4ie the Engineers, INC. De'_ta Z Factor: 0.00500 End Time (hrs): 30.00 Mdx Caic Time (sec): 100.000C Boundary F1ovs: Interconnected Channel and Pond Routing Model (]CPR) ©2002 Streamline Technologies, Inc. Page 1 of 1 Firestone Service Center Wa[er Quality F'cw Calculation 3a sin Name: Impervious • Group Name: SASE Simulation: lin-24H Node Name: impervious 3asin Tyne: SCS Unit Hydrograpn Unit Hydrograph: uh489 Peaking Fator: 409.0 Spec Time Inc (min): 0. 0] Como Time Inc (min): 0.'07 Rainfall File: Scsii-24 Rainfall Amount (in) 1.000 Storm Duration (hrs) 29.00 Status: Onsite Time of Conc (min): 5.00 Time Shift (hrsl 0.00 Area (ac): 0.730 Vol o£ Unit Hyd (in): 1.001 Curve Number: 98.000 DCIA (8): 0.000 Time Max (hrsl: 12.OC Flow Max (c'sl: 0.]82 Runoff Volume (in): 0.790 Rum £.` Volume (ft3): 2093.029 Basin Name: Pervious Group Name: BASE Simulation: tin-29H Nade Name: Pervious Basin Type: SCS Unit Hydrograph Unit Hydrograph: uh9fi9 Peaking Fator: 989.0 Spec Time Inc (min): 1.12 Comp Time Inc (min): 1.'_2 Rainfall File: Scsii-29 Rainfall Amount (in): 1.000 Storm Duration (hrs): 24.00 Status: Time of Conc (mia): Orsite 8.40 • Time Shift (hrs): 0.00 Area (ac): 0.250 Vol cf Uait Eyd (ia): 1.000 Curve Numher: fi7.000 DCIA (&): 0.000 • Time Max (hrs7: 23.fi0 Flow Max (cfs): 0.000 Runoff Volume (in): 0.000 Rcncff Volume (ft3): 0.040 JoS: wC8-0]00 weihe Engineers, INC. Interconnected Channel and Pond Routing Model (ICPR) ©2002 Streamline Technologies, Inc. Page 1 of 1 (l.._ • Stormceptor® Stormceptor Sizing Detailed Report PCSWMM for Stormceptor-City of Indianapolis /Marion County Project Information Date 12/9/2008 Project Name Firestone Service Center Project Number W08-0700 Location Carmellndiana • • Stormwater Quality Objective This report outlines how Stormceptor System can achieve a defined water quality objective through the removal of total suspended solids (TSS). Attached to this report is the Stormceptor Sizing Summary. Stormceptor System Recommendation The Stormceptor System model STC 900 achieves the water quality objective removing 85% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment far a Stormwater quality flow rate of 0.782 cfs. The Stormceptor System The Stormceptor oil and sediment separator is sized to treat Stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for all rainfall events, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues far large infrequent events, hdwever, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load. Stormceptor is the only oil and sediment separator on the market sized to remove TSS for a wide range of particle sizes, including fne sediments (clays and silts), that are often overlooked in the design of other Stormwater treatment devices. PCSWMM for Stormceptor- City of Indianapolis /Marion County Stormceptor Design Summary- 1(11 ~ `' MATERIALS'" • Stormceptor° Small storms dominate hydrologic activity, US EPA reports "Early efforts in stormwatermanagement focused on flood events ranging from the 2-yr to the 100-yr storm. Increasingly stormwater professionals have come to realize that small storms (i. e. < 1 in. rainfall) dominate watershed hydrologic parameters typically associated with water quality management issues and BMP design. These small storms are responsible for most annual urban runoff and groundwater recharge. Likewise, with the exception of eroded sediment, they are responsible for most pollutant washoff from urban surfaces. Therefore, the small storms are of most concern for the stormwater management objectives of ground water recharge, water quality resource protection and thermal impacts control." "Most rainfall events are much smaller than design storms used for urban drainage models. In any given area, most frequently recurrent rainfall events are small (less than 1 in. of daily rainfall)." "Continuous simulation offers possibilities for designing and managing BMPs on an individual site-by-site basis that are not provided by other widely used simpler analysis methods. Therefore its application and use should be encouraged." - US EPA stormwater Best Management Practice Design Guide, Volume 1 -General Considerations, 2004 • • Design Methodology Each Stormceptor system is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology from up-to-date local historical rainfall data and specifed site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a def ned water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing (summary of analysis presented in Appendix 2): • Site parameters • Continuous historical rainfall, including duration, distribution, peaks (Figure 1) • Interevent periods • Particle size distribution • Particle settling velocities (Stokes Law, corrected for drag) • TSS load (Figure 2) • Detention time of the system The Stormceptor System maintains continuous positive TSS removal for all influent flow rates. Figure 3 illustrates the continuous treatment by Stormceptor throughout the full range of storm events analyzed. It is clear that large events do not significantly impact the average annual TSS removal. There is no decline in cumulative TSS removal, indicating scour does not occur as the flow rate increases. PCSWMM for Stormceptor-City of Indianapolis /Marion County Stormceptor Design Summary - 2/11 ^ . -MATERIALS'" ~L • Stormceptor 0 m 0 C FOW (C{$I J Figure 1. Runoff Volume by Flow Rate for INDIANAPOLIS INTL AP - IN 4259, 1948 to 2005 for 0,98 ac, 74% impervious. Small frequent storm events represent the majority of annual rainfall volume. Large infrequent events have little impact on the average annual TSS removal, as they represent a small percentage of the total annual volume of runoff. Flow (cfs) • Figure 2. Long Term Pollutant Load by Flow Rate for INDIANAPOLIS INTL AP - 4259, 1948 to 2005 for 0.98 ac, 74% impervious. The majority of the annual pollutant load is transported by small frequent storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual pollutant load. PCSWMM for Stormceptor-City of Indianapolis /Marion County Stormceptor Design Summary - 3/11 ~ MATERIALS'" • Stormceptor® 0 0 ~_ R O E m N m E 3 U Flow (cfs) Stormceptor Model STC 900 Drainage Area (ac) 0.98 TSS Removal (%) 85 Impervious (%) 74 WO Flow Rate (cfs) 0.782 Figure 3. Cumulative TSS Removal by Flow Rate for INDIANAPOLIS INTL AP - 4259, 1948 to 2005. • Stormceptor continuously removes TSS throughout the full range of storm events analyzed. Note that large events do not signifcantly impact the average annual TSS removal. Therefore no decline in cumulative TSS removal indicates scour does not occur as the flow rate increases. • PCSWMM for Stormceptor -City of Indianapolis /Marion County Stormceptor Design Summary - 4/11 ' MATERIALS'" ~~ Stormceptor® Appendix 1 Stormceptor Design Summary Project Information Date 12/9/2008 Project Name Firestone Service Center Project Number W08-0700 Location Carmellndiana Designer Info rmation Company Weihe Engineers Contact Christopher M. Figueroa Rainfall Name INDIANAPOLIS INTL AP State IN lD 4259 Years of Records 1948 to 2005 Latitude 39°43'54"N Longitude 86°16'44"W Notes Water Quality Objective N/A TSS Removal (%) 80 WO Flow Rate (cfs) 0.782 • Drainage Area Total Area (ac) 0.98 Imperviousness (%) 74 Length of Overland Flow (ft) 44 Average Site Slope (%) 1.5 The Stormceptor System model STC 900 achieves the water quality objective removing 85%TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 0.782 cfs. Stormceptor Sizing Summary Upstream Storage Stormceptor Model TSS Removal STC 4501 76. •rr STC 1200 85 STC 1800 85 STC 2400 89 STC 3600 89 STC 4800 92 STC 6D00 92 STC 7200 94 STC 11000 95 STC 13000 96 STC 16000 96 • PCSWMM for Stormceptor -City of Indianapolis /Marion County Stormceptor Design Summary - 5111 MATERIALS'" ~~ Stormceptor® Particle Size Distribution Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal. Fine or anics, silts and sand Particle Size Distribution Specific Settling particle Size Distribution Specific Settling Gravity Velocity Gravity Velocity m % ft/s m % fVs 20 20 1.3 0.0013 60 20 1.8 0.0051 150 20 2.2 0.0354 400 20 2.65 0.2123 2000 20 2.65 0.9417 Stormceptor Design Notes • Invert Elevations Differences Inlet Pipe Configuration STC 4501 STC 900 to STC SIG 11 UOU to 7200 STC 76000 Single inlet pipe 3 in. 1 in. 3 in. Multiple inlet pipes 3 in. 3 in. Only one inlet pipe. Design estimates are based on stable site conditions only, after construction is completed. Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative. Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance. For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www. ri n ke rsto rm ce pto r. co m Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor. Design estimates listed are only representative of specifc project requirements based on total suspended solids (TSS) removal. Only the STC 4507 is adaptable to function with a catch basin inlet and/or inline pipes. Only the Stormceptor models STC 4507 to STC 7200 may accommodate multiple inlet pipes. Inlet and outlet invert elevation differences are as follows: Inlet and Outlet PCSWMM for Stormceptor -City of Indianapolis /Marion County Stormceptor Design Summary - 6/11 ~ MATERIALS"" Stormceptor® Appendix 2 Summary of Design Assumptions SITE;:DETAILS _ ~ ' =.` Site Drainage Area Total Area (ac) 0.98 Imperviousness (%) 74 Length of Overland Flow (ft) 44 Average Site Slope (%) t.5 Surface Characteristics Width (ft) 970.2 Slope (%) 1.5 Impervious Depression Storage (in.) 0.0197 Pervious Depression Storage (in.) 0.185 Impervious Manning's n 0.015 Pervious Manning's n 0.25 Infiltration Parameters Horton's equation is used to estimate infiltration Max. Infiltration Rate (in/hr) 2.44 Min. Infiltration Rate (in/h r) 0.394 Decay Rate (s-1) 0.00055 Regeneration Rate (s-1) 0.01 Evaporation • Maintenance Frequency Daily Evaporation Rate (incheslday) 0.1 Sediment build-up reduces the storage volume for sedimentation. Frequency of maintenance is Dry Weather Flow assumed for TSS removal calculations. Maintenance Frequency (months) 12 Dry Weather Flow (cfs) No Upstream Attenuation and stage-discharge relationship used to model attenuation upstream of the Stormceptor System the table below. Storage ac-ft Discharge cfs 0 0 • PCSWMM for Stormceptor-City of Indianapolis /Marion County Stormceptor Design Summary - 7/11 ~ MATERIALS° ~~ S#ormceptor® Particle Size Distribution Removing fine particles from runoff ensures the majority of pollutants, such as heavy metals, hydrocarbons, free oils and nutrients are not discharged Into natural water resources. The table below identifies the particle size distribution elected to defne TSS removal for the design of the Stormceptor System. Fine or anics, silts and sand Particle Size Distribution Specific Settling particle Size Distribution Specific Settling Gravity Velocity Gravity Velocity m % ft/s pm % ft/s 20 20 1.3 0.0013 60 20 1.8 0.0051 150 20 2.2 0.0354 400 20 2.65 0.2123 2000 20 2.65 0.9417 PCSWMM for Stormceptor Grain Size Distributions 300 • 90 80 7~ ,~ 60 R 50 ~ 40 30 20 1 ipJ U 0 I m t 2e V{~ f ]. S: v.Ki ~~ ". X ~ +. _ m~ (a p.l ~ il~ #r~i sra t ti I ~ ~r .~,,??~,~ .~*,t Vnf1 ,? ytis p i ~. x+ ~# xYk; ~ S p ~ ~ ` n t : CLAY ~ SILT _ ~ '„ ,SAPId~;"~eiGOBBLES ~ ~~ ,,, i ~ - _ s ~ u.:'s r -~--r-,-~ 3 y ,r x ca k ~ P~ I i T s 3 i rY'3 z E , ~ ~ ~ ~. s ~ ~~ _ Y , ~ ~ t ~ ~ M . ~ 'P ,~~ x4{ k. ~,m Y ~) {54 w+ J'Y ~ y ~T C ~ ~ '..1 .n x es ~~.elf ~.Y~t hts. $w,3 {Lfi't•.i~~<':'r:" ( i ~ f*~, ro ~.: 4t U"!vT v t~& .eta '~'„~~ e ¢°~~ I fi ~. I ~ .~ - ~ $ Ex j}"'y y F ~ ~'. . E ~ , ~ krr `3 % P `xi ~l ~ ~ ~ ~ ~, . r4 '^e#~ j~~{ r~..I, ~n .. 1 F t[ Y.s { 1 10 100 loo0 laaoo Grain Size (um) +NjDEP ~-Fine Distribution -~-OK--110 -#JF-95 Sand -t-Coarse Disiributinn Figure 1. PCSWMM for Stormceptor standard design grain size distributions. • PCSWMM for Stormceptor -City of Indianapolis /Marion County Stormceptor Design Summary - 8/11 ~ MATERIALS° S#ormceptor® TSS Loading Parameters TSS Loading Function Buildup /Washoff Parameters Target Event Mean Concentration 125 (EMC) (mg/L) Exponential Buildup Power 0.4 Exponential Washoff Exponential 0.2 ]RAI'A(,Y A'NL~ PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of the Stormceptor System are based on the average annual removal of TSS for the selected site parameters. The Stormceptor System is engineered to capture fine particles (silts and sands) by focusing on average annual runoff volume ensuring positive removal efficiency is maintained during all rainfall events, while preventing the opportunity for negative removal efficiency (scour). I Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section. Rainfall Station Rainfall Station INDIANAPOLIS INTL AP Rainfall File Name IN4259.NDC Total Number of Events 10061 Latitude 39°43'54"N Total Rainfall (in.) 2304.9 Longitude 86°16'44"W Average Annual Rainfall (in.) 39.7 Elevation (ft) Total Evaporation (in.) 156.4 Rainfall Period of Record (y) 58 Total Infiltration (in.) 574.9 Total Rainfall Period (y) 58 Percentage of Rainfall that is 70'9 Runoff (%) • PCSWMM for Stormceptor-City of Indianapolis /Marion County Stormceptor Design Summary- 9/11 MATERIALS"" u (__l.__ S#ormceptor Rainfall Event Analysis Rainfall Depth in. No. of Events Percentage of Total Events % Total Volume in. Percentage of Annual Volume 0.25 ]433 ]39 46] 20.3 0.50 1246 12.4 45] 19.8 ~]5 599 60 3)0 181 1 00 329 3.3 ~ 284 12.3 1.25 16] 17 i8fi 8.0 1.50 108 1.1 14] 6d 1 ]5 60 O6 9B 4.2 2.00 W 0.4 69 3.D 2.25 2D D.2 43 1.8 2so z1 oz so z.z 2.]5 12 0.1 32 14 3.00 13 D.1 38 1.6 3.25 2 DO 6 0.3 3.50 3 0.0 10 0.5 3]5 1 0.0 4 0.2 4.00 5 0.0 19 0.8 azs 2 D.6 a o4 4sD 1 D.D a az a]s a a.6 0 oD s.oo a o.D o oD 5.25 1 o.D s o.z sso 0 0.0 0 0.0 5.]s 0 ~ D.o 0 00 6.00 0 D.o 0 0.0 6.zs D o.0 0 06 s so a D.6 0 0.0 s]s o D.D 0 00 ].DO o o.0 0 0.0 zzs o D.D o D.o zsa 1 0.6 ] 0.3 ].]s o 00 0 o.o fi.Da o D.o 0 D.D e.zs o o.0 0 00 >e.zs o D.o 0 0.0 0 m 0 0 m Q m LL Rainfall Depth (in.) • PCSWMM for Stormceptor-City of Indianapolis /Marion County Stormceptor Design Summary - 10/11 ~ MATERIALS"" Frequency of Occurence by Rainfall Depths ~~ Stormceptor Pollutograph • Flow Rate cfs Cumulative Mass 0.035 60.1 0.141 ]6.5 0.318 69.0 0.565 95.5 0.883 98.1 1.2]1 99.2 1 ]3 99.6 2.26 99 6 2.86 99 9 3.531 100.0 4 T)3 100.0 5.085 100.0 5.968 100.0 6.922 100.0 ].946 100.0 9041 1000 to.zo6 1000 11.442 loon 12]49 to0.0 14.126 100.0 155]4 1000 n.o9z mo.p 16.661 mo.a 20.341 100.0 2z.m2 loop z3.e]a mo.p 25 P44 1000 z]se] mop z9] mo.o 31 ]83 100.0 0 v me n m r` N N N 7 C C Q FIoW (cfs) PCSWMM for Stormceptor-City of Indianapolis /Marion County Stormceptor Design Summary - 11/11 ~ MATERIALS'" Cumulative Mass Transported by Flow Rate For area: .98 (ac), imperviousness: 74%, rainfall station: INDIANAPOLIS INTL AP s • MATER~A~S•- Concrete Pipe Division Stormceptor Frame and Cover Grade Adjusters to 1 Suif Finished Grade 1 $n a a C STC 900 Precast Concrete Stormceptor (900 U.S. Gallon Capacity) ~32"1~ I I I 1 °. ~ 30"H 72"0 Varies Stormceptor® ------- Insert ~ -- - ~ ~ • _ Inlet _ Weir 6"~ ~ ~ a _L_ Orifice ~ Plate 5~' ~ Min. Drop Tee Inlet Pipe 24"H Drop 8.. Outlet Pipe - a 8" - a e a Section Thru Chamber ,,, T, Notes: • 1. The Use Of Flexible Connection is Recommended at The Inlet and Outlet 1~rhere Applicable. 2. The Cover Should be Positioned Over The Outlet Drop Pipe and Tne Oil Pork 3. The Stormceptor System is protected b5~ one or more of the following U.S-Patents: ~98~ 148, ~498~~1;-X725760;-'753115,#~8^9181,=606876;#671590. 4. Contact a Concrete Pipe Di~>ision representztive for nether details not iisied on this ~-zR~ine. 6"0 Oil ~ Port d 6 7., ----- a Outlet ---- inlet 24"0 Outlet Pipe 6"O Orifice Plate d a. ~~ ~~ i Access opening (See note #2) 6"0 Oil Port Rink°i 038 • BACK COVER POCKET • •